
Eurographics Conference on Visualization (EuroVis) 2019
M. Gleicher, H. Leitte, and I. Viola
(Guest Editors)

Volume 38 (2019), Number 3

Interactive Visualization of Flood and Heavy Rain Simulations

D. Cornel1, A. Buttinger-Kreuzhuber1,2, A. Konev1, Z. Horváth1,2, M. Wimmer2, R. Heidrich3, and J. Waser1

1VRVis Forschungs-GmbH, Vienna, Austria 2TU Wien, Vienna, Austria 3RIOCOM, Vienna, Austria

Figure 1: Visualization of smoothly interpolated flood simulation results and terrain defined on adaptive grids. (Left) Large-scale flooding of
villages by a nearby river. (Right) Stormwater runoff in a mountainous region. High velocities are indicated by white foam.

Abstract
In this paper, we present a real-time technique to visualize large-scale adaptive height fields with C1-continuous surface
reconstruction. Grid-based shallow water simulation is an indispensable tool for interactive flood management applications.
Height fields defined on adaptive grids are often the only viable option to store and process the massive simulation data. Their
visualization requires the reconstruction of a continuous surface from the spatially discrete simulation data. For regular grids,
fast linear and cubic interpolation are commonly used for surface reconstruction. For adaptive grids, however, there exists no
higher-order interpolation technique fast enough for interactive applications.
Our proposed technique bridges the gap between fast linear and expensive higher-order interpolation for adaptive surface
reconstruction. During reconstruction, no matter if regular or adaptive, discretization and interpolation artifacts can occur,
which domain experts consider misleading and unaesthetic. We take into account boundary conditions to eliminate these artifacts,
which include water climbing uphill, diving towards walls, and leaking through thin objects. We apply realistic water shading
with visual cues for depth perception and add waves and foam synthesized from the simulation data to emphasize flow directions.
The versatility and performance of our technique are demonstrated in various real-world scenarios. A survey conducted with
domain experts of different backgrounds and concerned citizens proves the usefulness and effectiveness of our technique.

1. Introduction

The ubiquitous use of computer simulations in flood and stormwater
management creates a growing demand for expressive and efficient
techniques to visualize the corresponding, often very large flood-
related data (Figure 1). As interactivity is a key requirement for
modern decision support tools, the performance of simulations be-
comes a crucial aspect. Flood simulation on triangular meshes is
highly flexible with respect to approximating complex boundaries
such as building walls or protection barriers. However, it is relatively

slow for decision making, which often relies on ensembles of large-
scale scenarios [WKS∗14]. In contrast, shallow water simulation
on rectangular grids provides a significantly higher performance.
The grid structure is well suited for the GPU data model, which
enables the parallelization of shallow water simulations [HPW∗16].
For this reason, grid-based flood simulation using the finite-volume
method is the state of the art in interactive flood management, and
visualization of these results is an important task.

The results of shallow water simulations are discretely defined

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.13669



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

a b

c d

Figure 2: Surface reconstruction with interpolation. (a) Nearest-
neighbor and (b) bilinear interpolation lead to linear and angular
shoreline features. A smoother shoreline is obtained by bicubic
interpolation with (c) Catmull-Rom splines and (d) cubic B-splines.

on rectangular grids in the form of height fields. Visualization of
such height fields requires some sort of surface reconstruction by
means of interpolation or approximation. The simplest form of inter-
polation, nearest neighbor, produces results that are far from being
physically realistic (Figure 2a), which makes it practically useless
for engineering or presentation purposes. Bilinear interpolation in-
troduces C0-continuity, but leads to straight or angular shoreline
features (Figure 2b). For regular grids, C1-continuity is achieved
by bicubic interpolation (Figure 2c) or approximation (Figure 2d),
which are fast enough for interactive applications.

To keep up with the increasing scale of simulated scenar-
ios and the generated data, adaptive grids can be used. Cur-
rently, however, one has to choose between fast linear interpo-
lation [KT09, Lia11] and offline smooth interpolation [BMA10,
BOR14, GJAG14, FBHD17]. None of these algorithms provides a
continuously differentiable surface reconstruction while also being
efficient enough for interactive applications. The main challenge of
adaptive grid interpolation is the absence of implicitly given rela-
tionships between neighboring cells of different resolution. Within
a neighborhood required for third-order interpolation, a potentially
infinite number of alternative cell arrangements is possible. Retriev-
ing the neighborhood values is computationally hard, yet necessary
to achieve smooth surface transitions between grid cells of different
resolution. One contribution of this paper is a novel method for fast
C1-continuous third-order interpolation on adaptive grids.

When using a fast, but simple interpolator for surface reconstruc-
tion, such as usual bilinear or bicubic interpolation, the reconstructed
water surface is not always plausible. This is particularly apparent
at dry/wet boundaries. Here, two types of features can manifest,
which we consider artifacts in the context of water visualization.
First, if the height field is not defined everywhere, missing val-
ues at dry cells have to be deduced from existing data. Previous
work [HWP∗15, HPW∗16] used the terrain elevation as water level
at these dry cells, which can lead to uphill climbing of water (Fig-
ure 3a1) as well as diving towards walls (Figure 3b1). Second,
wall boundaries are discretized on the rather coarse grid used for
simulation and interpolation. Therefore, the interpolated extents of

a1 a2

b1 b2

c1 c2

Figure 3: Common artifacts with standard interpolation (left col-
umn) compared to our results (right column). (a) Climbing. (b)
Diving. (c) Leaking.

simulated inundation do not always match the detailed wall geome-
try used for visualization, leading to seeming leaking (Figure 3c1).
During live sessions in the past, domain experts misinterpreted these
artifacts as actual water propagation several times. We present a sur-
face reconstruction for water height fields with boundary conditions
that reduces these artifacts (Figure 3, right column) in both regular
and adaptive grids.

The correct perception of flow behavior is important for the inter-
pretation of water simulation results. However, it is hard to extract
this information from a colored surface alone. The use of glyphs
or other established flow visualization techniques could solve the
problem, but would result in a cluttered visualization that draws
all the viewer’s attention. In nature, flow directions can often be
identified easily by waves and patches of foam flowing on the water
surface. We demonstrate the use of exaggerated waves and foam
derived from simulation data as visual metaphors for the intuitive
indication of flow behavior (Figure 1, right).

Although water rendering for entertainment purposes, e.g., for
video games, is a well-researched topic, the interactive visualiza-
tion of time-dependent flood simulation data is still a challenge. In
previous work, the complex problem of water rendering has been
simplified based on assumptions that certain data do not change.
However, such assumptions do not hold for dynamic simulation data.
For example, water bodies in video games are usually confined to
a static triangle mesh or plane such that the water surface can be
perfectly aligned to the scene geometry by an artist manually. This
alleviates the need for expensive interpolation and dealing with arti-
facts, but prohibits the dynamic inundation of the scene. Likewise,
using precomputed flow data for surface shading is sufficient for an
aesthetic appearance. For the accurate visualization of flows in a
dynamic velocity field, this simplification makes no sense. There-
fore, we feel the need to set ourselves apart from these techniques

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

26



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

which are limiting in our case. Instead, we introduce more suitable
techniques tailored to our particular application.

To summarize, this paper provides the following contributions:

• Continuous third-order and linear interpolation methods for
height fields defined on adaptive grids
• A surface reconstruction for water height fields including correct

treatment of boundaries to reduce reconstruction artifacts
• Water shading with waves and foam derived from simulation data

for better depth and flow perception

The described techniques for the reduction of artifacts and for
water surface shading are independent from the simulation grid and
can be used for adaptive and regular grids alike. We have thoroughly
evaluated the presented results in live sessions and with a user survey
among 96 participants consisting of experts in the field of flood
management as well as members of the general public. Benchmarks
demonstrate the high performance of the proposed techniques in
real-world scenarios.

2. Related Work

Interpolation. Fast interpolation of data defined on adaptive grids
is of great interest in volume rendering, where data sets become
large rapidly. Here, the common practice of interpolation is to map
the data to multi-level textures and then facilitate trilinear hard-
ware interpolation [WWH∗00,KH02,BHMF08]. For adaptive-mesh-
refinement grids, the stitching method is commonly used, which
inserts special stitch cells with pre-defined interpolation behavior at
level transitions [WKL∗01, ME11, BST15]. For interpolation within
quadtrees, Kim and Tsiotras [KT09] propose a bilinear interpolation
scheme that uses bilinearly upsampled values in transition regions
between levels. A similar scheme proposed by Liang [Lia11] uses an
enclosing triangle for upsampling. All of these methods use a linear
interpolator on the upsampled regions and thus yield C0-continuous
results. However, an error assessment by Kidner [Kid03] shows
that higher-order interpolation of digital elevation models leads
to a significantly more accurate surface representation than linear
interpolation. The scheme proposed by Min and Gibou [MG06]
uses a biquadratic interpolator, but does not consider continuous
differentiability in transition regions.

C1- or C2-continuous local refinable splines defined on hier-
archical data structures are often used for isogeometric analy-
sis [DCL∗08, BLE∗14, LCKD16]. Fuchs et al. [FBHD17] use
them for volume rendering and report runtimes of 38 millisec-
onds for around 256000 cells. For unstructured data, interpola-
tion with radial basis functions such as thin plate splines can be
used. Hutchinson [Hut95] demonstrates an interpolation of rain-
fall data, resulting in a C1-continuous surface. Smooth interpola-
tion of scattered data can be accelerated by combining locally de-
fined thin plates [Fra82]. With an evaluation of thin plate splines
on the GPU, Beatson et al. [BOR14] report a runtime of 1.3 sec-
onds for 128000 data points. Kriging, a technique for geostatistical
prediction, has also been used for the approximation of scattered
geospatial data [Goo00, Ree00]. With GPU-based implementations,
the processing of a few thousand data values takes several sec-
onds [Che13, GJAG14]. Natural-neighbor interpolation for unstruc-
tured data yields C1- or C2-continuous surfaces [Bob08]. With an

implementation optimized for the GPU, Beutel et al. [BMA10]
report a runtime of 163 seconds for 186 million cells.

To our knowledge, there exists no continuously differentiable
interpolation technique that can process adaptive data in the order
of one hundred million cells interactively, i.e., in less than 30 mil-
liseconds. Currently, this efficiency is only achieved by grid-based
techniques such as regular bilinear or bicubic interpolation. How-
ever, the existing approaches are either not suited for adaptive grids
or not continuously differentiable, which are given requirements in
our application. Our proposed technique fills this gap by extending
bicubic interpolation to adaptive grids with very little overhead.

Water visualization. The challenge of visualizing water bodies
affects a variety of fields from engineering simulations to the enter-
tainment industry. Often, the water visualization should not only be
recognizable [KC14], but should also convey important character-
istics such as depth, flow direction, or flow speed. This holds for
engineering simulation tools [TUF, Riv, MIK], flood management
decision support systems [Flo, Vis, LKT∗17], and public communi-
cation [You, CKS∗15, VGB∗16]. Currently, the most popular ways
to represent such properties are color mapping and glyphs.

For the realistic appearance of virtual water surfaces, waves can
be generated by the superposition of wave functions [Tes01, Fin04,
NSB13], wavefront tracking [JW15], or by particle-based simula-
tions [YHK07, YNBH09, JW17]. Tile-based approaches map direc-
tional features onto surfaces using flow fields [Gri11, vH11, GH12].
Vlachos demonstrates their benefit for route guidance in a video
game [Vla10]. Local flow behavior can be visualized using spray
particles and foam [BSW10, CM10, DB12, KLCK17]. The percep-
tion of water depth can be influenced by appropriate shading meth-
ods [PA01, Bel04]. Visualizing simulation-based flow information
with waves and foam was evaluated for non-professionals [GSH∗15]
and was judged intuitive and useful.

3. System Overview

We implement our findings in a decision support system that com-
bines simulation, analysis, and visualization of flooding scenar-
ios [Vis]. In the system pipeline, we use our proposed approach for
interactive 3D visualization of dynamic water simulation and terrain
data. The water flow is simulated with an existing, integrated GPU-
based shallow water simulator [HPW∗16] using the finite-volume
method. The output of the simulation, which serves as input for
our technique, is a collection of scalar and vector fields defined
on a rectangular adaptive grid. For the adaptive grid, we use the
data structure described by Liang [Lia11]. However, the techniques
we present are largely independent of the used adaptive grid. Any
grid-based data structure will suffice, provided that it facilitates a
quick retrieval of the data value for the cell covering a given 2D
position. The only necessary restriction is that neighboring cells,
i.e., cells that share a vertex, must not differ by more than one level.

The input data fields include absolute water levels which are
water elevations relative to sea level, water depths which are water
elevations relative to the terrain, and 2D water velocity vectors.
An additional terrain field represents ground elevations relative to
sea level. In our system, all discretized data are cell-registered,
meaning that data values are associated with cell centers. However,

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

27



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

1

0

7

5

4

2

8

6

11 12

9 10

3

0.3 0.9

0.7
0.1

0.8 1.0

0.5 0.9

0.3

Level 0 Level 1 Level 2

0.3 0.9

0.7
0.1

0.8 1.0

0.5 0.9

0.3 0.8

0.6

0.50625

0.5

0.40.1

0.3

0.36875

0.3

0.3 0.8

0.3 0.30.25

0.25

0.6

0.7

q

p

0.7

0.9

q

p

0.5

0.1

0

0 0.7

0.9 p

1

1

p

e f g h

0.50625

0.36875

Existing values Extrapolated values Downsampled values Upsampled values

Interpolation Patch Transition Region

1

0

7

5

4

2

8

6

3

11 12

9 10

Interpolation Patch

a b c d

Figure 4: Bilinear interpolation within an adaptive grid. (a) Enumerated cells of the adaptive grid (black). Height-field values (blue) defined
on wet cells shaded in blue. Dry cells are not shaded. (b)–(d) Individual grid levels. (e)–(g) Missing values have to be reconstructed for the
interpolation patches on the two levels. (h) Blending of individual interpolation results within the transition region across levels.

a characteristic of the finite-volume method is that the resulting
simulation data are average values over the entire cell rather than
exact measurements at the cell center.

4. Adaptive Height-Field Reconstruction

The efficiency of interpolation on a regular grid stems from the triv-
ial neighborhood relationship between cells. In a regular grid, the
neighborhood of an interior cell is always symmetric and consists
of eight neighbors. Data values of neighbors can be accessed easily,
which makes operations defined on a larger neighborhood of cells
simple. The challenge of interpolation on an adaptive grid is that
neighborhood relationships between cells are not straightforward
anymore. As the size of neighboring cells can differ by one level,
there exists a large variety of arrangements with six to twelve direct
neighbors of a cell. This prevents constant-time access to the data
of neighbors and makes operations defined on cell neighborhoods—
such as interpolation—complex tasks. However, adaptive grids can
be interpreted as a set of sparse regular grids of the same world-
space extents but different resolutions. We call these grids levels
and enumerate them starting from 0 for the coarsest resolution. Fig-
ure 4a illustrates an adaptive grid with three levels that are shown
individually in Figure 4b–d. On each of these conceptual regular
grids, we can perform neighborhood operations efficiently again.
This interpretation transforms the initially complex operation into
multiple simple operations performed on the individual levels. Yet,
it also introduces two new challenges, namely, how to reconstruct
missing values on the individual levels, and how to combine the

results of the individual operations to a final result. Kim and Tsio-
tras [KT09] perform bilinear interpolation on a local 2×2 grid with
missing values reconstructed on the fly. We extend this approach to
the 4×4 neighborhood required for bicubic interpolation, in which
case the reconstruction of missing values is much more expensive.
This is why we represent the individual levels with an actual sparse
data structure to cache reconstructed values. As we aim for C1-
continuity of our reconstruction scheme, we also need to take care
of level transitions, which has not been addressed in previous work.

In this section, we present a technique for the fast adaptive inter-
polation or approximation of cell-registered height fields. The main
idea is to perform regular interpolation independently for neighbor-
ing levels and then stitch the regular regions together with blending
functions. We obtain missing values on the individual levels by ex-
trapolation, downsampling, and upsampling of existing values. The
resulting reconstruction is identical to bilinear or bicubic interpo-
lation in regular regions and continuous over level transitions. The
described technique builds on well-known interpolation functions
for regular grids that are interchangeable and independent from the
additional challenges of adaptive grids that we tackle. For the sake
of simplicity, we therefore start by explaining only bilinear inter-
polation in detail to highlight the important steps. The subsequent
extension to bicubic interpolation then comes naturally. An interac-
tive WebGL application demonstrating both techniques is available
online with full source code [Sha].

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

28



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

4.1. Bilinear Interpolation

Bilinear interpolation operates on the 2×2 block of cells surround-
ing each interpolation position p. We call these cells the neighbor-
hood of p in the following. Their centers span a square called an
interpolation patch over which data values are interpolated. In an
adaptive grid, however, the surrounding cells of p do not necessarily
have the same size, but might belong to different levels. Yet, two
neighboring cells can never differ by more than one level, which
is why there are only two cases to distinguish. Either all four cells
belong to the same level, in which case we perform usual bilinear
interpolation on a locally regular grid, or the four cells belong to two
consecutive levels. We now explain how to proceed in the second
case with an example illustrated in Figure 4.

The sampling position p, marked in red in Figure 4e, is covered by
a level-1 cell. While its bottom neighbor belongs to the same level,
the bottom left and left neighbors belong to level 0. On each of the
two involved levels, we can imagine a 2×2 neighborhood of cells
surrounding p, even if not all of the cells exist in the adaptive grid.
We call these imaginary neighborhoods. The cell centers of each
imaginary neighborhood again span a square interpolation patch, as
shown for level 0 and level 1 in Figure 4f and Figure 4g, respectively.
The values at the corners of the interpolation patches are the values
given at the centers of the corresponding cells of the imaginary
neighborhood. Within each interpolation patch, we can perform a
usual bilinear interpolation of the corner values. However, some
of the cells of both imaginary neighborhoods have missing values.
Before interpolation, these missing values have to be reconstructed
by extrapolation, downsampling, or upsampling.

Extrapolation. On level 0 in our example, only the bottom left
and top left cells correspond to leaf cells of the adaptive grid shown
in Figure 4a. This is indicated by unique cell indices shown in black.
Of these two cells, only the top left cell is a wet cell that has a data
value provided by the simulation, which is indicated by a blue square
and a blue shade of the cell in Figure 4e. The bottom left cell is a dry
cell and requires extrapolation, which is indicated by a green circle.
To fill in missing values of dry cells, we average over the values of
all neighboring wet cells, including diagonal neighborhood. In our
application, this extrapolation is only used for absolute water levels
to avoid climbing and diving at dry/wet cell boundaries, which is
explained in detail in Section 5.

Downsampling. The top right cell in Figure 4f does not exist in
the adaptive grid. Instead, this part of the adaptive grid is covered by
the four level-1 cells labeled 5, 6, 7, and 8 in Figure 4a. Yet, we re-
quire a data value at the center of the level-0 cell for the interpolation
patch on level 0. We therefore downsample the values of the four
level-1 cells by averaging, which is indicated by a purple triangle
pointing downward. The bottom right cell on level 0 also needs to
be downsampled. In this case, however, not even all corresponding
level-1 cells actually exist in the adaptive grid, but only three of
them. The value of the last cell itself needs to be reconstructed by
downsampling the four level-2 cells 9, 10, 11, and 12. It can be seen
that downsampling is a recursive process. Furthermore, the cells
2, 3, and 9 covered by the bottom right level-0 cell are dry cells,
meaning that extrapolation has to take place before downsampling.

Upsampling. With extrapolation and downsampling, all values
of the interpolation patch on the coarse level can be reconstructed.

On the fine level illustrated in Figure 4g, however, we also need
to reconstruct missing values by upsampling, indicated by a brown
triangle pointing upward. This is necessary for the bottom left and
top left cells of the imaginary neighborhood, which are covered by
the level-0 cells 0 and 1 in the adaptive grid. We focus on the bottom
left cell with center q marked in both Figure 4f and Figure 4g. The
value at q has to be reconstructed from surrounding values. These
surrounding values have already been gathered for the interpolation
patch on level 0, which is why we calculate the missing value by
simple bilinear interpolation within this interpolation patch. We
perform the same upsampling at the center of the top left cell.

In previous work, Kim and Tsiotras [KT09] performed down-
sampling and upsampling on the fly. However, during interpolation,
reconstructed values are reused multiple times, which is why it
makes sense to cache them. In Section 4.3, we explain how to store
and update all values in a sparse texture hierarchy so that no recon-
struction is required during rendering.

Once all required values are present, we perform bilinear in-
terpolation at p on both levels separately. We denote the bilinear
interpolation at p on the coarse (level 0) and fine (level 1) levels
by vc(p) and v f (p), respectively. Since we need a single value, we
combine the interpolation results of both levels such that discontinu-
ities at the level transition are avoided. We achieve this with a convex
combination of vc(p) and v f (p) over a transition region, illustrated
in Figure 4h, which requires both values to be defined over the en-
tire transition region. The transition region is therefore given by the
intersection area of the interpolation patches of both levels, which
is simply the interpolation patch of the fine level. In this region,
the influence i(p) of value v f (p) should be zero at corners where
data values had to be upsampled, and one in the remaining corners.
Influence values in between are calculated by bilinear interpolation.
The final interpolation value at p is

v(p) = (1− i(p))vc(p)+ i(p)v f (p). (1)

In our example given in Figure 4e–h, the relative positions of p
within the interpolation patches of levels 0 and 1 are (0.6, 0.7)
and (0.7, 0.9), respectively. This results in the individual val-
ues vc(p) = 0.51 and v f (p) = 0.46975. With the influence i(p) =
0.7, the final result is v(p) = 0.481825.

As stated above, our proposed interpolation technique is mostly
independent from the interpolation function used for the individual
regular levels. It simply blends the individual values together for a
continuous surface with smooth transitions between different-sized
cells. Bilinear interpolation is a simple and well-known technique
ideally suited to introduce the idea. The resulting surface is C0-
continuous and preserves the given data values at cell centers. For
many applications, this is a desired and sufficiently realistic repre-
sentation of the height-field data. For water height fields, however,
linear surface boundaries still lead to unpleasant visual artifacts such
as perfectly straight or angular shorelines (Figure 2b).

4.2. Bicubic Reconstruction

For smoother interpolation of data defined on regular grids, cubic
splines are a good choice [Ree00]. Compared to the 2×2 cell neigh-
borhood considered for bilinear interpolation, bicubic interpolation

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

29



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

takes into account a 4× 4 neighborhood of an interpolation posi-
tion, including not only the four surrounding data points, but also
their neighbors. The extended neighborhood allows for matching
the derivatives in start and end points of the interpolation splines
to neighboring interpolation patches, resulting in a smooth, C1-
continuous surface.

For adaptive cubic interpolation, the increased size of the imag-
inary neighborhood means that significantly more missing values
than for bilinear interpolation have to be reconstructed. For bilin-
ear interpolation, when sampling within a cell, only data of direct
neighbors are needed, i.e., reconstruction of existing values on the
corresponding level is limited to the 3× 3 neighborhood around
each cell. Now, we also need data of the direct neighbors’ neighbors,
which extends the region of values that need to be reconstructed to
the 5×5 neighborhood around each cell. First, we need to extend the
range of extrapolation. If none of the direct neighbors of a dry cell is
a wet cell, we subsequently consider their neighbors as well, and av-
erage over the data value of all wet cells in this large neighborhood.
Second, upsampling may be required outside the interpolation patch
of the coarse level. For bilinear interpolation, we could conveniently
obtain the value of q in Figure 4g by bilinear interpolation within
the already existing interpolation patch of the coarse level illustrated
in Figure 4f. For values of the direct neighbors’ neighbors, however,
we now have to construct separate interpolation patches. This, again,
might also require extrapolation and recursive downsampling. In
summary, while the individual reconstruction operations are the
same as for bilinear interpolation, their combination in the larger
neighborhood leads to a high number of required calculations. This
makes it even more important to cache the reconstructed values.

Once all values are present, there exist many legitimate options for
the cubic reconstruction filter. Mitchell and Netravali [MN88] define
a family of cubic filters with a continuous parameter space ranging
from exact interpolation of values by the Catmull-Rom spline to
the smoothest approximation by the cubic B-spline. Interpolation
preserves the given values at data points, which is often a desired
property. Approximation of data values leads to an overall smoother
and more natural result than cubic interpolation, as comparable
in Figure 2. Moreover, approximation with the cubic B-spline can
be implemented efficiently with only four instead of the usual 16
texture lookups for the 4×4 neighborhood of an interpolation po-
sition by exploiting hardware texture filtering [SH05]. The choice
for either interpolation or approximation solely depends on the use
case and the desired smoothness. Our reconstruction scheme is
completely independent of the used cubic spline. The final inter-
polation value v(p) in transition regions is again calculated by a
convex combination of vc(p) and v f (p). However, to achieve global
C1-continuity, we need at least a cubic blending function H(t), such
as the cubic Hermite spline used in the popular smoothstep function,

H(t) = t2(3−2t). (2)

The final value is then

v(p) = (1−H(i(p)))vc(p)+H(i(p))v f (p). (3)

The derivative H′(t) of H(t) is continuous, meaning that the con-
vex combination v(p) of the C1-continuous interpolation polyno-
mials vc(p) and v f (p) itself is C1-continuous within the transition

region. Furthermore, H′(t) vanishes on the edges of the transition
region, i.e., H′(0) = H′(1) = 0. Thus, v(p) is also C1-continuous
on the edges of the transition region, meaning that the height field is
continuously differentiable over the whole adaptive grid.

4.3. Implementation

Our system uses the adaptive interpolation described above during
rendering of the water and terrain height fields multiple times. Both
height fields are sampled for triangulation, for surface effects, and
coloring, amounting to many million interpolation operations each
frame. It is therefore crucial that interpolation can be performed
as efficiently as possible using hardware acceleration. This is why
we focus on the GPU implementation here, although in our system,
interpolation is also used for multiple CPU-side operations such as
the water sampling near buildings to determine damage extents.

As described above, we can interpret the adaptive grid as a set
of regular grids. For an efficient implementation, we adopt this
conceptual representation and maintain a set of regular 2D textures
created from the adaptive data structure. We store data values in
these textures and update them whenever the input data fields change.
For water, we store the absolute water level, the relative water depth,
and the two-dimensional velocity for each cell. For the terrain, we
store the elevation and an overlay value used for coloring the terrain
with a user-defined transfer function. We use multiple texture levels
for data of different grid levels, each having the same dimensions as
its corresponding grid level. This is an existing functionality exposed
by the OpenGL API. As a consequence, each cell of each individual
grid level corresponds to one texel of the multi-level texture. Yet,
the use of 2D textures is only partly due to the heavy optimization
of texture accesses on GPUs.

More importantly, the individual texture levels also contain the
cells of the imaginary neighborhoods that require reconstruction.
This enables constant-time access to the cached values after an initial
reconstruction step, which is crucial for the real-time applicability
of our technique. Of course, allocating video memory for all cells
of all levels would not be possible for large data sets, which is the
reason for using adaptive grids in the first place. However, as bicubic
interpolation within one level requires a 4×4 neighborhood of cells
on that level, the set of all possibly needed reconstructed values is
limited to the 5×5 neighborhood around each wet cell. With this
information, we can greatly reduce the memory requirements by
using sparse textures, which are a hardware feature widely supported
by modern GPUs. Sparse textures allow for the definition of virtual
2D data fields, where memory is allocated only for manually defined
memory pages. We allocate memory only for pages containing at
least one cell of the 5×5 neighborhood around any wet cell. As the
memory pages have a fixed size (64 KB on our system), the size of
the texture’s data type controls how many texels one page covers. To
minimize memory waste, we minimize the number of texels covered
by one page by packing all data fields into different channels of a
single multi-channel texture.

We perform the reconstruction and storage of values in the sparse
textures whenever input data fields change. We identify the cells
that require reconstruction and iterate over these reconstruction
cells with three different compute shaders in sequence. First, we

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

30



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

reconstruct absolute water levels inside dry cells by extrapolation
of values from neighboring wet cells and set the relative water
depths and velocities of the reconstruction cells to zero. Second, we
calculate downsampled values of the four values on the next-higher
level covered by each reconstruction cell. As this is a recursive
process, we perform this step individually for each level from the
finest to the coarsest. Finally, we calculate upsampled values for
reconstruction cells covered by lower-level adaptive grid cells.

In summary, we maintain a sparse data structure of all given
and intermediate values to separate the reconstruction of missing
values from their use for surface reconstruction into two steps. An
expensive, but infrequent update step is only necessary when the
simulation data change, e.g., for playback of a scenario or for nav-
igation in time. During highly interactive tasks, such as sketching
and manipulation of simulation parameters or navigation in space,
we can retrieve the cached values efficiently for fast rendering. For
rendering, we create a triangle mesh with view-dependent level of
detail on the fly using recursive tessellation [LJL13]. We provide
runtime benchmarks for both update and rendering in Section 7.

5. Artifact Removal

The reconstruction of height-field data by interpolation is not always
plausible. For example, a reconstructed water surface should have
a smooth shoreline that touches the terrain. Furthermore, the water
surface should extend to walls that are positioned on dry cells. Here,
we assume that the water at dry/wet boundaries near walls should
be locally flat. In order to propagate height values to obstacles in
a realistic manner, we include boundary conditions for the spline
interpolation by properly extending the height field in dry regions.
An incorrect extension of height-field values leads to unnatural
shapes at dry/wet boundaries that suggest false water propagation,
which is why we consider them artifacts. At slopes, for example,
if missing water levels of dry cells are simply set to the terrain
elevation, water climbs uphill (Figure 3a1). In proximity of walls, if
the water levels on the wet side of the wall are smoothly interpolated
to the lower terrain elevation of dry cells on the other side, the water
surface sharply declines towards the wall (Figure 3b1). Here, the
water surface might also be interpolated through the wall, leading to
ostensible leaking (Figure 3c1).

These artifacts are not specific to adaptive grids or to our pro-
posed interpolation method. Even in the case of traditional bilinear
interpolation within a regular grid, these artifacts will occur. The
main issue for diving and climbing is an incorrect extension of the
water height field to dry grid cells. Leaking is caused by the finite
resolution of the simulation domain and the consequent discretiza-
tion of boundary conditions for simulation, which neglects more
precise information. In theory, leaking could be avoided with an
ideal interpolator that accounts for dynamically drawn barrier lines,
e.g., for sandbags and dam lines, which can have arbitrarily many
vertices. However, even if such an interpolator could be constructed,
the computational effort of such high-resolution interpolation would
likely be unfeasible for interactive applications. We therefore focus
on removing the most prominent artifacts that appear in practice.

Climbing and diving artifacts are different manifestations of the
same problem, which is the interpolation of absolute water levels

across dry/wet boundaries. In dry cells, no absolute water level is
given. However, to interpolate within a 4×4 neighborhood around
a given position, values have to be set for these cells. A seemingly
good choice is to use the terrain elevation. This is consistent with
wet cells, where the absolute water level is the sum of the terrain
elevation and the relative water depth. However, interpolating from
the water level to the terrain elevation looks wrong every time we
expect the water surface to extend horizontally to a higher obstacle.
Climbing occurs if the water height-field interpolation connects a
higher terrain with the lower water levels. Diving at walls occurs if
the interpolation connects the higher water level on the wet side of
the wall with the lower terrain elevation on the dry side. Our solution
to this problem is already given by the extrapolation of missing
values explained in Section 4.1. For all dry cells, we extrapolate
the absolute water level of all neighboring wet cells and average
them. Thus, we extend the geometry of water surfaces by one cell
towards dry cells, leading to nearly horizontal intersections with
obstacles (Figure 3a2 and Figure 3b2).

Apart from climbing and diving situations, this extension also
affects the water surface in shallow regions. This is not desired,
because here it gives a false impression of the extents of inundation.
We address this issue by a distinction between the surface geometry
and the surface visibility during rendering. There, we generate a
temporary triangle mesh from the height field, which is rasterized
on the pixel grid of the screen into fragments by the GPU. We
displace the vertices of this triangle mesh using absolute water
levels, but decide visibility for each fragment using the relative
water depth. For the visibility, we first introduce a threshold for the
minimum water depth to display, which will typically be around
one millimeter. Such a threshold is generally helpful for rendering
water on top of a terrain, because it prevents z-fighting. We then
calculate the relative water depth of each fragment and compare it
to this threshold. If the water depth is less than the threshold, the
fragment is discarded, which will happen at the dry/wet boundaries
of interest. This prevents the depiction of wrong water extents in
shallow regions.

A second issue caused by extending the water surface towards the
terrain is floating water below the terrain if the water surface geom-
etry intersects with the terrain. In our application, this is unpleasant,
because the scene is often viewed from below, for example, for
the inspection of sewer networks. Fortunately, we can also fix this
issue with the threshold comparison introduced above. As already
mentioned in Section 4.1, we extrapolate absolute water levels in
dry cells, but not the relative water depths, which we set to zero. We
can therefore calculate the relative water depth of a fragment in two
different ways: Either by interpolating it directly from the simula-
tion data, or by interpolating the absolute water levels and terrain
elevations and calculating their difference. We interpret the first way
as a ground truth provided by the simulation that leads to visually
correct results most of the time, except in climbing situations. In this
case, however, the difference between the absolute water level and
the terrain elevation will be negative. Thus, calculating the relative
water depth in both ways and comparing the smaller of the two
values to the threshold allows us to preserve the correct extends of
inundation while also removing water below the terrain.

Leaking artifacts as shown in Figure 3c1 can also be removed

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

31



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

P3

P1’

P2

P3’

P1

Wet cells nearest-neighbor
Kept fragments on wet side

Overtopped Wall Cells

Discarded fragments on dry side
Kept fragments (overtopping)

P2’

a b

Figure 5: Removal of leaking artifacts at walls. (a) Comparison
of a wetness value for each fragment pi and mirror position pi

′. If
higher at pi

′, pi is discarded (red), unless the cell containing pi
touches an overtopped wall cell (green). (b) Result without leaking.

by a per-fragment operation that determines on which side of a wall
the fragment is located. These artifacts occur at wall boundaries,
which are rasterized on the adaptive grid for the simulation. While
the minimum cell size of the adaptive grid is usually one to five
meters, a floodwall itself only has a thickness of approximately
15 centimeters. It is therefore not adequately represented by the
rasterization, which is illustrated in Figure 5a by a white border
surrounding the wall cells. Here, wet cells are colored in light blue
using nearest-neighbor interpolation to demonstrate that most of the
time, the wet cells output by the simulation do not even reach the
wall. Bicubic interpolation is therefore needed to extend the water
surface to the wall, while at the same time introducing the leaking
artifact by extending the surface too much. Our approach to prevent
this is to consider the exact geometry of the wall line to determine the
location of the fragment relative to the wall, therefore introducing
high-resolution data that was not available to the simulation and
grid-based interpolation. We explain this approach with the help
of Figure 5a. For now, we assume that the line geometry is already
accessible from within the fragment shader.

We consider three different fragments at positions p1, p2, and p3
contained by dry cells. Starting with p1, we need to decide whether it
is on the flooded side of the wall. We accomplish this by comparing
an interpolated wetness value (dry = 0, wet = 1) at p1 with the
analogous value at the mirror position p1

′ on the other side of the
wall. We obtain p1

′ by reflecting p1 through its closest point on the
wall line. At both p1 and p1

′, we use our proposed interpolation
to smoothly interpolate the binary information whether a cell is
wet (1) or not (0). Unless the wall is flooded from both sides or
has been overtopped, this comparison value is significantly higher
on the flooded side of the wall. For p1, we keep the corresponding
fragment. For p2, its mirror position p2

′ is closer to a wet cell.
Therefore, the interpolated wetness value is higher at p2

′ and the
fragment at p2 has to be discarded. However, if the wall is flooded
from both sides or has been overtopped, the water surface should be
visible on both sides of the wall. To test for this case, we check if
the cell containing the fragment in question has a wet neighbor that
is either a wall boundary cell or is on the same side of the wall. If
this is the case (see p3), the fragment must not be discarded.

To calculate the point closest to a fragment on any wall line, we
need access to the line geometry in the fragment shader. We rasterize
all wall lines on the adaptive grid in a pre-processing step. For each
cell, we collect the indices of all line segments of all lines that
intersect its 8-neighborhood. The sequences of segment indices of
all cells are stored contiguously in a buffer. For each cell, the length
and start offset of the sequence is stored. 2D vertex positions of all
segments are stored contiguously in a buffer. During rendering, we
iterate over all segment indices of the corresponding cell collected
before. This is relatively inexpensive, as the vast majority of cells
has no line segments in the proximity at all, while most of the
remaining cells have less than five. The test also terminates early
if the distance to the closest point on any line is greater than twice
the square root of the minimum cell size (meaning the maximum
distance of influence of a single cell using bicubic interpolation).

6. Water Flow Perception

If the simulation domain is slowly flooded, it is very obvious where
the water is flowing. Once the terrain is inundated, however, flow
behavior such as direction and speed are no longer visible from
the water surface itself. Common visualization techniques such as
glyphs convey this information in a very expressive way, but add to
the complexity of the visualization. This is a concern, for example,
if visualizations of simulation results need to be communicated to
the general public. While the appearance and behavior of water are
well-known and are intuitively recognized [KC14], more abstract
visualization techniques are not. In situations where only subtle
hints should be provided, animated waves and foam can be used
as intuitive and less obtrusive alternatives [Vla10, GSH∗15]. In
contrast to previous work, we do not focus primarily on physically
plausible water rendering. Instead, we use waves and foam as visual
metaphors for flow directions and high velocities. The size of waves
and the intensity of foam are deliberately exaggerated such that
they are also visible from an overview perspective. Also, flooding
scenarios usually span several hours or days, but are replayed in
time lapse. Waves moving at physically plausible speeds as given
by the simulation would not be perceivable at all in this application.

Fast tile-based approaches for small waves rely on the subdivi-
sion of the water surface into tiles, within which pre-computed wave
textures are rotated and shifted according to a low-resolution flow
texture. However, the pre-computed wave texture prevents dynamic
wave patterns based on an underlying flow field and leads to obvi-
ous repetitions. Alternatively, for open waters, large waves can be
generated by superposition of individual wave functions, which are
not well-suited for locally varying flow behavior. We add directional
waves synthesized from the simulated velocity field by combining
the two approaches. Within tiles of different sizes corresponding to
different wavelengths, we generate individual waves by a wave func-
tion that extends the simple sine function proposed by Finch [Fin04].
The extensions allow us to control the chaotic behavior and adjust
the amplitude of waves according to simulation data. We provide
the used formulae in Appendix A. Replacing pre-computed wave
textures by these dynamic waves removes the major disadvantages
of tile-based approaches. By using multiple layers of tiles of dif-
ferent resolution, we are also able to visualize both principal flow
directions and small-scale local behavior such as turbulence.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

32



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

a b

c d

e f

Figure 6: Results of our proposed technique. (a) Large-scale visualization of a river valley (C1). (b) Stormwater runoff on a high-resolution
grid (C3). (c) Coloring of water and buildings by water depth. (d) Failing floodwall in an urban scenario (C5). Foam indicates current
overtopping regions. (e) Terrain overlay of wave arrival times after a dike breach (C6). (f) Tsunami impact on a city (C7).

Based on these tiles, we also generate foam on the water surface
to highlight areas of high velocity and significant changes in the
velocity, i.e., high magnitudes in the velocity’s gradient field. Addi-
tionally, we add foam along high waves to increase their visibility.
Instead of using a wave function within the tile, we now use an
animated cellular-noise function [Wor96] producing a bubble-like
pattern. We use wave and velocity information to modulate the visi-
bility of this function. As waves and foam dynamically change with
the simulation data over time, we refer to the accompanying video
in the supplementary material and also available online [Vid] for a
demonstration.

Finally, we include visual hints of the water depth by using a
transfer function [Bel04] for water color and opacity, such that inun-
dated structures remain visible and depth information is preserved.
We also apply a depth-dependent box blur [HSC∗05] to refractions
such that objects in deep water regions are blurred and distorted
more than in shallow regions.

7. Results

In this section, we demonstrate the results of our approach in various
typical use cases for flood management. Based on the working task
and the specific scenario, these cases differ significantly in terms of

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

33



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

Case Extents Cell Sizes # Cells # Wet T. Data W. Data Update Terrain Water Artifacts Flow Vis.
C1 17.0×19.4 km2 3 . . .96 m 22.58 M 0.75 M 1553 MB 1933 MB 57.8 ms 4.9 ms 3.1 ms 0.4 ms 2.7 ms

" " " 5.32 M " " 68.8 ms " 9.6 ms 0.7 ms 2.6 ms
C2 9.8×4.0 km2 3 m 4.31 M 0.62 M 159 MB 211 MB 7.0 ms 2.1 ms 6.7 ms 0.1 ms 0.4 ms
C3 2.0×2.1 km2 0.5 m 17.15 M 15.12 M 625 MB 822 MB 36.5 ms 1.7 ms 7.7 ms 0.7 ms 2.1 ms
C4 4.2×5.7 km2 2 m 6.01 M 5.95 M 221 MB 293 MB 14.5 ms 2.7 ms 3.3 ms 0.7 ms 5.0 ms
C5 4.1×5.1 km2 5 m 1.00 M 0.34 M 37 MB 57 MB 2.5 ms 1.7 ms 4.9 ms 0.5 ms 1.9 ms
C6 31.9×13.4 km2 3 . . .96 m 12.51 M 3.31 M 1067 MB 1553 MB 59.7 ms 5.8 ms 8.1 ms 0.5 ms 1.6 ms
C7 9.4×6.6 km2 3 m 7.29 M 3.55 M 268 MB 355 MB 11.8 ms 2.2 ms 5.3 ms 0.3 ms 2.4 ms

Table 1: Benchmarks for case studies. Columns from left to right: Name of the use case, extents of the simulation domain, cell sizes of
individual levels, number of cells, number of wet cells, terrain data size, water data size, water data update time, terrain rendering time, water
rendering time with tessellation and surface shading, artifact removal time, visualization time of flow properties with waves and foam.

Case Nearest Neighb. Bilinear Catmull-Rom B-spline
C1 0.044 m 0.029 m 0.023 m 0.037 m
C2 0.503 m 0.126 m 0.101 m 0.173 m
C3 0.075 m 0.036 m 0.028 m 0.044 m
C4 1.177 m 0.345 m 0.273 m 0.481 m
C5 0.280 m 0.240 m 0.210 m 0.277 m
C6 0.199 m 0.182 m 0.166 m 0.208 m
C7 0.307 m 0.133 m 0.121 m 0.149 m

Table 2: Accuracy of surface reconstruction. The root mean square
error between the terrain surface and the original digital elevation
model expresses the mean deviation from the ground truth.

simulation grid extents, grid cell sizes, and the share of wet and dry
cells. We show exemplary results of various scenarios in Figure 6
and provide the scenario parameters in Table 1 together with runtime
benchmarks. For more use cases and animated results, we refer to
the accompanying video [Vid]. For benchmarking, we used a system
with an Intel Core i7-6700K 4 GHz CPU, 64 GB RAM, and an
Nvidia GTX 1080 Ti GPU. The rendering resolution is 1920×1080.

The first use case C1 involves the modeling of river floods of
an outstanding magnitude (e.g., 100-year floods) for flood risk as-
sessment. For this task, engineers need to frequently navigate in
space and time and switch between overview and detail perspec-
tives to investigate flood risks on a region, village, or infrastructure
level. Figure 6a shows the Danube river in the Marchfeld region in
Austria, with a simulation domain spanning many villages over an
area larger than 300 km2. For comparison, we provide timings for
the initial state and after seven days of flooding. In this case, the
large scale of the data makes the use of an adaptive grid essential.
As use case C2, we consider a second, small-scale scenario with a
regular grid. When modeling river floods, only a fraction of cells of
the simulation grid is wet, which makes the amount of inundation
visible from the extents of the water surface.

In contrast, stormwater and surface runoff modeling operates on
high-resolution grids where almost all cells are wet. Use case C3
is an open-air hydrological laboratory in Petzenkirchen, Austria,
shown in Figure 6b. Use case C4 shown in Figure 1, right, is a
mountainous region in Tyrol, Austria. Here, it is important to vi-
sualize where water collects and forms small streams. Showing all

wet surfaces at full opacity, which in the case of rainfall is the en-
tire scene, would hide this information. This is why we reduce the
opacity of the rain layer if it is below one millimeter.

The interactive planning of urban protection measures requires
smaller regions and coarser grids (3–5 m resolution) to enable on-
the-fly simulation. Our use case C5 shown in Figure 6d is located
in the city of Cologne, Germany. Here, a floodwall is failing and
foam along the wall indicates the locations of overtopping. In such
scenarios, data updates and rendering need to be fast to support fully
interactive sketching of protection measures, for example.

In use case C6, we demonstrate the analysis of breach scenarios
of a dike more than 50 km long along the Danube, again in the
Marchfeld region. Engineers define different breach locations and
their structure along the dike, and then navigate in both time and
space to analyze the simulation results, e.g., to identify damage
to villages and important infrastructure, and to check wave arrival
times for evacuation planning. Figure 6e shows wave arrival times
interpolated with our proposed method and visualized as terrain
overlay according to a user-defined transfer function. Based on the
simulation results, the engineers identify good locations for local
protection barriers to protect parts of villages where possible, which
are sketched as lines directly on the terrain. The robustness and
construction details of these barriers are then evaluated in additional
simulation runs within our system.

In our last use case C7 shown in Figure 6f, the impact of a tsunami
on a city is modeled, which results in high water velocities and
complex waves. Inundated buildings are colored by their estimated
damage according to a user-defined transfer function.

For all use cases, we also assessed the accuracy of our pro-
posed surface reconstruction, provided in Table 2. The established
procedure for this task is to calculate the root mean square error
between the reconstructed surface and a high-resolution ground
truth [Ree00, Kid03], for which we use the original digital elevation
model of the terrain defined on a regular grid. Even for adaptive
height fields, we could reproduce the results of Kidner [Kid03]
showing that third-order interpolation results in a more accurate
surface reconstruction than linear or nearest-neighbor interpolation.
As expected, B-spline approximation has a higher deviation from
the ground truth than exact cubic interpolation (Catmull-Rom), as it

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

34



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

1 2 3 4 5

Concerned Citizens (44)

Flood Managers (14)

Hydrologists (10)

Engineers (28)

Figure 7: Average rating results per group of participants with 95 %
confidence intervals.

does not preserve values at data points for the sake of a smoother
surface.

8. Evaluation

We conduct our research in close collaboration with domain experts
working in the field of flood management, hence evaluation of our
results is a continuous process. In evaluation sessions prior to this
work, shortcomings in the previously used visualization of water sur-
faces have emerged, which triggered our research for the solutions
presented in this work. These solutions were evaluated qualitatively
by domain experts in live sessions which focused on the differences
to previously used techniques. To strengthen this with quantitative
results, we conducted a survey among experts in various fields of
work as well as the general public.

8.1. Live Sessions

During two separate live sessions of about one hour each, we demon-
strated our solutions in different real-world flood and heavy rain
scenarios to four flood management experts from two different orga-
nizations. The first expert works for the flood protection center of
Cologne, Germany, a leading institution for integrated flood man-
agement in Europe [Sta]. Her typical tasks in the field of urban flood
and stormwater management include heavy rain modeling, response
planning, and public communication. The other three experts are
engineers at the consulting agency RIOCOM [RIO] focusing on
flood risk management in Austria for over 20 years. Their typical
tasks include flood risk analysis and the creation of flood risk maps
as well as the design of protection measures, for which they use our
decision support system Visdom. For evaluation, we showed the ex-
perts various prepared flooding scenarios in Visdom and asked them
to fulfill specific tasks. The first task was the subjective assessment
of the usefulness and quality of our proposed techniques for the
use cases discussed in Section 7. For the second task, we showed
the experts the same scenario with different interpolation methods
as well as with and without common interpolation artifacts. We
asked them to compare the different visualizations and indicate their
preference. Finally, we asked them to identify local flow directions
as well as deep and shallow regions of inundated regions from an
overview perspective.

After being shown results of nearest-neighbor, bilinear, and bicu-
bic interpolation as well as B-spline approximation, all four experts
concurred that B-spline approximation led to the most aesthetic
results and was also the best surface reconstruction to use for their
working tasks. The engineers said that the rectangular structures of

nearest-neighbor interpolation were unpleasant to look at and carried
no valuable information. The stormwater expert liked to have several
options. She preferred the smooth B-spline approximation for plan-
ning work, presentations, and public communication, as it results
in natural surfaces and people are more familiar with continuous
regions than with blocks. However, she would use nearest-neighbor
interpolation for comparability with results of other software and
for communication with other domain experts.

Our strategies to avoid climbing, diving, and leaking artifacts
were well received by all experts. One expert initially perceived
leaking artifacts as a visualization feature to indicate seeping of wa-
ter through leaky barriers. The experts agreed that our visualization
without leaking artifacts was unambiguous in that regard. Likewise,
they appreciated the removal of climbing and diving artifacts, stating
that it leads to a more realistic depiction of the water surface. While
climbing just looked wrong, one expert said that diving artifacts
could be misinterpreted as a large approaching wave.

All four experts welcomed our visualization of flow directions
and high velocities with animated waves and foam. They called the
use of waves and foam as visual metaphors aesthetic and intuitive
and said they were good indicators of the flow strength and direction.
All experts were able to quickly identify principal flow directions
in an already inundated area from an overview perspective. When
shown arrow glyphs instead of waves to visualize the velocities, one
expert stated they were useful for still images, but she would prefer
the waves for animation and videos.

8.2. Online Survey

For a quantitative evaluation of our proposed techniques, we con-
ducted an online survey among 96 participants.

Participants. We reached out to experts in various fields of work
related to flood management with the help of our collaboration
partners and provided them with a questionnaire. As one important
task of flood management is public communication, we also eval-
uated our results with members of the general public. Specifically,
we asked the users of the commercial flood alert system Pegel-
Alarm [Peg] for participation, assuming that this user group consists
of people particularly concerned about floods. For the presentation
of the survey results, we grouped the domain experts roughly by
profession, for which we asked them to state their profession and
areas of responsibility in the survey. In summary, the 96 participants
included 28 experts working in civil and hydraulic engineering,
10 scientists in the field of hydrology, 14 flood management experts
of public authorities, and 44 concerned citizens (Figure 7).

Questionnaire. We asked all participants of our survey to fill out
a questionnaire that is still available online [Sur]. It contained eight
short videos (37 s to 1 min 55 s) showing visualizations of real-world
scenarios within the Visdom decision support system [Vis]. For each
video, the participants were asked to focus on the flood visualization,
which is why almost all user interface elements of the application
were hidden. In detail, the videos showed river floods in rural and
urban regions (Q1), heavy rains and stormwater runoff (Q2), floods
caused by floodwall overtopping (Q3), by a floodwall breach (Q4),
and by dike breaks (Q5), the interactive planning of a short-term
object protection with sandbags (Q6), the interactive planning of

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

35



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

2

3

4

5

1 2 3 4 5
1

No Data

2

3

4

5 Engineers

Hydrologists

Flood Managers

Concerned Citizens

Re
le

va
nc

e 
fo

r W
or

k

Rating

Figure 8: Evaluation results per group of participants. Each data
point represents the average result of one question within the group.

long-term protection measures with mobile floodwalls and retention
basins (Q7), and the impact of a tsunami on a city (Q8). After each
video, the participants assessed the visualization of the flooding on a
scale of 1 (very bad) to 5 (very good). The questionnaire distributed
among the domain experts additionally asked to state the relevance
of the visualization for their work-related areas of responsibility on
a scale of 1 (not relevant) to 5 (very relevant). Below each video,
additional comments could be provided.

Results. We provide the detailed results of the survey in the
supplementary material. In Figure 7, we give an overview of the
groups of participants and their average rating over all questions.
On average, our visualizations were well received by all groups and
were rated good. The favorable ratings of both domain experts and
concerned citizens suggest a high suitability of our visualizations
for both technical tasks and public communication.

In Figure 8, we relate the average rating of each question to the
average relevance for the participants’ work, separated by group.
For the group of concerned citizens, we collected no data on the
relevance for their work. Engineers and flood managers assessed the
visualizations as both good and relevant for their work, which we see
as a particularly important result of this evaluation, as the experts
in these fields are the primarily intended users of our proposed
techniques. As most of the scenarios included in the survey deal with
flood management tasks, the hydrologists expectedly considered
not all of them relevant for their work, but still good. As most of
our participants are located in Central Europe, the relevance of
one scenario was considered very low by all groups, which is the
modeling of a tsunami (Q8). Yet, even visualizations not particularly
relevant have been rated highly by the participants.

Figure 9 shows the average relevance and rating by all experts
for each question. This reveals that the visualizations in the context
of planning tasks (Q6 and Q7) have been rated best. We attribute
this to the interactivity shown in the videos, which demonstrates the
benefit of expressive water visualization for interactive tasks.

Besides the quantitative evaluation, the additional comments by
some of the participants of the survey provide valuable qualitative
statements. In general, they received our visualizations very well

1 2 3 4 5

Q8: Tsunami

Q7: Long-Term 
Protection Planning

Q6: Short-Term 
Protection Planning

Q5: Dike Break

Q4: Floodwall Breach

Q3: Overtopping

Q2: Heavy Rain

Q1: River Floods

Relevance for Work Rating

Figure 9: Evaluation results per question averaged over the results
of all domain experts with 95 % confidence intervals.

and praised them as aesthetic, realistic, and descriptive. Eight partic-
ipants saw a benefit of our visualizations for specific applications,
most of all for public communication, but also for planning and
coordination. One participant saw little benefit of our visualization
over established 2D methods. 13 participants criticized the chosen
color of water and the lack of contrast to the terrain color in the
videos. While these colors can be changed freely by the user within
our application (e.g., transfer-function-based coloring in Figure 6c),
we consider the study of proper default values an important aspect
for future research.

Three participants explicitly stated that the waves and foam
helped them identifying flow directions, one participant still could
not identify them all the time. One participant made us aware that
on mobile devices, the flow directions were not discernible at all,
which is an issue we have to address in the future.

Six participants praised the combination of the visualization of
water with other visualization techniques, in particular the coloring
of buildings according to their inundation. Nine participants men-
tioned combinations with other visualizations that could improve
the result, such as driftwood, street names, detailed buildings, and
a time line. Our application supports most of these visualizations,
which have not been shown in order to draw the participants’ atten-
tion to the flood visualization for evaluation. Yet, synergies between
different visualization techniques and the decision which ones to
always show are interesting aspects that we will further investigate.

9. Conclusion

In this paper, we present a real-time technique to visualize adaptive
water height fields without misleading interpolation artifacts. The
adaptive reconstruction scheme treats different levels of the adap-
tive grid as separate height fields that are combined into a globally
C1-continuous height field. It is efficient enough to be used in inter-
active applications even for very large data sets. Thus, it fills the gap
between fast linear interpolation and slow smooth interpolation. The
removal of artifacts counters shortcomings of grid-based interpola-

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

36



Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

tion of water height fields by two means. First, by extrapolating the
water surface at dry/wet boundaries in a physically plausible way,
and, second, by incorporating detailed geometric information in the
surface reconstruction that is not available in the regular height field
data. A visualization of important flow properties by waves and
foam is applied to the water surface to support the interpretation of
simulation results. The resulting visualizations have been positively
evaluated by domain experts and the general public.

Currently, our proposed surface reconstruction is restricted to
data structures with at most one level difference between neighbor-
ing cells. Future work is necessary to investigate how to remove
this restriction. After reconstruction with bicubic interpolation or
approximation, height-field structures not aligned with the interpo-
lation grid often exhibit staircase artifacts. These artifacts might be
reduced by using rotationally invariant reconstruction filters instead
of a dimension-wise application of the cubic filter. We therefore
consider the combination of fast bicubic interpolation and the com-
putationally more expensive thin plate splines a possible direction
for future research. The feedback provided by the participants of our
survey indicates varying effectiveness of preset visualization param-
eters as well as specific combinations of visualization techniques.
This issue also requires further research and evaluation.

10. Acknowledgments

VRVis is funded by BMVIT, BMDW, Styria, SFG and Vienna Busi-
ness Agency in the scope of COMET - Competence Centers for
Excellent Technologies (854174) which is managed by FFG. We
thank RIOCOM, SOBOS, the Stadtentwässerungsbetriebe Köln,
AöR, and all participants of our online survey.

References

[Bel04] BELYAEV V.: Real-time rendering of shallow water. In GraphiCon
Proceedings (Moscow, 2004), GraphiCon Scientific Society, pp. 1–6. 3, 9

[BHMF08] BEYER J., HADWIGER M., MÖLLER T., FRITZ L.: Smooth
mixed-resolution GPU volume rendering. In Proc. Fifth Eurograph-
ics/IEEE VGTC Conference on Point-Based Graphics (Aire-la-Ville,
2008), Eurographics Association, pp. 163–170. 3

[BLE∗14] BROVKA M., LÓPEZ J. I., ESCOBAR J. M., CASCÓN J. M.,
MONTENEGRO R.: Construction of polynomial spline spaces over
quadtree and octree T-meshes. Procedia Engineering 82 (2014), 21–
33. 3

[BMA10] BEUTEL A., MØLHAVE T., AGARWAL P. K.: Natural neigh-
bor interpolation based grid DEM construction using a GPU. In Proc.
18th SIGSPATIAL International Conference on Advances in Geographic
Information Systems (New York, 2010), ACM, pp. 172–181. 2, 3

[Bob08] BOBACH T.: Natural Neighbor Interpolation - Critical Assess-
ment and New Contributions. PhD thesis, TU Kaiserslautern, 2008. 3

[BOR14] BEATSON R., ONG W., RYCHKOV I.: Faster fast evaluation
of thin plate splines in two dimensions. Journal of Computational and
Applied Mathematics 261 (2014), 201–212. 2, 3

[BST15] BOROVIKOV D., SOKOLOV I. V., TÓTH G.: An efficient second-
order accurate and continuous interpolation for block-adaptive grids.
Journal of Computational Physics 297 (2015), 599–610. 3

[BSW10] BAGAR F., SCHERZER D., WIMMER M.: A layered particle-
based fluid model for real-time rendering of water. Computer Graphics
Forum 29, 4 (2010), 1383–1389. 3

[Che13] CHENG T.: Accelerating universal kriging interpolation algorithm
using CUDA-enabled GPU. Computers & Geosciences 54 (2013), 178–
183. 3

[CKS∗15] CORNEL D., KONEV A., SADRANSKY B., HORVÁTH Z.,
GRÖLLER E., WASER J.: Visualization of object-centered vulnerability
to possible flood hazards. Computer Graphics Forum 34, 3 (2015), 331–
340. 3

[CM10] CHENTANEZ N., MÜLLER M.: Real-time simulation of
large bodies of water with small scale details. In Proc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation (Aire-la-Ville,
2010), Eurographics Association, pp. 197–206. 3

[DB12] DUPUY J., BRUNETON E.: Real-time animation and rendering of
ocean whitecaps. In SIGGRAPH Asia Technical Briefs (New York, 2012),
ACM, pp. 15:1–15:3. 3

[DCL∗08] DENG J., CHEN F., LI X., HU C., TONG W., YANG Z., FENG
Y.: Polynomial splines over hierarchical T-meshes. Graphical models 70,
4 (2008), 76–86. 3

[FBHD17] FUCHS F. G., BARROWCLOUGH O. J. D., HJELMERVIK
J. M., DAHL H. E. I.: Direct interactive visualization of locally refined
spline volumes for scalar and vector fields. arXiv e-prints abs/1707.01170
(2017), 1–11. 2, 3

[Fin04] FINCH M.: Effective water simulation from physical models. In
GPU Gems, Fernando R., (Ed.). Addison-Wesley, Boston, 2004, pp. 5–29.
3, 8, 15

[Flo] FloodViz - Visual analytics for assessment and interpretation
of simulated river flooding. https://www.gri.msstate.edu/
research/floodviz/ (last visited on April, 9th 2019). 3

[Fra82] FRANKE R.: Smooth interpolation of scattered data by local thin
plate splines. Computers & Mathematics with Applications 8, 4 (1982),
273–281. 3

[GH12] GONZALEZ-OCHOA C., HOLDER D.: Water technology of Un-
charted. Game Developers Conference, 2012. 3, 15

[GJAG14] GUTIÉRREZ DE RAVÉ E., JIMÉNEZ-HORNERO F. J., ARIZA-
VILLAVERDE A. B., GÓMEZ-LÓPEZ J. M.: Using general-purpose
computing on graphics processing units (gpgpu) to accelerate the ordinary
kriging algorithm. Computers & Geosciences 64 (2014), 1–6. 2, 3

[Goo00] GOOVAERTS P.: Geostatistical approaches for incorporating
elevation into the spatial interpolation of rainfall. Journal of Hydrology
228, 1 (2000), 113–129. 3

[Gri11] GRIMES B.: Making and using non-standard textures: Manipulat-
ing UVs through color data in Portal 2. Game Developers Conference,
2011. 3, 15

[GSH∗15] GROTTEL S., STAIB J., HEYER T., VETTER B., GUMHOLD
S.: Real-time visualization of urban flood simulation data for non-
professionals. In Workshop on Visualisation in Environmental Sciences
(EnvirVis) (Aire-la-Ville, 2015), Eurographics Association, pp. 37–41. 3,
8

[HPW∗16] HORVÁTH Z., PERDIGAO R. A., WASER J., CORNEL D.,
KONEV A., BLÖSCHL G.: Kepler shuffle for real-world flood simulations
on GPUs. The International Journal of High Performance Computing
Applications 30, 4 (2016), 379–395. 1, 2, 3

[HSC∗05] HENSLEY J., SCHEUERMANN T., COOMBE G., SINGH M.,
LASTRA A.: Fast summed-area table generation and its applications.
Computer Graphics Forum 24, 3 (2005), 547–555. 9

[Hut95] HUTCHINSON M. F.: Interpolating mean rainfall using thin plate
smoothing splines. International Journal of Geographical Information
Systems 9, 4 (1995), 385–403. 3

[HWP∗15] HORVÁTH Z., WASER J., PERDIGÃO R. A. P., KONEV A.,
BLÖSCHL G.: A two-dimensional numerical scheme of dry/wet fronts for
the saint-venant system of shallow water equations. International Journal
for Numerical Methods in Fluids 77, 3 (2015), 159–182. 2

[JW15] JESCHKE S., WOJTAN C.: Water wave animation via wavefront
parameter interpolation. ACM Transactions on Graphics 34, 3 (2015),
27:1–27:14. 3

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

37

https://www.gri.msstate.edu/research/floodviz/
https://www.gri.msstate.edu/research/floodviz/


Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

[JW17] JESCHKE S., WOJTAN C.: Water wave packets. ACM Transac-
tions on Graphics 36, 4 (2017), 103:1–103:12. 3

[KC14] KRYVEN M., COWAN W.: What does water look like? In Pro-
ceedings of the Workshop on Computational Aesthetics (New York, 2014),
ACM, pp. 53–56. 3, 8

[KH02] KÄHLER R., HEGE H.-C.: Texture-based volume rendering
of adaptive mesh refinement data. The Visual Computer 18, 8 (2002),
481–492. 3

[Kid03] KIDNER D. B.: Higher-order interpolation of regular grid digital
elevation models. International Journal of Remote Sensing 24, 14 (2003),
2981–2987. 3, 10

[KLCK17] KIM J. H., LEE J., CHA S., KIM C. H.: Efficient represen-
tation of detailed foam waves by incorporating projective space. IEEE
Transactions on Visualization and Computer Graphics 23, 9 (2017), 2056–
2068. 3

[KT09] KIM B., TSIOTRAS P.: Image segmentation on cell-center sam-
pled quadtree and octree grids. In Wavelet Applications in Industrial
Processing VI (Bellingham, 2009), vol. 7248, SPIE, pp. L:1–L:9. 2, 3, 4,
5

[LCKD16] LI X., CHEN F., KANG H., DENG J.: A survey on the local
refinable splines. Science China Mathematics 59, 4 (2016), 617–644. 3

[Lia11] LIANG Q.: A structured but non-uniform cartesian grid-based
model for the shallow water equations. International Journal for Numeri-
cal Methods in Fluids 66, 5 (2011), 537–554. 2, 3

[LJL13] LEE H., JEONG Y., LEE S.: Recursive tessellation. In ACM
SIGGRAPH Asia Posters (New York, 2013), ACM, p. 16:1. 7

[LKT∗17] LESKENS J. G., KEHL C., TUTENEL T., KOL T., HAAN
G. D., STELLING G., EISEMANN E.: An interactive simulation and
visualization tool for flood analysis usable for practitioners. Mitigation
and Adaptation Strategies for Global Change 22, 2 (2017), 307–324. 3

[ME11] MORAN P., ELLSWORTH D.: Visualization of AMR data with
multi-level dual-mesh interpolation. IEEE Transactions on Visualization
and Computer Graphics 17, 12 (2011), 1862–1871. 3

[MG06] MIN C., GIBOU F.: A second order accurate projection method
for the incompressible Navier-Stokes equations on non-graded adaptive
grids. Journal of Computational Physics 219, 2 (2006), 912–929. 3

[MIK] MIKE FLOOD - Toolbox for professional flood modellers. https:
//www.mikepoweredbydhi.com/products/mike-flood
(last visited on April, 9th 2019). 3

[MN88] MITCHELL D. P., NETRAVALI A. N.: Reconstruction filters in
computer graphics. ACM SIGGRAPH Computer Graphics 22, 4 (1988),
221–228. 6

[NSB13] NIELSEN M. B., SÖDERSTRÖM A., BRIDSON R.: Synthesizing
waves from animated height fields. ACM Transactions on Graphics 32, 1
(2013), 2:1–2:9. 3

[PA01] PREMOŽE S., ASHIKHMIN M.: Rendering natural waters. Com-
puter Graphics Forum 20, 4 (2001), 189–200. 3

[Peg] PegelAlarm Bürgerservice, Hochwasser-Warndienst. https://
www.pegelalarm.at (last visited on April, 9th 2019). 11

[Ree00] REES W. G.: The accuracy of digital elevation models interpo-
lated to higher resolutions. International Journal of Remote Sensing 21, 1
(2000), 7–20. 3, 5, 10

[RIO] RIOCOM - flowing competence. http://riocom.at/en/
(last visited on April, 9th 2019). 11

[Riv] RiverFlow2D - Two-dimensional combined hydraulic and hy-
drologic flexible-mesh model. http://www.hydronia.com/
riverflow2d/ (last visited on April, 9th 2019). 3

[SH05] SIGG C., HADWIGER M.: Fast third-order texture filtering. In
GPU Gems 2, Pharr M., (Ed.). Addison-Wesley, Boston, 2005, pp. 313–
329. 6

[Sha] Shadertoy - Adaptive grid interpolation. http://shadertoy.
com/view/WsXXRf (last visited on April, 9th 2019). 4

[Sta] Stadtentwässerungsbetriebe Köln. http://www.steb-koeln.
de/ (last visited on April, 9th 2019). 11

[Sur] Survey to evaluate a novel 3D flood and stormwater visualization.
https://goo.gl/forms/DqrLM6cCkroWLs9q2 (last visited on
April, 9th 2019). 11

[Tes01] TESSENDORF J.: Simulating ocean water. Simulating Nature:
Realistic and Interactive Techniques, ACM SIGGRAPH Course #47 Notes
(2001), 3:1–3:19. 3

[TUF] TUFLOW - Numerical engines for simulating free-surface water
flow. http://www.tuflow.com/ (last visited on April, 9th 2019).
3

[VGB∗16] VAN ACKERE S., GLAS H., BEULLENS J., DERUYTER G.,
DE WULF A., DE MAEYER P.: Development of a 3D dynamic flood
WebGIS visualisation tool. International Journal of Safety and Security
Engineering 6, 3 (2016), 560–569. 3

[vH11] VAN HOESEL F.: Tiled directional flow. In ACM SIGGRAPH
Posters (New York, 2011), ACM, p. 19:1. 3

[Vid] Flood and stormwater modelling - Hydrodynamic modelling
with VISDOM. https://www.youtube.com/watch?v=
GBP97uc7eTk (last visited on April, 9th 2019). 9, 10

[Vis] Visdom - Combining simulation and visualization. http://
visdom.at (last visited on April, 9th 2019). 3, 11

[Vla10] VLACHOS A.: Water flow in Portal 2. Advances in Real-Time
Rendering in 3D Graphics and Games II course, ACM SIGGRAPH, 2010.
3, 8

[WKL∗01] WEBER G. H., KREYLOS O., LIGOCKI T. J., SHALF J. M.,
HAGEN H., HAMANN B., JOY K. I., MA K.-L.: High-quality volume
rendering of adaptive mesh refinement data. In Proc. Vision Modeling
and Visualization Conference (Berlin, 2001), Aka GmbH, pp. 121–128. 3

[WKS∗14] WASER J., KONEV A., SADRANSKY B., HORVÁTH Z.,
RIBIČIĆ H., CARNECKY R., KLUDING P., SCHINDLER B.: Many
Plans: Multidimensional ensembles for visual decision support in flood
management. Computer Graphics Forum 33, 3 (2014), 281–290. 1

[Wor96] WORLEY S.: A cellular texture basis function. In Proc. 23rd
Annual Conference on Computer Graphics and Interactive Techniques
(New York, 1996), ACM, pp. 291–294. 9

[WWH∗00] WEILER M., WESTERMANN R., HANSEN C., ZIMMER-
MANN K., ERTL T.: Level-of-detail volume rendering via 3D textures.
In Proc. IEEE Symposium on Volume Visualization (New York, 2000),
ACM, pp. 7–13. 3

[YHK07] YUKSEL C., HOUSE D. H., KEYSER J.: Wave particles. ACM
Transactions on Graphics 26, 3 (2007), 99:1–99:8. 3

[YNBH09] YU Q., NEYRET F., BRUNETON E., HOLZSCHUCH N.: Scal-
able real-time animation of rivers. Computer Graphics Forum 28, 2
(2009), 239–248. 3

[You] You Are Here: Mapping how sea level rise and flooding
will affect your home. http://seagrant.gso.uri.edu/
you-are-here/ (last visited on April, 9th 2019). 3

Appendix A: Wave Synthesis

Waves are usually synthesized by superposition of individual wave
functions with different wavelengths and amplitudes. The param-
eters are often defined manually by artists or are controlled by
probabilistic models. In contrast, we derive wave properties directly
from the velocity field output by our simulation. The individual
steps of our approach are illustrated in Figure 10. For multiple wave-
lengths, the spatial domain is subdivided into tiles over which an
average velocity is calculated (Figure 10a). According to the veloc-
ity, sine waves are oriented inside the tile (Figure 10b), which leads
to discontinuities at tile borders. This process is performed for four

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

38

https://www.mikepoweredbydhi.com/products/mike-flood
https://www.mikepoweredbydhi.com/products/mike-flood
https://www.pegelalarm.at
https://www.pegelalarm.at
http://riocom.at/en/
http://www.hydronia.com/riverflow2d/
http://www.hydronia.com/riverflow2d/
http://shadertoy.com/view/WsXXRf
http://shadertoy.com/view/WsXXRf
http://www.steb-koeln.de/
http://www.steb-koeln.de/
https://goo.gl/forms/DqrLM6cCkroWLs9q2
http://www.tuflow.com/
https://www.youtube.com/watch?v=GBP97uc7eTk
https://www.youtube.com/watch?v=GBP97uc7eTk
http://visdom.at
http://visdom.at
http://seagrant.gso.uri.edu/you-are-here/
http://seagrant.gso.uri.edu/you-are-here/


Cornel et al. / Interactive Visualization of Flood and Heavy Rain Simulations

α

β

a b c d e

p

Figure 10: Overview of tile-based wave synthesis. (a) Average velocity of each tile for a single wavelength, normalized for display. (b) Sine
waves of a single wavelength oriented towards flow direction. (c) Layout of four overlapping tiles around sample position p for seamless
blending of values between tiles. (d) Blended waves of a single wavelength. (e) Superposition of sine waves of multiple wavelengths for vertex
displacement.

partially overlapping tiles (Figure 10c) to get four different wave
heights. The final wave height is interpolated between these four
wave heights, which eliminates the discontinuities (Figure 10d). The
wave heights of all considered wavelengths are summed up to a final
displacement value (Figure 10e) applied to triangle vertices of the
water surface.

Our approach combines tile-based wave synthesis by texture ad-
vection [Gri11, GH12] with dynamic superposition of the simple
wave functions used by Finch [Fin04] to avoid texture-related arti-
facts. For n different wavelengths λi = ri2i

λ, we define a tile over
which a wave function is evaluated. λ is the shortest considered
wavelength and ri ∈ [0.8,1.0] is a random value preventing exact
frequency doubling. We chose n = 5 and λ = 0.5 m empirically.
Given a world-space position p = (x,y) at time step t, we define a
tile T = [x0,x1]× [y0,y1]:

(x0,y0) = 2λi

⌊
(x,y)
2λi

⌋
, (x1,y1) = (x0,y0)+(2λi,2λi). (4)

This tile is shaded in blue in the upper left of Figure 10c. Addition-
ally to this tile, we consider the green tile shifted horizontally by λi,
the red tile shifted vertically by λi, and the orange tile shifted both
horizontally and vertically by λi, for which we evaluate the wave
function separately. Over each of these tiles, we require an averaged
velocity vi as well as the average flow direction di = vi/‖vi‖.

The wave height at world-space position p = (x,y) at time step t
for n different wavelengths is calculated as

H(x,y, t) =
n−1

∑
i=0

AiWi(x,y, t) (5)

with the wave amplitude

Ai =
‖vi‖
‖vmax‖

wi

∑
n−1
j=0 w j

, wi =

(
1
2
+1

)−i

, (6)

and wave function

Wi,T (x,y, t) = 2
(

sin(−θiωi + tϕi + rT 2π)+1
2

)2

−1 (7)

for each tile T . θi = 〈di,(x,y)〉 is the distance of the wave traveled
along the average flow direction and ωi = 2π/λi is the wave fre-
quency. ϕi = min(riωi,π/2) is the phase constant, which controls

the traveling speed of the wave. rT ∈ [−0.1,0.1] is a random phase
offset of tile T that is used to introduce wave irregularities between
neighboring tiles. Amplitude Ai depends on the average velocity vi
normalized by a maximum velocity vmax, which is either provided
by the user or derived from the velocity field. As a result, waves are
higher in high-velocity regions, and there are no waves in regions at
rest.

Tiling introduces discontinuities at the tile borders (see Fig-
ure 10b), which need to be treated to avoid artifacts in the visu-
alization. This is why for each (x,y, t), we evaluate the four wave
functions Wi,T (x,y, t) in the four tiles covering p = (x,y) and blend
them such that the weight of each tile smoothly fades from one at its
center to zero at its borders. Figure 10c illustrates the blending in the
overlapping region of the four tiles at p, which is a bilinear interpo-
lation with the horizontal and vertical weights α and β, respectively:

α =
1
2
− 1

2
cos

(
x

2λi
2π

)
, β =

1
2
− 1

2
cos

(
y

2λi
2π

)
. (8)

The blended result Wi(x,y, t) for a single wavelength is shown in Fig-
ure 10d. The final wave height H(x,y, t) over all wavelengths used
for vertex displacement is shown in Figure 10e.

c© 2019 The Author(s)
Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.

39


