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Abstract
Metabolomics is a “omic” science with a focus on 
the characterization of metabolome, that is the 
pool of low molecular weight (< 1.5 kDa) metab-
olites involved in the metabolism of a biological 
system. When the targets are lipids, metabolomics 
is commonly referred to as lipidomics. Since the 
metabolome composition is influenced by several 
factors such as environment, disease, drugs, and 
genetics, metabolomics is extensively used in the 
biomedical research for the identification of met-
abolic signatures or novel biomarkers useful in 
diagnosis, prediction, prognosis, and prevention 
of disease. In recent years, both metabolomics 
and lipidomics have been extensively employed 
in diabetes research to elucidate the molecular 
mechanisms triggering this disease and to discov-
er biomarkers for its prevention, diagnosis, and 
treatment. In this review, some of the most signifi-
cant findings relative to studies performed on type 
1 diabetes patients are summarized to provide an 
overview of the potential of these approaches. 

Introduction

The term diabetes mellitus, commonly referred to 
as diabetes, is used to define a group of metabolic 
disorders characterized by elevated blood glucose 
levels due to defects in insulin secretion and/or ac-
tion1. Type 1 diabetes (T1D) is an autoimmune dis-
ease that represents 5‑10% of all cases of diabetes2. 
It develops at any age but occurs most frequently in 
children and adolescents3,4. T1D is characterized by 
a progressive destruction of insulin-producing pan-

creatic b-cells with consequent insulin deficiency. 
Type 2 diabetes (T2D) is the most common form of 
diabetes (about 90% of cases) and generally occurs 
after 30-40 years of age5. T2D is characterized by a 
progressive loss of adequate b-cell insulin secretion 
frequently on the background of insulin resistance. 
Gestational diabetes is one of the most common 
pregnancy complications and usually disappears af-
ter giving birth6. This condition occurs in about 7% 
of pregnancies. The definition is valid regardless of 
the type of treatment (diet, physical exercise or insu-
lin) and the persistence of diabetes even after preg-
nancy. Both World Health Organization (WHO) and 
American Diabetes Association (ADA) have identi-
fied an intermediate type of diabetes for individu-
als whose glucose levels do not meet the criteria for 
diabetes but are too high to be considered normal. 
This condition of very high risk of evolving towards 
the diabetes, especially T2D, is referred to as im-
paired glucose tolerance, also known as pre-diabe-
tes. Finally, there is a form of hybrid diabetes called 
“latent autoimmune diabetes in adults” (LADA) that 
includes both autoimmune destruction of pancreatic 
b-cells and some degrees of insulin resistance7. Pa-
tients with LADA are treated for a short period after 
diagnosis without insulin injections.

Epidemiological data indicate that the number of 
people affected by T1D and T2D is increasing rap-
idly worldwide. According to the International Di-
abetes Federation8, in 2019 approximately 463 mil-
lion adults (20-79 years) were living with diabetes, 
and by 2045 this number is estimated to reach 700 
million. More than 1.1 million children and adoles-
cents are living with T1D with the highest incidence 
in Finland (64.2/100.000)9 followed by the island of 
Sardinia, Italy (45/100.000)10. These data are further 
aggravated by the fact that the chronic hyperglyce-
mia of diabetes is associated with long-term com-
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factors such as lifestyle, diet, drug consumption, 
and development of diseases, to name just a few15. 
The main analytical platforms used in metabolom-
ics are the following: nuclear magnetic resonance 
(NMR) spectroscopy and mass spectrometry (MS) 
combined with gas chromatography (GC-MS), liq-
uid chromatography (LC-MS), high performance 
liquid chromatography (HPLC-MS), and capillary 
electrophoresis (CE-MS). Basically, NMR offers 
a good reproducibility, is not destructive, and re-
quires relatively simple and fast preparations of 
samples. Nevertheless, the low sensitivity of NMR 
confines its applications to concentration mea-
surements in the micromolar to millimolar range. 
MS method is more sensitive than NMR, but it 
is a destructive technique and requires extensive 
sample preparation, including the derivatization 
of compounds in case of GC-MS. No one of these 
techniques can provide alone a complete picture 
of metabolome; therefore, a complementary use of 
both technologies is particularly useful to gain a 
broader perspective. A detailed description of these 
techniques, their advantages and drawbacks are the 
subject of various reviews. The reader is referred to 
the literature for further information16-19. 

Different types of biofluids can be analyzed in 
metabolomics such as blood, urine, faecal extracts 
and saliva. No single biofluid is appropriate for all 
studies; blood20 and urine21 samples can provide sig-
nificant insight into the dysregulation of metabolism 
at the organ level, while faecal22 and saliva23 metab-
olome are specifically informative on microbiota. 

Over the past decades, metabolomics has been 
successfully applied in medicine and molecular biol-
ogy. It has provided useful contributions to the dis-
covery of new biochemical pathways in diseases, the 
understanding of their role in triggering pathologies, 
and the discovery of new therapeutic targets and bio-
markers for early diagnosis or monitoring therapeu-
tic activities24. More recently, lipidomics, a branch of 
metabolomics which studies the complete set of lipids 
(lipidome) produced in a given cell or organism, has 
garnered attention, particularly in relation to diseases 
characterized by dysregulated lipid metabolism. The 
development of lipidomics has been largely driven by 
rapid advances in MS technologies25.

Both metabolomics and lipidomics have emerged 
as promising approaches also in diabetes research. 
According to a statistics obtained by searching 
“metabolomics, metabolome, lipidomics, or lip-
idome and diabetes” in the “article title, abstract 

plications and comorbidities such as cardiovascular 
disease, hypertension, dyslipidemia, diabetic ne-
phropathy, neuropathy, and retinopathy, becoming 
one of the top 10 causes of death in adults11. 

The exact etiology of diabetes is unknown. The 
genetic component has an important weight on the 
predisposition of diabetes, but it does not have a 
direct cause-effect relationship with this disease. 
Indeed, the pathogenetic mechanisms underlying 
the clinical phenotype of diabetes are by nature 
complex and arise from a variable interaction be-
tween genetic and environmental (non-genetic) risk 
factors. In case of T2D, one of the most significant 
factors influencing the development of disease is 
lifestyle, commonly associated with urbanization. 
Different studies have established that lifestyle 
modification together with physical activity and/or 
healthy diet can delay or prevent the onset of T2D12. 
Differently, at present, T1D cannot be prevented 
yet since the complex molecular network responsi-
ble for the destruction of b-cells is still enigmatic, 
thus slowing down the identification of parameters 
with the role of specific T1D indicators13. So, pre-
diction of T1D is done based on the risk assessment 
defined by a combined use of genetic, immunolog-
ic, and metabolic parameters, while the diagnosis 
is done when the symptoms are evident. To reduce 
the pandemic of T1D and its disastrous social, eco-
nomic, and health impacts worldwide, there is an 
urgent need to improve the understanding of the 
molecular network responsible for the destruction 
of b-cells to identify strategies useful to the pre-
vention, diagnosis and treatment of this disease. 

Metabolomics and Lipidomics 

Metabolomics is a “omics science” aimed at iden-
tifying and quantifying the set of low molecular 
weight metabolites (typically < 1500 Da), known 
as metabolome, present in a biological sample 
such as biofluids, cells, tissues, and organs14. The 
metabolome consists of both endogenous and ex-
ogenous components, including amino acids, pep-
tides, nucleic acids, organic acids, vitamins, and 
carbohydrates. Since the metabolome composition 
can be viewed as a mirror that reflects the glob-
al assessment of a cellular state, interrogating the 
metabolome enables to investigate the metabolic 
status of an organism in normal or disruptive phys-
iologic conditions due to altered environmental 
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Within these studies, important contributions to 
the understanding of T1D pathogenesis have been 
obtained by applying metabolomics and lipidomics 
on subjects starting from birth until clinical diag-
nosis. In 2008, an integrated lipidomics and me-
tabolomics longitudinal study was performed on 
the serum specimens of 56 children of the DIPP 
cohort who progressed to T1D (progressors) with 
age at time of diagnosis between 6 and 162 months, 
and 73 healthy and autoantibody negative matched 
controls (non-progressors)41. Additionally, the cord 
blood samples of 39 DIPP children, 15 of which 
progressed to diabetes before the age of 12 years, 
were analyzed. The lipidome of 515 samples col-
lected from progressors, among which 112 taken 
before seroconversion to autoantibody positivi-
ty, was investigated by ultra-performance liquid 
chromatography coupled to mass spectrometry 
(UPLC-MS), while the metabolome of a subset of 
419 samples was characterized by two-dimension-
al gas chromatography coupled to time of flight 
mass spectrometry (GCxGC-TOF/MS). Compared 
to non-progressors, the serum lipidome of pro-
gressors exhibited decreased phosphatidylcholine 
(PC) at birth, a reduction of triglycerides (TGs) and 
antioxidant ether phospholipids during the follow 

and keywords” in SCOPUS database26, 2976 con-
tributions (articles, reviews, books, book chapters, 
editorials, notes, and letters) have been published 
since 2002 (Figure 1). Among these, 139 have been 
focused exclusively on T1D. Exhaustive reviews on 
these topics have been published so far27-35. The aim 
of the current overview is to illustrate the findings 
of some of the most representative human studies 
performed in different areas of T1D research, pro-
viding the reader an outline of the metabolomics 
and lipidomics contributions to diabetes biomarker 
discovery and the relative experimental designs. 

T1D in children: pre- and post-diagnosis

Different long-term studies worldwide have fol-
lowed up children from birth to investigate the 
natural history of islet autoimmunity (IA) and set 
up strategies to predict, delay, and prevent the T1D 
onset. Among these, we remind the Finnish Type 
1 Diabetes Prediction and Prevention (DIPP)36, the 
Norwegian Environmental Triggers of Type 1 Dia-
betes Study (MIDIA)37, the German BABYDIAB38 
and BABYDIET39, and the Colorado Diabetes 
Autoimmunity Study in the Young (DAISY)40. 

Figure 1. Research outputs of metabolomics and lipidomics studies in diabetes research. Data were gathered by Scopus26 
searching for the terms “metabolomics” or “metabolome” or “lipidomics” or “lipidome” and “diabetes” in “article title, abstract 
and keywords” field.
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be most pronounced in very young children, i.e. at 
3 months of age. Consistent with the literature,41,42 
sphingomyelins were found to be persistently 
downregulated in progressors when compared to 
the other two groups, while triacylglycerols and 
PCs were mainly downregulated in progressors as 
compared to children who developed at least a sin-
gle islet autoantibody but did not progress to T1D 
at the age of 3 months.

The evidence of differences between the autoim-
munity characteristics in the neonatal and puberty 
period has suggested age-dependent differences in 
the events that lead to IA or in the immune response 
to the event46. In light of this hypothesis, a possible 
age effect differentiating also the lipidomic profiles 
of early developers of islet autoantibodies in com-
parison with late developers has been investigated 
by UPLC-MS47. In this study, serum samples were 
collected from children of the BABYDIAB cohort: 
35 cases who developed T1D before 2 years of age 
(n=13) or after 8 years of age (n=22) and matched 
controls who remained islet autoantibody-nega-
tive (n=35). Amino acids (AA) and lipid profiles 
were assessed in the first antibody-positive serum 
samples from children who seroconverted to islet 
autoantibody-positive and in the serum samples 
of age-matched controls. A second serum sample  
was analyzed after 1 year of follow-up. Additional-
ly, only for 13 early autoantibody-positive children 
and matched controls a pre-seroconversion sample 
was available and analyzed for the AA profile. In 
good agreement with the literature, seroconverters 
had higher levels of odd-chain TGs and polyunsat-
urated fatty acid–containing phospholipids than 
controls. Furthermore, compared with children 
who developed autoantibodies in late childhood 
or remained autoantibody-negative, those who de-
veloped autoantibodies by the age of 2 years had 
two-fold lower concentration of methionine, a me-
tabolite involved in glucose metabolism, insulin 
resistance, and β-cell dysfunction48.

In Poland, the first metabolomics study on T1D 
paediatric patients was performed in 201349. The 
study population included 30 T1D children and 
teenagers aged 4–19 years and 12 healthy controls 
aged 9 years. The case group was divided into two 
subgroups: patients with low (L-T1D) and high 
(H-T1D) level of glycated hemoglobin (HbA1c). 
Urine of children was analyzed by 1H NMR spec-
troscopy. The findings were in agreement with 
those obtained by plasma metabolomics35, pointing 

up, and an increase of proinflammatory lysophos-
phatidylcholine (LysoPC) in the period before se-
roconversion to autoantibody positivity. Before IA 
emergence and T1D diagnosis, the metabolome 
of progressors showed lower levels of ketoleucine 
and higher contents of branched chain amino acids 
(BCAA) and glutamic acid compared to controls. 
The metabolic profile was partially normalized af-
ter the seroconversion.

A possible role of phospholipids in cord blood as 
predictors of development of autoimmunity was fur-
ther supported by other two studies performed on a 
larger DIPP cohort42,43 and one conducted in children 
of the Diabetes Prediction in Skåne (DiPiS) study 
group44. In the first two investigations, the popula-
tion of T1D children was divided into two subgroups: 
cases that developed T1D-associated autoantibodies 
and progressed to T1D during the follow-up; cases 
that developed antibodies (one, two or three/four) but 
were clinically unaffected. The differences in cord 
lipidome of cases when compared to controls con-
firmed that T1D progressors have a characteristic lip-
idomic profile already present at birth. In particular, 
choline-containing phospholipids, mainly sphingo-
myelins and PC were present at lower concentration 
in T1D progressors than in non-progressors and con-
trols. Since maternal choline intake during pregnan-
cy can affect metabolic and physiologic function of 
child, a possible link of the abovementioned findings 
with the intrauterine environment and the pregnancy, 
such as the mother’s nutritional status, was proposed. 
Corroborating the hypothesis of an association be-
tween choline-containing phospholipids and progres-
sion to T1D, PCs and phosphatidylethanolamines in 
cord blood have been found to be significantly low 
also in Swedish children with a T1D diagnosis before 
4 years of age, while TGs were low in children diag-
nosed before 2 years of age44. 

Additional information on the dysregulation of 
lipid metabolism prior to IA and T1D onset has 
been recently obtained by the longitudinal lipidome 
analysis of plasma samples from three groups of 
children matched by diabetes risk associated to hu-
man leukocyte antigen (HLA), gender, and period 
of birth: patients who progressed to T1D (n = 40); 
patients who developed at least a single islet auto-
antibody but did not progress to T1D during the fol-
low-up (n = 40); healthy non diabetic controls (n = 
40)45. Samples were taken at 3, 6, 12, 18, 24, and 36 
months from birth. The distinct lipidomics profile 
associated with the progression to T1D appeared to 
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compared to 30 healthy controls (average age of 10.7 
± 2.8 years). In addition to a dysregulation of lipid 
metabolism pathways and changes in gut microbio-
ta, the findings of this study suggested an alteration 
of the steroid metabolism and a possible impairment 
of tryptophan catabolism in pediatric T1D patients, 
in good agreement with the literature57.

In a study involving T1D infants from the Nor-
wegian MIDIA project, the impact of age, sex, 
breastfeeding, and development of IA or T1D on the 
plasma metabolic profile were explored58. The study 
population included 29 subjects with two or three 
autoantibodies or overt T1D and 29 controls neg-
ative for islet autoantibodies matched for sex, date 
of birth, and area of residence with cases. GC×GC-
TOFMS was employed for a longitudinal analysis of 
samples collected at 3 month-intervals (up to 1 year 
of life) during infancy, prior to and close to the de-
velopment of IA. Although some differences were 
observed between the metabolic profiles of cases 
and controls, overall a clear association between the 
metabolic profiles and later development of islet au-
toimmunity was not observed. 

Recently, in the DAISY study, an integrated anal-
ysis of genetic, immunologic, metabolomics, and 
proteomic data has been used for modelling the de-
velopment of IA and progression to T1D in a cohort 
of 42 children which developed IA (among which 
20 progressed to diabetes) matched by sex and age-
matched with healthy subjects59. Biomarkers were 
assessed at four time points: earliest available sam-
ple, just prior to IA, just after IA, and just prior to 
diabetes onset. The analysis of serum metabolome 
was carried out by UPLC-MS/MS. The top select-
ed feature among the best predictors of progression 
to IA was found to be ascorbic acid (vitamin C). 
In particular, the levels of this antioxidant agent in 
children who developed IA at the earliest time point 
were lower than that of controls. This finding is in 
line with the recent observations of an inverse asso-
ciation between the plasma level of vitamin C and 
the risk of IA in children with increased genetic risk 
of T1D60, corroborating the hypothesis of a possible 
role of genetic variation in vitamin C in T1D devel-
opment. In the same study, glucose was found to be 
the top metabolite for progression from IA to diabe-
tes59. Other two promising metabolites for prediction 
of IA outcome were a-ketoisovaleric acid, a valine 
degradation product61 as well as precursor of leucine 
and valine synthesis62, and 4-hydroxyhippurate, a 
gut microbial fermentation product.

out a metabolic shift induced by T1D development 
which altered the urinary levels of glucose, ketone 
bodies, and other metabolites such as amino acids 
and organic acids, although with different trends 
for the two subgroups of cases. For instance, for 
L-T1D all measured AA were down regulated, 
while in the case of H-T1D the glucogenic amino 
acid levels were increased, especially glycine, al-
anine, and valine. Besides a dysregulation at the 
levels of the two endogenous pathways of glucose 
production in human organism (gluconeogenesis–
lactate pathway and proteins catabolism), a possible 
role of intestinal microbiota was suggested by the 
lower urinary levels of hippurate (a host-bacterial 
co-metabolite)50 in cases compared to controls.

Another notable example of metabolomics ap-
plication in T1D research is the study performed in 
a cohort of 49 Spanish children, ranging from 6 to 
11 years old (34 with T1D and 15 controls)51. Plasma 
and urine samples were analyzed by LC-MS and 
CE-MS, respectively. The plasma specimens were 
taken from 26 cases and 14 controls, while urine 
was provided by 16 cases and 15 controls. Urinary 
AA, their metabolites and derivatives were excreted 
in higher amount in diabetic children than controls, 
suggesting alterations in glomerular filtration rate 
and/or proteins and amino acid metabolism. The 
higher levels of nonesterified fatty acids, lysophos-
pholipids, and other derivatives of fatty acids in 
plasma of cases compared to controls further sug-
gested an altered lipid metabolism. Furthermore, in 
good agreement with other studies performed on 
animal52 and human53,54 models, alteration in bile 
acids and p-cresol sulfate, two well-known metab-
olites linked to gut microbiota activity, supported 
the hypothesis of a role for the gut microbiota in 
the development of b-cell autoimmunity and T1D. 
Similar conclusions were also reached in a previous 
urine-based metabolomics study performed on Sar-
dinian children’s (29 T1D cases and 90 controls)55, 
revealing a significant role of hippurate, p-cresol 
sulfate and phenylacetylglycine in classifying the 
groups of cases and controls.

The potential of urine-based metabolomics to 
monitor metabolic dysregulation in T1D children has 
been recently supported also by an Italian study56. 
An excess of urinary glucocorticoids and mineralo-
corticoids, phenylalanine and tryptophan catabo-
lites, small peptides, glycerophospholipids, fatty ac-
ids, and gut bacterial products have been observed 
in 56 T1D children (average age of 11.4 ± 2.2 years) 
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spectra of I- were richer in lactate, acetate, allanto-
in, and ketones, while MS spectra exhibited higher 
amount of AA and AA metabolites. Furthermore, 
results of the correlation analysis among metab-
olites measured in common by both techniques 
showed opposite trends for I+ and I-. For instance, 
ketone levels (acetoacetate, 3-hydroxybutyrate, ac-
etone) were found to be positively correlated with 
lactate and several AA during insulin deprivation, 
but negatively correlated with these metabolites 
during insulin treatment. Also, citrate was neg-
atively correlated with glutamate during insulin 
deprivation but the relationship between these two 
metabolites became positive with insulin treat-
ment. Taken together, the compositional changes in 
plasma of T1D subjects induced by short-term in-
sulin deprivation provided evidence for known al-
tered physiological processes such as mitochondri-
al dysfunction, oxidative stress, protein synthesis, 
degradation, and oxidation, gluconeogenesis, and 
ketogenesis64. In an extension study, these findings 
were further confirmed by using UPLC-TOFMS, 
which allowed the detection and identification of 
a larger pool of metabolites (i.e. 330) in all three 
study groups (I+, I-, controls)65. In addition to the 
abovementioned pathways, the findings pointed 
toward a different regulation of other metabolites 
including prostaglandin, arachidonic acid, leukot-
rienes, neurotransmitters, nucleotides, and anti-in-
flammatory responses. Consistent changes were 
also observed when the metabolite plasma levels of 
I+ subjects were compared with those of controls, 
evidencing that insulin treatment in T1D does not 
completely restore the metabolic alterations65. 

The presence of a metabolic fingerprint associ-
ated with good glycemic control in T1D subjects 
has been evaluated by comparing plasma profiles 
of 14 patients with poor glycemic control (T1D(‑), 
HbA1c ≥ 8.5 %), 14 patients with good glycemic 
control (T1D(+), HbA1c ≤ 6.5 %), and matched 
non-diabetic controls66. Compared to controls, 
T1D(-) showed an elevation of carbohydrate me-
tabolites, various AA (such as BCAA, lysine, pro-
line, serine, N,N-dimethyl histidine, methionine), 
short-chain fatty acids, and lipid inflammatory 
mediators, like eicosanoids, and metabolites asso-
ciated with the vitamin D pathway, accompanied 
by lower levels of glycolytic metabolites and TCA 
(tricarboxylic acid) cycle metabolites, metabolites 
in purine metabolism, alanine and homoarginine. 
Although many of these alterations were normal-

An accurate characterization of gut metabolic 
composition in combination with the analysis of 
serum metabolome and gut microbiota has provid-
ed information on the dynamics and stability of the 
developing microbiome in at-risk T1D infants63. 
This prospective and longitudinal study was per-
formed on stool samples of infants from Finland (n 
= 27) and Estonia (n = 6) recruited at birth based 
on a positive cord blood testing for HLA: 7 patients 
were positive for at least two of the five autoanti-
bodies but they did not develop T1D; 4 subjects de-
veloped T1D; 22 were controls matched for gender, 
HLA genotype, and country with seroconverters. 
Serum metabolomics (by GCxGC-TOFMS) and 
lipidomics (by UPLC-MS) measurements were 
performed on samples at 0 (cord blood), 3, 6, 12, 
18, 24, and 36 months from birth. Each sample was 
paired with the closest stool specimen before the 
serum collection time that was analyzed by LC-MS 
to measure polar metabolites and lipids. The anal-
ysis of gut microbiota showed a significant shift of 
inter- and intra-individual taxonomic composition 
with age during the first 3 years of life before be-
coming more stable. Nevertheless, the stool metab-
olomics profile remained approximately unchanged 
over time and across individuals. Additionally, as 
compared to non-converters and seroconverters, a 
drop in α-diversity in progressors was observed in 
the temporal window between the seroconversion 
and the diagnosis of clinical disease. Correlation 
analysis between absolute abundances of metabo-
lites and microbial relative abundances highlighted 
several metabolite-microbe clusters, among which 
one of the most significant was between TGs, 
BCAA and a number of microbes63.

T1D in adults 

The influence of insulin therapy and deficiency on 
human metabolome has been investigated by ana-
lyzing plasma samples of seven T1D subjects (31.16 
± 2.9 years) during insulin treatment (I+) and acute 
insulin deprivation (I-) and matched controls (30.26 
± 3.4 years)64. AA and AA metabolites were pro-
filed by LC-MS/MS, while 1H NMR spectroscopy 
was used to assess the profile of the pool of wa-
ter-soluble low-molecular weight metabolites. Mul-
tivariate statistical analysis of NMR data allowed 
I- subjects to be clearly differentiated from I+ and 
controls. In particular, as compared to I+, the NMR 
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nephropathy) is the one most studied by metabo-
lomics and lipomics. DKD is the leading cause of 
end-stage renal disease (ESRD)69. Moderately in-
creased albuminuria, known as microalbuminuria 
and defined as urine albumin excretion rate (AER) 
ranging from  30 to 300 mg/day, is considered an 
early marker of renal dysfunction, and, especially 
for T1D patients, it may be indicative of an ear-
ly clinical manifestation of diabetic nephropathy. 
Severely increased albuminuria, also known as 
macroalbuminuria (defined as urine AER ≥ 300 
mg/day) has long been regarded as the stage of ir-
reversible kidney damage70. The only therapeutic 
options available for ESRD are dialysis or kidney 
transplantation. Since in adult DKD contributes to 
significant morbidity and mortality, an early detec-
tion of diabetic patients (especially with T1D) who 
are at risk of micro- or macroalbuminuria may rep-
resent a great opportunity to prevent or delay the 
incidence of ESRD. 

Different NMR-based investigations have been 
performed on patients enrolled in the Finnish Di-
abetic Nephropathy (FinnDiane) study, pointing 
out clear distinct metabolic characteristics of T1D 
related to DKD71-74. In 2006, the 1H NMR profiles 
of serum samples from 182 T1D subjects (73 with 
normoalbuminuria, 16 with microalbuminuria, and 
93 with macroalbuminuria) were compared to those 
from 21 non-diabetic controls71. Samples were ana-
lyzed without any pretreatment and two types of 1H 
NMR experiments were performed on each spec-
imen in order to explore separately two different 
molecular classes: lipoprotein lipids (LIPO) and 
low-molecular-weight metabolites (LMWM). The 
NMR spectrum of serum recorded in the LIPO 
window was dominated by broad bands arising 
from fatty acids in TGs, cholesterol compounds, 
phospholipids in various lipoprotein particles, and 
albumin. The spectrum of serum recorded in the 
LMWM window exhibited peaks from BCAA, 
some organic acids (citric, acetic and lactic acids), 
glucose, creatinine, choline, and N-acetyl protons 
of mobile N-acetylated carbohydrate side-chains of 
glycoproteins. Spectroscopic and biochemical data 
were analyzed at three different levels. First, a pair-
wise association between the two type of data was 
explored. Second, the quantitative nature of NMR 
data was investigated. Finally, models aiming to 
separate non-diabetic controls from T1D patients 
were constructed. Overall, the good correlation be-
tween biochemical variables and NMR spectra (us-

ized by good glycemic control, several abnormal-
ities persisted even in presence of long-term good 
glycemic control66.

A combined use of 1H-NMR and GC-MS has 
been applied in an exercise-based investigation of 
the metabolic changes induced by a short-term ses-
sion of acute aerobic exercise in ten T1D patients 
(30 min exercise on a cycle ergometer at an inten-
sity of 80% of maximal oxygen uptake, VO2m-
ax)67. A serum sample was obtained by cases and 
matched healthy controls at rest and after a short 
period of intense exercise. Findings revealed sim-
ilar metabolic events in the two groups of subjects 
such as increased concentrations of gluconeogenic 
precursors and TCA cycle intermediates, although 
the overall metabolic response after exercise was 
attenuated in T1D patients. In particular, compared 
to controls, a reduced activation of glycogenolysis 
and glycolysis, a less significant accumulation of 
TCA cycle intermediates, an attenuated lipolytic 
action and a decrease in protein catabolism were 
observed in the T1D group after exercise67. 

In a German case-control study, the plasma 
metabolome profiles of T1D (n = 127) and T2D 
(n = 244) adults with disease duration less than 1 
year have been compared to those of non-diabetic 
controls (n = 129) to explore the metabolic alter-
ations occurring in early onset diabetes68. Similar 
altered metabolite patterns in both T1D and T2D 
were observed when compared with healthy sub-
jects, suggesting common mechanisms respon-
sible for the deregulation of metabolic control. In 
particular, 28 and 49 metabolites were found to be 
significantly altered in T1D and T2D, respectively. 
For both diabetes types, the levels of various phos-
phatidylcholine species were reduced compared to 
controls, while those of BAA, aromatic AA and 
short-chain fatty acids were higher. Additionally, 
diabetes type-specific differences were observed 
for free fatty acids, which were more abundant 
in T2D compared to controls and T1D, as a likely 
consequence of a higher degree of systemic inflam-
mation in T2D68.

Diabetic complications

Patients with diabetes are at increased risk of mi-
crovascular complications such as diabetic kid-
ney disease (DKD), neuropathy, and retinopathy. 
Among these diseases, DKD (also called diabetic 
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T1D Finnish patients were enrolled. In this study, 
the NMR analysis of serum was focused on three 
molecular windows: lipoprotein lipids, low-molec-
ular-weight metabolites and lipid extracts. Correla-
tion-based network analysis evidenced connection 
of many of the clinical variables with each other 
and to the biochemical measures, while no strong 
connections to lipids or other metabolites were ob-
served, except via urinary albumin. Furthermore, 
the SOM analysis of data highlighted the presence 
of different phenotypes according to the phases 
of disease: the early sub-clinical phase was char-
acterized by an increase of phospholipids, inter-
mediate-density lipoproteins (IDL), low-density 
lipoproteins (LDL), and unsaturated fatty acids; 
the accelerated progression exhibited metabolic di-
versity for saturated fatty acids, inflammation, and 
HDL metabolism; a possible role of sphingolipid 
pathway was proposed for the ESRD and/or prema-
ture death73. The latter hypothesis was further sup-
ported by the results of another blood-based me-
tabolomics study74. More recently, a sophisticated 
serum metabolomics approach combining UPLC/
MS/MS, GC/MS and random forest analysis, has 
evidenced the presence of 111 metabolites signifi-
cantly different between progressors and non-pro-
gressors, among which erythritol, 3-phenylpropio-
nate, and N-trimethyl-5-aminovalerate were found 
to be the best set of variables to predict early-phase 
diabetic nephropathy76. 

Also, urine metabolomics has exhibited its po-
tential to asses metabolic alteration linked to DKD. 
LC- and GC-MS have been employed to character-
ize the urine metabolome of 52 T1D patients clin-
ically defined as having a normal AER77. Patients 
were followed for a median of 5.5 years. Half of 
this group progressed to microalbuminuria or DKD 
(progressors); the other half did not show a pro-
gression in albumin excretion (non-progressors). 
By using logistic regression models, a distinction 
between progressors and non-progressors was ob-
tained with an accuracy of 75% and a precision of 
73% from LC-MS data, and an accuracy of 65% 
and a precision of 64% from GC-MS data. Novel 
biomarkers including acylcarnitines, acylglycines 
and metabolites related to tryptophan metabolism 
were found, supporting new biochemical events as-
sociated with DKD77. 

Metabolomic profiles of T1D patients who prog-
ress to ESRD have been analyzed by LC- and GC-
MS68. One hundred fifty-eight subjects enrolled in 

ing Spearman correlation coefficient) and the high 
predictive values of models built with NMR data 
highlighted the diagnostic potential of the NMR 
metabolomics for diabetic nephropathy71. 

An extension of the abovementioned NMR-based 
study was later performed on a population of 613 
T1D subjects, among which 251 with normoalbu-
minuria, 137 with microalbuminuria, and 225 with 
macroalbuminuria72. To structure and categorize 
the metabolic features within these NMR data, a 
self-organizing map (SOM)-based analysis was car-
ried out, pointing out complex interactions between 
DKD, insulin resistance, diabetic retinal disease 
(DRD), macrovascular diseases (MVDs), and met-
abolic syndrome (MetS). These pathophysiological 
processes were found to share many features of the 
same biochemical basis. For instance, plasma met-
abolic profiles of patients with a detectable loss in 
kidney function (i.e., elevated creatinine and urea, 
decreased serum albumin) partially overlapped with 
those of subjects with insulin resistance and related 
impairment in glucose metabolism (dyslipidemia, 
high insulin dose, high HbA1c, elevated lactate and 
acetate and increased fasting glucose). Nevertheless, 
as compared to patients with normoalbuminuria, pa-
tient with DKD exhibited higher contents of TGs, 
creatinine, and urea and lower levels of high-density 
lipoproteins (HDL) cholesterol and albumin in cas-
es, while the MetS profile was richer in TGs, lactate, 
and acetate72. 

A similar strategy has been used in a more recent 
study to assess the composition of serum from 637 
Danish T1D adults (297 with normoalbuminuria, 
158 with microalbuminuria and 182 with macroal-
buminuria) by GC×GC-TOFMS75. Cross-sectional 
associations between single metabolites and lon-
gitudinal outcomes data at follow-up (median 5.5 
years) on renal events (including estimated glomer-
ular filtration rate and albuminuria slopes, ESRD 
and all-cause mortality) provided evidence for an 
association between polyols, AA and hydroxybu-
tyrates with renal endpoints, delineating a potential 
link of diabetes with the pentose phosphate path-
way and gut dysbiosis75.

A comprehensive metabolomics approach has 
been applied to associate the serum metabolite 
profiles to progression of albuminuria, taking into 
account three different phases, namely: i) from 
normal AER to micro- or macroalbuminuria; ii) 
from microalbuminuria to macroalbuminuria; iii) 
from macroalbuminuria to ESRD73. In total, 325 
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disease diagnosis and monitoring, for the study of 
the pathogenesis of several diseases, as well as for 
the investigation of oral host–microbiome interac-
tions. The salivary metabolome of 34 T1D children 
under six years of age has been compared to that 
of 34 healthy controls82. The case group included 
20% of uncontrolled diabetic subjects according to 
the postprandial glucose level (> 200 mg/dL) at the 
time of saliva collection. Levels of different organ-
ic acids were significantly different between cases 
and controls. In particular, saliva of uncontrolled 
T1D children was characterized by high contents of 
lactate and acetate, suggesting their possible impli-
cation in the metabolic acidosis observed in patients 
with diabetic ketoacidosis. In addition, uncontrolled 
T1D subjects exhibited low salivary succinate lev-
els. Since this metabolite is an intermediate of the 
Krebs cycle in mitochondria as well as an insulino-
tropic compound83, this result could be linked to an 
impaired metabolism and insulin secretion produced 
by hyperglycaemia and diabetes84.

Conclusions

The multifactorial nature of T1D makes the patho-
genesis of this disease in many respects still ob-
scure in the eyes of the scientific community. In-
deed, although in the recent years the knowledge of 
the metabolic imbalances due to insulin deficiency 
has increased significantly, the complex relation-
ship between the T1D-related metabolic disorders 
and the interplay of trigger factors (genetic and en-
vironmental factors) is not fully explained yet.

Several metabolomics and lipidomics studies 
have been performed in this field, providing contri-
butions useful to generate and support hypotheses 
on the molecular mechanisms of T1D and to iden-
tify potential biomarkers for early detection, moni-
toring, and prevention of these disease. In addition 
to the changes in carbohydrate metabolism, the 
analysis of metabolome and lipidome in case-con-
trol investigations provided evidence for metabol-
ic dysregulations at the level of other metabolites 
including lipids, branched-chain amino acids, ar-
omatic amino acids, markers of oxidative stress, 
tryptophan, tricarboxylic acid cycle intermediates, 
and gut microbiota-related metabolites. Different 
are the variables that hindered, in some cases, the 
achievement of results with a high degree of agree-
ment, such as the size of study population, age at 

the Joslin Proteinuria Cohort Study were included 
in this study with a median follow-up of 11.5 years. 
Ninety-nine patients developed ESRD. The global 
serum metabolomic profiling revealed 9 candidate 
metabolite biomarkers as potential risk factors for 
progression to ESRD in T1D: C-glycosyltryptophan, 
pseudouridine, O-sulfotyrosine, N-acetylthreonine, 
N-acetylserine, N6-carbamoylthreonyladenosine, 
N6-acetyllysine, N-acetylalanine, and phenol sul-
fate. These metabolites correlated with one another 
and with the indices of tubular injury78.

Diabetic retinopathy (DR) is the most common 
microvascular complication of diabetes79. It is a 
multifaced disease with progression and clinical 
manifestations varying between patients, and its 
pathophysiological mechanisms are still unknown. 
Vitreous samples from 22 T1D patients (age: 46.1 ± 
9.2 years; diabetes duration: 14.2 ± 6.7 years) with 
DR and 22 non-diabetic age-matched controls with 
macular hole (MH) taken as control group (age: 
45.3 ± 11.5 years) have been analyzed by 1H NMR. 
Multivariate statistical analysis of the NMR data-
set showed that the main differences in the spectra 
of MH and DR samples were higher levels of lac-
tate and glucose, and lower levels of galactitol and 
ascorbic acid in DR compared to MH. Although this 
study has the limitation of the absence of healthy 
non-diabetic controls (justified by the nature of the 
sample under investigation), the results provided ev-
idence for a metabolic signature of DR likely associ-
ated with a metabolic shift due to anaerobic glycol-
ysis and/or inflammation (lactate), polyol pathway 
(galactitol), ketone body formation by b-oxidation 
(acetate), and oxidative stress (ascorbic acid)79. 

Very recently, a novel study has been performed 
to profile the metabolic perturbations associated 
with T1D and progression of cardiovascular auto-
nomic neuropathy (CAN), a complication charac-
terized by impaired autonomic control of the car-
diovascular system80. Plasma samples were drawn 
from 47 T1D subjects and 10 age- and sex-matched 
healthy controls followed for 3 years. Three main 
pathways were found to be correlated with CAN 
progression: gluconeogenesis, ornithine synthesis, 
and TCA cycle.

Among the various disorders associated with 
diabetes mellitus, there are also different oral com-
plications such as gingivitis, periodontitis, dental 
caries, salivary gland dysfunction, oral infections, 
and oral mucosal diseases81. Due to its role in the 
oral cavity, saliva is a biofluid that can be used for 
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the time of disease onset, gender, width of the tem-
poral window between seroconversion and T1D on-
set, environmental factors, to name just a few. Due 
to the complexity of the molecular network behind 
this disease and in light of the rapid technological 
advances in the field of systems biology over the 
past decades, a multi-omic data integration applied 
to larger cohort of patients is certainly the future 
direction toward progresses in the identification 
and validation of novel biomarkers for early detec-
tion, prevention, and treatment of T1D.
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