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Measuring the Discriminative Power
of Rating Systems

Abstract: Assessing the discriminative power of rating systems is an important question to banks
and to regulators. In this article we analyze the Cumulative Accuracy Profile (CAP) and the
Receiver Operating Characteristic (ROC) which are both commonly used in practice. We give
a test-theoretic interpretation for the concavity of the CAP and the ROC curve and demonstrate
how this observation can be used for more efficiently exploiting the informational contents of
accounting ratios. Furthermore, we show that two popular summary statistics of these concepts,
namely the Accuracy Ratio and the area under the ROC curve, contain the same information
and we analyse the statistical properties of these measures. We show in detail how to identify
accounting ratios with high discriminative power, how to calculate confidence intervals for the
area below the ROC curve, and how to test if two rating models validated on the same data set are
different. All concepts are illustrated by applications to real data.

Keywords: Validation, Rating Models, Credit Analysis
JEL Classification: C 52, G 10



Messung der Trennsclarfe
von Ratingverfahren

ZusammenfassungDie Beurteilung der Trennsélnfe von Ratingverfahren ist sowoliirfBanken

als auch f@ir die Bankenaufsicht von groRer Bedeutung. In dieser Arbeit untersuchen wir das Cu-
mulative Accuracy Profile (CAP) und die Receiver Operating Characteristic (ROC), welche beide
in der Praxis Bufig verwendet werden. Wir interpretieren die Konkawdieser beiden Kurven
anhand testtheoretischeberlegungen und zeigen, wie diese Beobachtung zu einer effizienteren
Ausnutzung des Informationsgehaltes von Bilanzkennzahlen verwendet werden katierDar
hinaus beweisen wir digquivalenz des Accuracy Ratio und de&Ehe unter der ROC-Kurve und
analysieren deren statistische Eigenschaften. Wauggtn im Detail, wie Bilanzkennzahlen mit
hoher Trennscirfe identifiziert, wie auf einfache Weise Konfidenzintervalledie Fhche unter

der ROC-Kurve berechnet und wie zwei Ratingverfahren, die auf demselben Datensample vali-
diert werden, auf gleiche Trennsitfe getestet werderbknen. &mtliche Konzepte werden auf
reale Daten angewendet.

Schlagworter: Validierung, Ratingverfahren, Kreditrisikoanalyse
JEL Klassifizierung: C 52, G 10
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|. Introduction

A variety of rating methodologies and credit risk modelling approaches has been developed in the
last three decades. Therefore, the question arises which of these methods are preferable to oth-
ers. The need to judge the quality of rating systems has become increasingly important in recent
years after th@asel Committee on Banking Supervisi@901) has published the second consul-
tative document of the new capital adequacy framework where it has announced that an internal
ratings-based approach could form the basis for setting capital charges with respect to credit risk
in the nearest future. This is forcing banks and supervisors to develop statistical tools to evaluate
the quality of internal rating systems. The importance of sound validation techniques for rating
systems stems from the fact that rating models of poor quality could lead to sub-optimal capi-
tal allocation. Therefore, thBasel Committee on Banking Supervisi@000 has emphasized

that the field of model validation will be one of the major challenges for financial institutions and
supervisors in the foreseeable future.

In this article we focus on the evaluation of the discriminative power of rating systems. The most
popular validation technique currently used in practice is the Cumulative Accuracy Profile (CAP)
and its summary statistic, the Accuracy Ratio. A detailed explanation of this method can be found
in Sobehart, Keenan, and St€R000. A concept similar to the CAP is the Receiver Operating
Characteristic (ROC) and its summary statistic, the area below the ROC curve. This method has
its origin in signal detection theory, psychology and especially in medicine (danley and
McNeil (1982).1 ROC curves are used to evaluate the quality of medical diagnosis for many
years. There exists a large body of literature that analyses the properties of ROC Sotvelsart

and Keenarf2001) explain how to use this concept for validating internal rating models. In their
article, they concentrate on the fundamental features of ROC curves like their calculation and their
interpretation. However, both the articlesBgbehart, Keenan, and Sté#000 andSobehart and
Keenan(2001) do not analyse the measures presented in these articles from a statistical point of
view.

In this article our focus will be on the statistical properties of the CAP and the ROC. In our analysis
we will concentrate on the ROC curve for two reasons. First, concentrating on the ROC allows
us to use the results given in the medical literature and second, the properties of ROC curves are
much more intuitive than the results for the CAP. We will show how the area below the ROC curve
can be interpreted in terms of a probability, how confidence intervals for the area below the ROC
curve can be calculated, and how the areas below the ROC curves of two different rating methods
can be compared statistically. We will demonstrate how these techniques have to be modified that
they are applicable also for the CAP.

An interesting overview of the variety of possible applications of ROC curves is givBwats(1988.



The rest of the article is organised as follows. In part Il, to keep this article self-contained, we
briefly review the concepts of the CAP and the ROC. For both concepts it is possible to sum-
marize the information about the quality of a rating system with a single number, namely with
the Accuracy Ratio and the area below the ROC curve. In part lll we will analyse the statistical
properties of both the ROC and the CAP. We will start with a detailed description of the properties
of the ROC and show how these properties have to be modified to be applicable to the CAP. In
part IV, we will apply the techniques presented in the second part to real data and discuss their
reliability. The final section concludes.

Throughout this article we will assume rating systems that produce a finite number of rating scores.
This is the situation that is mainly found in practice. However, it is straightforward to apply all
methods presented in this article to rating systems that deliver continuous scores.



ll. The Cumulative Accuracy Profile and the Receiver Operating Char-
acteristic

Consider a rating model which assigns to each debtor a saareofk possible value$s, . . ., si }

with s < ... < si. A high rating score indicates a low default probability. It is our aim to eval-
uate the quality of this rating model. We can do this by assigning scores to debtors from a data
sample that is used for the validation, and checking if the debtors will default over the next period
or remain solvent. In this context, we introduce three random variables$Sp, andSyp. The
random variable57 describes the score distribution of all debtd's, and .Sy p model the score
distributions of the defaulters and the non-defaulters, respectively. The probability that a defaulter
has a score valug is denoted by, i, > 0, S%_ pi) = 1. The probability that a non-defaulter

has a score valug is calledp’y . Given the a-priori default probability of all debtors, we find

for the probabilityp’. that an arbitrary debtor has a score vaiue

pr=mpp + (1= m)pyp-

We define the cumulative probabilities

CDp = Y phi=1,...k (1a)
j=1

CDyp = > phpi=1....k (1b)
j=1

CDy = Y phi=1...k (1c)
7j=1

whereCDp, CDyp, andC Dy denote the distribution function of the score values of the de-
faulters, the non-defaulters, and the total sample of debtors, respectively. For ingtdnige,
denotes the probability that a defaulter's score is not greater thafdditionally, we define
CDY, = CDY, = CDY = 0.

[I.1. Cumulative Accuracy Profile

The Cumulative Accuracy Profile is defined as the graph of all pé@ifs’., CD,);—o,... x, Where
the points are connected by straight lines (linear interpolation). This is illustrated in Higure

A perfect rating model would assign the lowest scores to the defaulters. In this case the CAP is
increasing linearly and then staying at one. For a random model without any discriminative power
the fractionz of all debtors with the lowest rating scores will contaipercent of all defaulters,

3



Figure 1. Cumulative Accuracy Profile

This figure illustrates the concept of a CAP. The polygon shows the performance of the model being evaluated in
depicting the percentage of defaults captured by the model at different percentages of the data set, while the straight
line below represents the naive case of zero information or random assignment of rating scores. The third line represents
the case of perfect information where all defaults are assigned to the lowest rating scores. The Accuracy Ratio is the
ratio of the performance improvement of the model being evaluated over the naive (nadeb the performance
improvement of the perfect model over the naive mddel).
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i.e. in this case we will hav€ D, = CD"T, 1=0,...,k. Realrating systems will be somewhere

in between these two extremes. The quality of a rating system can be summarized by a single
number, the Accuracy RatidR. It is defined as the ratio of the area between the CAP of the

rating model being validated and the CAP of the random model, and the ateztween the CAP

of the perfect rating model and the CAP of the random model, i.e.

AR =21 )
ap



Thus, the rating method is the better the cladét is to one.

Il.2. Receiver Operating Characteristic

In this part, we explain the ROC and its associated summary statistic, the area under the ROC
curve. The construction of a ROC curve is illustrated in Figuivehich sketches possible distri-
butions of rating scores for defaulting and non-defaulting debtors. For a perfect rating model the
left distribution and the right distribution in Figuwould be separate. For real rating systems
perfect discrimination in general is not possible. Both distributions will overlap as illustrated in

Figure2.

Figure 2. Distribution of rating scores for defaulting and non-defaulting debtors

This figure depicts possible distributions of rating scores for defaulting and non-defaulting obligors. For a perfect rating
model the distributions would be separate. For real rating systems, however, perfect discrimination in general is not
possible and the two distributions overlap.
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Assume someone has to use the rating scores to decide which debtors will survive during the
next period and which debtors will default. One possibility for the decision-maker would be to



introduce a cut-off valu€’ as in Figure2, and to classify each debtor with a rating score lower
thanC as a potential defaulter and each debtor with a rating score higheftham non-defaulter.
Then four decision results would be possible. They are summarized in Table

Table 1
Decisions results given the cut-off valug”

This table summarizes the possible consequences for a decision-maker using the cut-dff value

default no default
below | correct prediction wrong prediction
rating| C (hit) (false alarm)
score | above| wrong prediction| correct prediction
C (miss) (correct rejection)

If the rating score is below the cut-off value C and the debtor defaults subsequently, the decision
was correct. Otherwise the decision-maker wrongly classified a non-defaulter as a defaulter (type
| error). If the rating score is above the cut-off value and the debtor does not default, the classifica-
tion was correct. Otherwise a defaulter was incorrectly assigned to the non-defaulters group (type
Il error). Using the notation ocdobehart and KeengB001), we define the hit raté/ R(C') (equal

to the grey area on the left hand side of the cut-off valli@ Figure2) as

HR(C) = P(Sp < O). 3)

The false alarm rat&' AR(C) (equal to the white area on the left hand side of the cut-off value
in Figure?2) is defined as
FAR(C) = P(Snp < C). (4)

The ROC curve is constructed as follows. For all cut-off val(ethat are contained in the range

of the rating scores the quantitiésR(C') and FAR(C) are computed. The ROC curve is a plot
of HR(C') versusFAR(C') for all values ofC. In our setting, the ROC curve consists of all
points (C D, ,,CD%)i—o... k. As in the case of the CAP these points are connected by linear
interpolation. This is illustrated in Figui@

A rating model’s performance is the better the steeper the ROC curve is at the left end and the
closer the ROC curve’s position is to the point (0,1). Similarly, the model is the better the larger
the area under the ROC curve is. We denote this aredy’ (area under curve). It can be
interpreted as the average power of the tests on default / non-default corresponding to all possible
cut-off valuesC'. The areaAUC is 0.5 for a random model without discriminative power and is

1.0 for a perfect model. It is between 0.5 and 1.0 for any reasonable rating model in practice.



Figure 3. Receiver Operating Characteristic Curves

This figure shows a ROC curve. For all possible cut-off values C the fraction of defaulters predicted cakfé{ty))
and the fraction of false alarm§'@ R(C')) are computed. The ROC curve is a plotldRR(C) versusF"AR(C)).
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lll. Properties of the ROC and the CAP

In this section we analyse some statistical properties of both the CAP and the ROC. We will start
with the ROC because it offers more intuitive results than the CAP. For this reason, there exists a
large body of literature on the ROC curve in medicine and psychology. We will mainly refer to the
results provided in this literature in the first part of this section. In the second part of this section,
we will show how the results for the ROC can be transferred to the CAP.

lll.1. Properties of the ROC

Most of the results we present here are well known in the medical literature. The probabilis-
tic interpretation of the ROC curve and an efficient way to calculate confidence intervals using
asymptotic normality are based on an articleBaimber(1975. The test to compare the areas
under the ROC curves of two different rating systems that are validated on the same data is based
onDelLong, DeLong, and Clarke-Pearsd989.

I11.1.1. Shape of the ROC curve

From its definition, it is obvious that the ROC curve is non-decreasing. It is also well known
(Bamber1975 that the ROC curve is concave if and only if the Likelihood Ratio

LR, = =2 i=1,...k (5)

is non-increasing ir. This property is quite intuitive since the probability of receiving a high
score should be large for a non-defaulting debtor but small for a defaulting debtor. It is also easy
to see that concavity of the CAP is equivalent to the monotonicity of the likelihood ratio.

Actually, concavity of the ROC curve has also a decision-theoretic interpretation. Besides the
cut-off decision rules as described in Sectib@ above, a lot of other rules are conceivable. For
instance, there might be rating systems such that very high or very low scores indicate default.
However, it can be showmasche2002 that monotonicity of the Likelihood Ratio is equivalent

to the optimality of the cut-off rules in the following sense: For any fixed cut-off value, there is no
decision rule with both lower type | and type Il errors. In the case of rating systems with finitely
many categories the monotonicity can always be reached by reordering. This is current practice in
the medical sciences¢e 1999.



[11.1.2. Probabilistic Interpretation

We continue by providing a probabilistic interpretation4f’ C. Consider the following experi-

ment. Two debtors are drawn at random, the first one from the distribution of defaulters, the second
one from the distribution of non-defaulters. The scores of the defaulter and the non-defaulter de-
termined this way can be interpreted as realizations of the two independent random véiiables
andSy p we have introduced at the beginning of SectiorAssume someone has to decide which

of the debtors is the defaulter. A rational decision-maker might suppose that the defaulter is the
debtor with the lower rating score. If both debtors had the same score she would toss a coin. There-
fore, the probability that her decision is correct is equaPt&p < Syp) + %P(SD = SND)-

A simple calculation shows that this probability is exactly equal to the 4fé&' below the ROC

curve.

k
1 A . . .
AUC =" 5 (CDp+ CDSY (CDYyp — CDY))
=1
"
= Z 3 (P(Sp < si) + P(Sp < si—1)) P(Snp = si)
=1

k
= ; (P(SD S Si—l) + %P(SD = Sz)) P(SND = Si)

k k
1
= ZP<5D < Si_l)P(SND = Si) + 5 ZP(SD = Si) P(SND = SZ')
=1 i=1
1
:P(SD<SND)+§P(SD:SND) (6)

111.1.3. Calculation of Confidence Intervals for AUC

In this part of the article we discuss a simple method of calculating confidence interval& oy
the area below the ROC curve. The interpretatiordéfC as a probability relates to the test
statistic of the U-test dflann and Whitney1947). If we draw a defaulter with score, from Sp
and a non-defaulter with scosg;p from Sy p and defineup yp as

1,ifsp < syp
upNp =4 %,ifsp=snp (7)
O, if SD > SND



then the test statistid’ according to Mann-Whitney is defined as

A 1
U= ——— Z UD ND, (8)
Np Nnp (D.ND)

where the sum is over all pairs of defaulters and non-defau(®rsV D) in the sample. The
numbers of defaulters and non-defaulters in the validation sample are denatég éyd Ny p
respectively. Observe thatis an unbiased estimator 6f(Sp < Snp) + % P(Sp = Snp), i.e.

AUC = E(0) = P(Sp < Swp) + %P(SD — Sxp). ©)

Furthermore, we find that the aréd/ C' below the ROC curve calculated from the empirical data
is equal tol/. For the variance?l] of U we find the unbiased estimat@fr as

1
4(Np —1)(Nyp — 1) [

Ppinp + (Np —1) Pp.p.np

. A 1
+ (Nnp —1)Pnpnp,p —4(Np+ Nnp — 1) (U — 5)2]

52 —
U
(10)

where Ppyp is an estimator fo?(Sp # Snp) and Pp p yp and Pxp yp,p are estimators
for the expression&p p np andPyp np,p Which are defined as

Pp.pnp = P(Sp1,Sp2 < Snp)+ P(Svp < Sp.1,5p.2)
— P(Sp1 < Snp <Spp2)—P(Sp2<Snp <Spa),
PnpNp,p = P(Snp,1,S58p2 < Sp)+ P(Sp < Snp,1,SND,2)
— P(Snp1 < Sp < Snp2) — P(Snp2 < Sp < Snp,1).

(11a)

(11b)

In (1189 and (L1b), the quantitiesSp 1, Sp » are independent observations randomly sampled from
Sp andSyp,1, Snp,2 are independent observations randomly sampled fsgm. This unbiased
estimatorc}[%] is implemented in many standard statistical software packages.

For Np, Nyp — oo it is known that(AUC — U)/&U is asymptotically normally distributed
with mean zero and standard deviation one. This allows the calculation of approximate confidence
intervals at levek for AUC' by

1+a, -

A 1
[0 - 6p071 (2), 0+ 65071 (0],

5 (12)

where ® denotes the cumulative distribution function of the standard normal distribution. Our
numerical explorations in SectidW indicate that the number of defaults should be at least 50 in
order to guarantee that?) is a good approximation. We note that there is no clear rule for which

10



values ofU the asymptotic normality of/ is a valid approximation, becaugé can solely take
values in the interval [0,1]. I is only a few standard deviations away from one it is clear that the
normal approximation might be inaccuratélowever, as illustrated in our examples below, even
in this situation the normal approximation can lead to reasonable results.

[11.1.4. Testing for Discriminative Power

The confidence intervals fodUC' can be used to test if a rating system has any discriminative
power at all. In this case, the null hypothesis would4éC' = 0.5 or, equivalently,Sp = Syp
in distribution. Under the null hypothesis(@) simplifies considerably. One obtains

o2 Np + Nnp +1
U 12NpNnp

(13)

Given a confidence level asymptotic normality can be applied to test if the rating system has
enough discriminative power to reject the null hypothesis of no discriminative power.

[11.1.5. Comparing two Areas under the ROC Curve

One major application of both the CAP and the ROC is the comparison of different methods on
the same data. We consider the case of comparing two rating systems 1 and 2 with areas below the
ROC curveAUC and AU C,. Just comparing the single numbers only is insufficient since they

are not very meaningful from a statistical point of view. Comparing confidence intervals could
also be misleading because a potential correlation of both rating methods is neglected in this case.
To construct a rigorous test on the differenceddf C, and AUC, it is necessary to calculate the
variances%i for the estimatorg/; of AUC;, i = 1, 2. In addition, we need the covarian@ghU2

between the estimatots andUs of AUC, and AUC,. We find for the covariance

1

P — [P} + (Np — 1) PZ
Uule 4 (Np —1) (Nyp — 1) - DPNVDAD DJ;’ND 1 (14)
+ (Nvp — 1) Pi’p yp.p — 4 (Np+ Nyp — 1) (Uy — 5) (U — 5)]7

2Several methods for the computation of confidence intervals without relying on the assumption of asymptotic
normality are known which lead in general to very conservative confidence intervals. An overview of these methods is
given inBamber(19759. One could rely on these methods if the normal approximation is questionable as in the case of
very few defaults in the validation sample.

11



where P21 vp np» Pip xp @nd P2, vp p are estimators foPL2, vp nps Pip xp @nd
19 : .
P\’» v p.p Which are defined &s

Pll)Q,D,ND,ND = P(Sp > Snp.Sh > Sxp) + P(Sp < Syp, Sh < Sxp)

(15a)
- P(Sb > S}VDaS% < SJQVD) - P(Sll) < SJIVD7SZ2) > SZQVD))
P/%)%D,ND = P(SID,I > SN S%m > S¥p) + P(SID,I < SNp 51%,2 < S¥p) (15b)
- P(SlD,l > S}VDaszD,z < SJQVD) - P(SlD,l < Sjl\/Dv‘SQD,Q > SJZVD)a
PJ{TQD,ND,D = P(Sp > SZIVD,la Sp > SJQVD,2) + P(Sh < Sjl\fD,lv Sh < SJQVD,2) (15¢)

- P(Sp > Sjl\rD,pSzQ) < SZQVD,Q) — P(Sp < SJIVD,lv Sp > sz\fD,Q)'

The quantitiesS},, S}, ;, and S, , are independent draws from the sample of defaulters. The
upper index indicates whether a score of the rating model 1 or a score of the rating model 2 has
to be taken. The meaning &%, ,, Si p ;. andS},; , is analogous.

To carry out the test on the difference between the two rating methods (where the null hypothesis
is equality of both areas below the ROC curve), we have to evaluate the test statistic T which is
defined as

(U1 — Up)?

I= o2 +0% —204
U1 U2 U17U2

(16)

This test statistic is asymptoticalfy?-distributed with one degree of freedom. Given a confidence
level «,, we can calculate critical values from tiyé(1)-distribution for the test statistiE.

l11.2. Properties of the CAP

All concepts we have presented in Sectltirl are also applicable to the CAP and its summary
statisticAR. The key to transfer the statistical results for the ROC Abd” to the CAP andd R
is the relation

AR=2AUC — 1. a7)

A proof of (17) is given in AppendixA. Using (L7), we get an estimator for the Accuracy Ratio
by the Mann-Whitney test statistic

N 1
V=——-— Z UD,ND, (18)
Np Nnp (DND)

The expressions given iBeLong, DeLong, and Clarke-Pears@®88 look different from the expressions here.
However, it can be shown that both are equivalent. We used this notation to be consistent with the notation of Section
111.1.3.

12



with vp yp defined as
1, ifsp<syp
vpNp =14 0, ifsp=snp , (19)
—1,if sp > snp
wheresp andsyp are the scores of a randomly chosen defaulter and a randomly chosen non-
defaulter, respectivefy

For the variancé%/ of V we find

~92 N R
;= P Np—1)P
v (Np —1) (NND—l)[ DiNDjL( D ) Pp.p.ND (20)

+ (Nnp — 1) Pyp.yp,p — (Np + Nyp — 1) V2,

wherePp_np, Pp.p.np, andPyp np p are defined exactly as in Sectith1.3. For the covari-
ance&v1 % between two Accuracy Ratidg andV; we find

6er o = P} + (Np — 1) P}
V1,Va (ND _ 1) (NND _ 1) [ D,D,ND,ND ( D ) D,D,ND (21)

+(Nnp = 1) P vp,p — (Np + Nyp = Vi V2,
wherePl?, v p vpr Pp vp @d Py, v are defined as in Sectidh.1.5.

Taking all this together allows the calculation of confidence intervalsii@rand the comparison
of different rating systems by their Accuracy Ratios.

“This implies a probabilistic interpretation @f?, namely thatAR = P(Sxp > Sp) — P(Sp > Snbp).

13



I\VV. Applications

In this section, we apply the concepts presented in Selitibmreal data. We use a database of the
Deutsche Bundesbank which contains balance sheets of small and medium companies that are not
listed on exchanges for the years 1987 — 1999. It contains about 300,000 balance sheets and about
3,000 defaults where default was defined as insolvency. In the first part of this section, we will
show how to use the concept presented in Sedtidh1 to identify accounting ratios with high
discriminative power that could be included into rating systems. In the second part, we will calcu-
late confidence intervals fotU C using the normal approximation of Sectibhl.3 and compare

the results to bootstrapping in order to get a feeling for the reliability of this approximation. In the
final part of this section, we illustrate the test on the difference of two rating models presented in
Sectionlll.1.5 by real examples. We carry out all applications us#ligC' as a quality measure.

All this could also be done usingR as outlined in Sectiofil.2.

In all the examples of this section we assume a rating system with 20 rating categories. The

obligors are distributed to the rating categories in such a way that the categories are approximately
of equal size. To be more precise, after we estimated a rating model, the debtors are ordered from
the lowest score to the highest score. In the next step the debtors are distributed to the rating
categories. All debtors in one rating category get the numper< ¢ < 20, of the category as

their rating score.

IV.1. Identification of Accounting Ratios with Discriminative Power

In this section we apply the technique presented in Setllidnl. When designing a rating system

it is crucial to identify accounting ratios with high discriminative power. The calculatioflof”

for the accounting ratios could be misleading in some situations. This is illustrated in Bigure
where we see a score distribution of the defaulters which is partly on the left and partly on the
right of the distribution of the non-defaulters. Such a score distribution clearly has discriminative
power. A straightforward calculation ofUC, however, results in a value close to 0.5, the same
value a score function without discriminative power would result in.

Instead of calculating thd U C for rating scores of the defaulters and the non-defaulters, it is more
reasonable to calculat®l/ C' using likelihood ratios as a score. This ensures that accounting ratios
or models with high discriminative power can be identifiedAyC'. We illustrate this in Figures

5, 6, and7.

Figure 5 shows the analysis for the accounting ratio “Ordinary Business Income/Total Assets”.
We see that in this case the rating score is almost perfectly correlated to the likelihood ratio.

14



Figure 4. Score function wherelU C would be misleading

In this figure, the score distribution of the defaulters is partly on the left and partly on the right of the distribution of
the non-defaulters. A straightforward calculation4i’ C' would result in a value close to 0.5 which could lead to the

wrong conclusion that the score function has no discriminative power.

frequency

defaulters
non-defaulters

=

e

rating score

Figure 5. Ordinary Business Income / Total Assets

The figure on the left shows the ROC (and the corresponditig’) when the debtors are sorted by the accounting ratio
“Ordinary Business Income/Total Assets”. The figure on the right shows the resulting ROC when debtors are sorted by

their corresponding likelihood ratios.

AUC: 78.76% (Accounting Ratio) AUC: 78.84% (Likelihood Ratio)

hit rate
hit rate

T T T T T T T T T T
0 2 A4 6 .8 1 0 2 4 .6 .8 1
false alarm rate false alarm rate
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The situation is different for the accounting ratio “Change in (Net Sales/Total Assets)” as illus-
trated in Figures below. The ROC curve is not concave in this situation. Therefore, using the like-
lihood ratio is necessary to gain the full information on the discriminative power of this accounting
ratio. The same is true for “Current Assets/Total Assets” in Figuakhough this accounting ratio
does not contain much discriminative power.

Figure 6. Change in (Net Sales/Total Assets)

The figure on the left shows the ROC (and the corresponditig”) when the debtors are sorted by the accounting
ratio “Change in (Net Sales / Total Assets)”. The figure on the right shows the resulting ROC when debtors are sorted

by their corresponding likelihood ratios.

1 1
AUC: 58.57% (Accounting Ratio) AUC: 61.27% (Likelihood Ratio)
.8 8-
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A E 4
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Figure 7. Current Assets/Total Assets

The figure on the left shows the ROC (and the corresponditig”) when the debtors are sorted by the accounting
ratio “Current Assets / Total Assets”. The figure on the right shows the resulting ROC when debtors are sorted by their
corresponding likelihood ratios.

1 1
AUC: 49.55% (Accounting Ratio) AUC: 53.54% (Likelihood Ratio)
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We see that likelihood ratios are valuable in detecting accounting ratios with high discrimina-
tive power. Their use is optimal from a theoretical point of view as explained in Sdtitibri.
Therefore, they should be used as inputs for the estimation of a rating model instead of the pure
accounting ratios or any other transformation.

IV.2. Calculation of Confidence Intervals for AUC

In this part of the article we analyze the calculation of confidence intervaldaf’ based on
formula (12). Since this formula is based on an asymptotic result it is not clear for which values
of Np andNyp it is a reasonable approximation. As a benchmark we compute confidence inter-
vals based on bootstrapping. A good overview on bootstrapping is givefron and Tibshirani
(1998.

We construct three logit-models using four accounting ratios for each model to carry out the vali-
dation exercises. We estimate the models using the balance sheets of the years 1987 — 1993 from
the database we described above. The logit-scores of the three models are gz, i(22b),
and @20.
Model 1= —7.74 + 2.85 - Liabilities/Total Assets

—0.40 - Net Sales/Total Assets

—12.18 - Ordinary Business Income/Total Assets

+1.93 - Current Liabilities/Total Assets

(22a)

Model 2= —4.01 — 1.53 - Equity/Total Assets
—5.43 - EBIT/Interest Expenses
—5.04 - Ordinary Business Income/Total Assets
—+0.97 - Bank Debt/Liabilities

(22b)

Model 3= —5.25 — 1.10 - Equity/Total Assets
—0.40 - Net Sales/Total Assets
—12.08 - Ordinary Business Income/Total Assets
+2.18 - Current Liabilities/Total Assets

(22¢)

In our first exercise, we validate Model 1, Model 2, and Model 3 on the the whole data set of
the years 1994 — 1999 from the database described above. This sample of the database contained
about 200,000 balance sheets and about 825 defaults. We car&m% as in @) and (L0)

for all three models. Furthermore, we compute 95% confidence intervals and 99% confidence
intervals forU with (12) which is based on asymptotic normality. To evaluate the quality of
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the normal approximation, we additionally calculate confidence intervals by bootstrappiot
surprisingly, for this large data sample we find almost perfect agreement between the confidence
intervals based on asymptotic normality and the confidence intervals computed by bootstrapping.
The results are summarized in TaBle

In a second validation experiment we want to evaluate the accurat)db¢ small values ofVp.

We randomly draw four portfolios of 500 obligors. The first portfolio contains 100 defaulters,
the second portfolio 50 defaulters, the third portfolio 20 defaulters, and the fourth portfolio 10
defaulters. For each portfolio we compite o, 95% confidence intervals fdy, and 99%
confidence intervals fof/ for the three rating model223), (22b), and @2¢). The results are

given in Table3. We see that for the portfolio with 100 defaults and the portfolio with 50 defaults
the confidence intervals based on asymptotic normality agree almost perfectly with the confidence
intervals calculated by bootstrapping. For the portfolio with 20 defaults and especially for the
portfolio with 10 defaults we would expect that the normal approximation is rather inaccurate. In
fact, the confidence intervals based on bootstrapping are no longer symmetric. However, the results
using the normal approximation are still close to the bootstrapping results. Therefore, we conclude
that the normal approximation is applicable to practically all rating systems we could observe in
practice. The main advantage of using the normal approximation for the calculation of confidence
intervals is the considerably lower computational time for obtaining them. Bootstrapping can take
several hours especially if the portfolio is large.

Table 2
Confidence intervals for Model 1, Model 2, and Model 3 for the total portfolio

This table shows the results féf, oy, 95%, and 99% confidence intervals (derived by asymptotic normality and
bootstrapping) for Model 1, Model 2, and Model 3 on the total portfolio.

U O 95% conf. int. (analytical) 95% conf. int. (bootstrap
Model 1| 0.8119| 0.0063 [0.7996,0.8242] [0.7999,0.8248]
Model 2| 0.7791| 0.0070 [0.7654,0.7928] [0.7662,0.7933]
Model 3| 0.8081| 0.0063 [0.7958,0.8205] [0.7958,0.8208]

U O 99% conf. int. (analytical) 99% conf. int. (bootstrap
Model 1| 0.8119| 0.0063 [0.7959,0.8281] [0.7962,0.8280]
Model 2| 0.7791| 0.0070 [0.7611,0.7969] [0.7614,0.7974]
Model 3| 0.8081| 0.0063 [0.7919,0.8241] [0.7917,0.8244]

SAll bootstrapping results in this article were obtained by carrying out 5,000 simulation runs.
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Table 3
Confidence intervals for Model 1, Model 2, and Model 3 for four subportfolios

This table shows the results for, oy, 95%, and 99% confidence intervals (derived by asymptotic normality and boot-
strapping) for Model 1, Model 2, and Model 3 on the four subportfolios with 100 defaulters and 400 non-defaulters, with
50 defaulters and 450 non-defaulters, 20 defaulters and 480 non-defaulters, and 10 defaulters and 490 non-defaulters.

a) 400-100, U o 95% conf. int. (analytical) 95% conf. int. (bootstrap
Model1 | 0.8375| 0.0204 [0.7976,0.8774] [0.7977,0.8754]
Model 2 | 0.8206| 0.0214 [0.7787,0.8626] [0.7772,0.8620]
Model 3 | 0.8381| 0.0203 [0.7984,0.8778] [0.7963,0.8763]

U o 99% conf. int. (analytical) 99% conf. int. (bootstrap
Model1 | 0.8375| 0.0204 [0.7850,0.8900] [0.7826,0.8865]
Model 2 | 0.8206| 0.0214 [0.7655,0.8757] [0.7620,0.8737]
Model 3 | 0.8381| 0.0203 [0.7859,0.8903] [0.7800,0.8880]

b) 450-50| U o 95% conf. int. (analytical) 95% conf. int. (bootstrap
Model 1 | 0.8133| 0.0227 [0.7689,0.8578] [0.7660,0.8562]
Model 2 | 0.7800| 0.0282 [0.7247,0.8353] [0.7231,0.8325]
Model 3 | 0.8133| 0.0227 [0.7689,0.8578] [0.7681,0.8557]

U o 99% conf. int. (analytical) 99% conf. int. (bootstrap
Model 1 | 0.8133| 0.0227 [0.7549,0.8718] [0.7522,0.8698]
Model 2 | 0.7800| 0.0282 [0.7073,0.8527] [0.7062,0.8503]
Model 3 | 0.8133| 0.0227 [0.7550,0.8717] [0.7516,0.8703]

c) 480-20| U oy 95% conf. int. (analytical) 95% conf. int. (bootstrap
Model 1 | 0.8594| 0.0377 [0.7855,0.9333] [0.7804,0.9229]
Model 2 | 0.8281| 0.0456 [0.7388,0.9175] [0.7334,0.9066]
Model 3 | 0.8516| 0.0382 [0.7766,0.9265] [0.7742,0.9155]

U oy 99% conf. int. (analytical) 99% conf. int. (bootstrap
Model 1 | 0.8594| 0.0377 [0.7623,0.9565] [0.7455,0.9340]
Model 2 | 0.8281| 0.0456 [0.7107,0.9456] [0.7049,0.9285]
Model 3 | 0.8516| 0.0382 [0.7531,0.9501] [0.7389,0.9313]

d) 490-10, U 0 95% conf. int. (analytical) 95% conf. int. (bootstrap
Model 1 | 0.8724| 0.0620 [0.7510,0.9939] [0.7377,0.9666]
Model 2 | 0.8673| 0.0534 [0.7626,0.9721] [0.7550,0.9500]
Model 3 | 0.8677| 0.0616 [0.7466,0.9881] [0.7395,0.9616]

U 0y 99% conf. int. (analytical) 99% conf. int. (bootstrap
Model 1 | 0.8724| 0.0620 [0.7128,1.0000] [0.6944,0.9749]
Model 2 | 0.8673| 0.0534 [0.7297,1.0000] [0.7112,0.9652]
Model 3 | 0.8677| 0.0616 [0.7086,1.0000] [0.6863,0.9738]
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IV.3. Comparison of AUC for two Different Rating Systems

In this part of the article we apply the test from Sectibirl.5 on the difference of the area below

the ROC curve to two rating models. We carry out pairwise comparisons of our three rating models
(2239, (22b), and 220 on the total validation sample from 1994 — 1999. The rating mo@2g) (

and @29 differ only by one accounting ratio. From Talewve see that theidUC has almost

the same value and that the confidence intervalsifér”’ are overlapping on a very large range.

On a first glance one might conclude that both rating models are of similar quality. Indralde
report the value of the test statistibg), the corresponding p-value, and the correlation coefficient
between the areas below the ROC curve for all pairwise comparisons of the three rating models.

Table 4
Results of the test of the difference of the areas below the ROC curve for pairwise
comparison of Model 1, Model 2, and Model 3, validated on the total portfolio

In this table, we report the results of the test of Sectlad.5 for the total portfolio. We report the value of the test
statisticT', the p-value, and the correlatignof the Mann-Whitney test statistics of the two rating models that are
compared. We find that the differences between all rating methods are highly significant.

Models| T p-value | p
1&2 | 55.93| <0.0001| 0.79
1&3 | 11.58| 0.0007 | 0.98
2&3 |39.98| <0.0001| 0.39

We find that Model 1 and Model 2 are different with high significance. The same is true for Model
2 and Model 3. Surprisingly the p-value of the test on the difference of Model 1 and Model 3
is only 0.0007. Therefore, both models are also different with high significance. The reason is
the high correlation of 0.98. We give an intuitive explanation of this result. If we carried out
bootstrapping both models would yield similar values &/ C' in all simulations. However, due

to the high correlation, the value of Model 1 would be in almost all cases higher than the value of
Model 3. Therefore, Model 1 is superior to Model 3 with high significance.

If we carry out the same analysis for the sample portfolio with 500 obligors that contains 100
defaulters the picture is different. None of the pairwise comparisons of the three rating models
leads to a significant difference. The detailed results are given in Bable
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Table 5
Results of the test for the difference of the areas below the ROC curve for pairwise
comparison of Model 1, Model 2, and Model 3 validated on the 100-400 portfolio

In this table, we report the results of the test of Sectibd.5 for the portfolio with 500 obligors that contains 100
defaults. We report the value of the test statitj¢he p-value, and the correlatigrof the Mann-Whitney test statistics
of the two rating models that are compared. We find on these small validation samples that no difference of any pair of

rating models is statistically significant.

Models| T | p-value| p

1&2 | 1.40| 0.2367 | 0.77
1&3 | 0.03| 0.8648| 0.98
2&3 | 1.44] 0.2296| 0.76
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V. Conclusion

We have introduced a method to improve the discriminative power of accounting ratios by replac-
ing them with their corresponding likelihood ratios. Furthermore, we have analysed statistical
properties of the CAP and the ROC. By demonstrating the correspondence of thel&fehe-

low the ROC curve and the Accuracy Ratio, we have shown that these summary statistics of the
CAP and the ROC are equivalent. Furthermore this result enables us to use a simple analytical
method, based oBamber(1975, to obtain confidence intervals for these statistics. Additionally,

by means of a methodology introduced DgLong, DeLong, and Clarke-Pears@®88, we are

able to compare these summary statistics for two different rating methods being validated on the
same data set. Examples with real data demonstrated that these methods are reliable even for small
portfolios.
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A. Proofof AR =2AUC -1

Using our notation, we find for the area below the ROC cut¥&C' and the area below the CAP
ar + 0.5

k
1 . ) . )
AUC = ) = (CDp+CDR") (CDyp = CDyp), (23)
=1
k
1 1) i—1 ] i—1
ap+05 = » = (CDp+CDR")(CDy —CDE). (24)

=1

Forap a simple calculation yields
1
ap = 5(1_7‘-)7 (25)
wherer is the a-priori default probability of all debtors. To proof the desired relation, we start

with (24).

(CDY, + CDy Y (CDy — CDE)

]~
N |

@
Il
—

ar+ 05 =

(CDp +CDRY) ((CDp — CDR ) + (1 = m) (CDyp — CDyp))

|
]~
N

i=1

1 i i i i
= (1-m) Z B (CDp + CDR 1) (CDlyp — CDyp)
i=1

k
1 ) ) ) )
+ Ty 5 (CDp + cDEY (CDY, — CDi Y
=1

k
— (1-7)AUC + ;Wz; ((€ph)* - (cDh)?)

- (1_7T)AUC+%7T (26)

Taking @), (25), and £6) together, we obtain

ag  (1—m)(AUC - )

AR = =
ap %(1—71')

—2AUC — 1. 27)
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