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Abstract

Real-world imagery is often characterized by a significant imbalance of the num-
ber of images per class, leading to long-tailed distributions. An effective and simple
approach to long-tailed visual recognition is to learn feature representations and a clas-
sifier separately, with instance and class-balanced sampling, respectively. In this work,
we introduce a new framework, by making the key observation that a feature represen-
tation learned with instance sampling is far from optimal in a long-tailed setting. Our
main contribution is a new training method, referred to as Class-Balanced Distillation
(CBD), that leverages knowledge distillation to enhance feature representations. CBD
allows the feature representation to evolve in the second training stage, guided by the
teacher learned in the first stage. The second stage uses class-balanced sampling, in or-
der to focus on under-represented classes. This framework can naturally accommodate
the usage of multiple teachers, unlocking the information from an ensemble of models
to enhance recognition capabilities. Our experiments show that the proposed technique
consistently outperforms the state of the art on long-tailed recognition benchmarks such
as ImageNet-LT, iNaturalist17 and iNaturalist18.

1 Introduction

Most of the modern computer vision techniques require large amounts of labeled training
data in order to learn effective models, e.g., for image classification [21, 36, 49], object
detection [22, 48], image retrieval [3, 45, 47] or segmentation [8, 25]. Recently, much
research has focused on learning with a smaller number of labels (e.g., few-shot learning
[14, 17, 50] or semi-supervised methods [28, 37, 53]), or without any labels (e.g., self-
supervision [6, 9, 18]). While these works attempt at reducing the required annotations used
for learning, they still tend to make the assumption that the training set is balanced, meaning
that there exists a similar number of examples per category.
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Figure 1: Overview of our Class-Balanced Distillation approach (CBD). In the first stage,
we learn one or multiple teacher models with instance sampling. In the second stage, we
use class-balanced sampling to distill the features extracted by the teacher model(s) into a
student model (right). The backbone is re-trained from scratch with feature distillation and
a classification loss in the second stage.

Long-tailed recognition aims to address the real-world setting where a few of the labels
are observed with very high frequency (head), while most labels appear rarely (tail), with
a continuum in-between. For example, in natural world datasets like iNaturalist [27], some
species are more abundant and easier to photograph than others; similarly, for datasets of
human-made and natural landmarks [57], some are much more popular destinations than
others. This extreme imbalanced setting makes long-tailed visual recognition a challenging
problem, where models often underfit the tail classes. Early works tackle this challenge by
different sampling strategies [5, 11] or re-weighting the loss function [12, 34, 39].

A very recent trend in this area is to (explicitly or implicitly) decouple the learning of the
feature representation and the classifier into two stages [10, 30, 33, 61, 65]. Typically, these
methods first train a model with the imbalanced training data in the first stage, then apply
additional operations, such as meta-learning instance-wise weights [30] or augmenting the
feature representations of under-represented classes [10], while they fine-tune the model in
the second stage. Kang et al. [33] focus on the sampling strategies used in both stages and
suggest that the feature representations are best learned with instance sampling (i.e., each
image having the same probability of being sampled during training) in the first stage, while
classifiers are best learned with class-balanced sampling (i.e., each class having the same
probability of being sampled) in the second stage.

In our work, we propose a simple, flexible, and effective two-stage framework that makes
a more aggressive decoupling of the two stages, allowing the second stage to learn a new
feature extractor from scratch and the first stage to learn multiple, complementary models.
More specifically, we address two key observations that affect the existing approaches. The
first observation is that the features learned by the instance sampling in previous works are
far from optimal for a long-tailed dataset, which we demonstrate in Section 4. The second
observation is that the class-balanced classifier learning improves tail classes, but at the
expense of penalizing head classes.

We approach both shortcomings by class-balanced knowledge distillation [23], which
allows the feature representations to continue evolving in the second stage and benefit from
different sampling strategies. Figure 1 illustrates the main components of our method. We
train an ensemble of teacher models with instance sampling in the first stage. In the sec-
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ond stage, we learn a student model with class-balanced sampling while distilling feature
representations from the teachers. Compared with the training and fine-tuning strategy, our
approach provides flexibility to the first stage, which can enhance the feature representation
by ensembling, and a versatile distillation tool to the second stage, which essentially learns
how to combine and evolve the features.

Our contributions are the following:

• A novel two-stage learning method, referred to as Class-Balanced Distillation (CBD),
which is suitable for long-tailed recognition datasets, simple to implement, and effec-
tive in combining the advantages of instance sampling and class-balanced sampling.

• A feature distillation scheme for ensembling teachers, which efficiently combines fea-
ture representations of multiple teachers with different characteristics, including dif-
ferent data augmentations, to further improve its efficacy.

• An extensive experimental evaluation of state-of-the-art long-tailed recognition bench-
marks, demonstrating that our model outperforms prior arts substantially, with im-
provements for both head and tail classes.

2 Related Work

Long-Tailed Recognition. The need for handling long-tailed datasets has emerged in many
applications, including but not limited to image classification [41, 54], face recognition [4,
62, 63, 64], object detection [38, 46], instance segmentation [20, 26, 55], and multi-label
learning [46, 58]. This work focuses on long-tailed image classification, but the proposed
approach is generic and may benefit other applications.

Some recent approaches decouple representation and classifier learning in deep long-
tailed visual recognition [10, 30, 33, 61, 65]. The representation learning stage often employs
instance sampling, followed by different classifier learning methods. Kang et al.[33] studied
several normalization techniques for the linear classifier layer. Jamal et al. [30] proposed a
meta-learning algorithm to re-weight both classes and instances. Zhou et al. [65] employed
an annealing factor to transition the learning from representations to a classifier continuously.
Chu et al. [10] augmented tail classes in the feature space. In contrast, we propose knowledge
distillation [23] as an efficient strategy for two-stage learning in long-tailed recognition,
allowing the representation to evolve between different stages. Besides, this enables learning
from not just one, but an ensemble of teacher model representations.

Xiang et al. [60] have explored knowledge distillation in long-tailed classification for
a different purpose from ours. The authors split the original long-tailed training set into a
subset of more balanced training sets. An expert is learned for each subset, and distillation
is used to fuse the experts into a single model. In our work, we instead use the entire dataset
for training the model and employ distillation to fuse the information from different teachers
and sampling strategies into a single model.

Another line of research in long-tailed recognition is to promote the tail classes when
training deep models. These works include sampling the tail more frequently than the
head [31], re-weighting losses [12, 30, 31], balancing losses [5, 39, 40, 51], and changing the
momentum [52]. Convolutional neural networks with memory modules may better represent
the tail [41, 66], and one can also transfer knowledge from the head to the tail [35, 56, 62].
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Wu et al. [59] introduced a taxonomic classifier to avoid making severe errors at the tail.
These methods are orthogonal to ours, and they could complement each other.
Knowledge Distillation. Knowledge distillation [1, 23] refers to transferring information
from a teacher model to a student model. It has been used in a variety of machine learning
and computer vision tasks, such as image classification [23], object detection [7], semi-
supervised learning [53] and few-shot learning [16]. Typically this involves making the
output (logits) of student model similar to the teacher model. In this work, we use a variant
which transfers information directly at the feature level. Feature distillation has been suc-
cessfully used in other tasks, such as asymmetric metric learning [2]. It is also shown that
feature distillation helps reduce catastrophic forgetting in incremental learning [24, 29] and
domain expansion [32]. In our work, we extend feature distillation to the case of multiple
teacher models with different data augmentation and sampling.

3 Method

3.1 Classifier Training

Problem Formulation. We are given a set of n instances (images) X := {x1, . . . ,xn}. Each
image is labeled according to Y := {y1, . . . ,yn} with yi 2C, where C := {1, . . . ,c} is a label
set for c classes. Let Cj denote the subset of instances labeled as class j, and n j = |Cj|
its cardinality. In this paper, the training set follows a long-tailed distribution. Despite the
training set imbalance, the goal is to accurately recognize all classes, so we use a balanced
test set to evaluate the classifier.
Model. The learned model (typically a convolutional neural network) takes an input image
and outputs class confidence scores. We denote the model by fq ,W : X !Rc. It contains two
components, corresponding to the learnable parameters q and W , respectively: 1) a feature
extractor, mapping each instance xi to a descriptor vi := fq (xi)2Rd ; 2) a classifier, typically
consisting of a fully connected layer which output logits zi := gW (vi)2Rc, denoting the class
confidence scores.

In this work, we model gW as a cosine classifier [17, 43], where the feature descriptors
and classifier weights are `2-normalized before the prediction. Its output becomes zi :=
g W T

vi, where a is the `2-normalized version of a, and g is a scaling hyper-parameter. For
simplicity, we omit the extra notation for `2-normalization and refer to vi and W as the `2-
normalized versions for the rest of this paper.
Training. The model parameters q and W are typically learned by minimizing the loss of
the model’s predictions over the training set X :

L(X ,Y ;q ,W ) :=
n

Â
i=1

`(s(zi),yi) , (1)

where zi = fq ,W (xi) is the output of the model, s(.) is the softmax activation function, and
`(.) is the cross-entropy loss function.

3.2 Sampling and Two-Stage Training

In the context of long-tailed problems, different sampling strategies have been used to adjust
the data distribution at the training time. We briefly review two sampling methods, which
are utilized in this work.
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Instance sampling attributes each instance xi 2 X with the same probability to a mini-batch.
Hence, the instances from the head classes are sampled more frequently than those from the
tail classes due to the long-tailed nature of the dataset, making the model prone to underfitting
tail classes. Formally, let us denote by p j the probability of sampling an instance from class
j. Under instance sampling, p j = n j/n.

Class-balanced sampling addresses the class imbalance by equalizing p j across classes.
Under this strategy, each class has the same probability of being selected, i.e., p j = 1/c
for all j = 1, . . . ,c. Even though this strategy balances the data distribution, it also under-
utilizes the examples from the head classes. Tail classes are sampled much more frequently
compared to head classes. As a result, the model tends to overfit the tail classes and exhibits
sub-optimal performance.

Two-stage approaches recently show improved performance for long-tailed recognition [10,
30, 33, 61, 65]. We briefly review a few methods in this section; please see Section 2 for a
more thorough review.

Classifier Re-Training (cRT) learns the two components of the model fq ,W with different
sampling strategies [33]. The feature extractor fq is first trained with instance sampling
and then frozen, followed by learning the classifier gW with class-balanced sampling. The
authors argue that the first stage produces generalizable features, while the second stage
makes the classifier less biased.

Fine-tuning trains the model fq ,W with instance sampling in the first stage. Then the the
entire model fq ,W is fine-tuned with class-balanced sampling, using a small learning rate for
some number of epochs. The class-balanced sampling is vital for promoting the classifier’s
performance on the tail classes.

Discussion. Instance sampling produces better feature representations compared to other
sampling strategies [33]. However, the model’s classifier is biased towards the head classes.
Two-stage methods leverage instance and class-balanced sampling separately to find the right
balance between the two sampling strategies. Classifier Re-Training learns the feature rep-
resentations with instance and the classifier with class-balanced sampling, in this order [33].
While being simple and efficient, it has at least two shortcomings: (1) the feature representa-
tions tend to mostly focus on the head classes due to the instance sampling in the first stage;
(2) the second-stage, class-balanced classifier learning, could overcompensate tail classes,
leading to reduced performance for the head classes.

3.3 Class-Balanced Distillation (CBD)

To overcome the shortcomings in existing two-stage methods, we enhance the two-stage
learning for long-tailed recognition by improving both (1) the feature representations for tail
classes and (2) the classifier for head classes. We leverage distillation [23] to do so. Figure 1
illustrates our overall approach. In the first stage, we use instance sampling to train a teacher
model bfbq , bW . In the second stage, we adopt class-balanced sampling and yet learn our student
model fq ,W from scratch by adding a feature distillation loss.

The feature distillation loss encourages the feature extractor fq of the student to heed
the teacher’s feature extractor. It also amends the student’s feature extractor to facilitate the
classifier gW . It reuses but does not fully inherit the first-stage’s knowledge, leaving room
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for improvement with the class-balanced training. The loss objective from Eq. (1) becomes:

L(X ,Y ;q ,W ) :=
n

Â
i=1

(1�a) · `(s(zi),yi)

+a · (b`F (vi, bvi)) , (2)

where bvi = bfbq (xi) is the feature descriptor produced by the teacher model, and `F(v,x) =
1� cos(v,x) tries to minimize the cosine distance between two feature descriptors. The
hyper-parameter a controls the amount of distillation compared to the cross entropy loss,
and b is a scaling parameter.
Feature-Level vs. Classifier-Level Distillations. Note that our objective function differs
from the common knowledge distillation [1, 23], which is applied to to the classifier level
rather than the feature level:

L(X ,Y ;q ,W ) :=
n

Â
i=1

(1�a) · `(s(zi),yi)

+a ·T 2 · `(s(zi/T ),s(bzi/T )) , (3)

where bzi = bfbq , bW (xi) is the teacher model’s output, and T is the temperature parameter used
for distillation [23].

We experimentally show that the feature-level distillation is advantageous over the con-
ventional classifier-level distillation. In the context of long-tailed recognition, the teacher’s
classifier is highly biased towards the head classes. By distilling only at the feature level
(Eq. (2)), we encourage the student to heed the teacher’s feature extraction mechanism, not
the classification function, to avoid learning a classifier that is significantly biased to the
head.
Distilling Ensemble of Teachers. Unlike the existing two-stage methods which learn a
classifier (e.g., by cRT) or fine-tune the model, it is straightforward to use the proposed CBD
to further transfer knowledge from multiple teacher models. The resulting student model, in
this case, tends to have stronger regularization properties and reduced over-fitting [23].

To enable such capabilities, we train different teacher models with different character-
istics. More specifically, we train two types of teacher models with different data augmen-
tations. The Standard model relies on standard data-augmentation transformations during
training, such as random crop and flip. The Data Augmentation model uses additional data
transformations, such as color jitter and Gaussian noise (s = 0.01) in addition to random
crop and flip. When training multiple models of the same type, we start from different initial
random seeds. Different initial random seeds affect the initialization of the model parameters
as well as the order of classes sampled during the training. Regardless of the teacher model
type, the standard model is always used when training the student model in the second stage,
according to our preliminary experiments.

Let bf k
bq k, bW k denote the k-th teacher model. When training the student model fq ,W in

the second stage, we combine the knowledge from multiple teachers with the following
objective:

L(X ,Y ;q ,W ) :=
n

Â
i=1

(1�a) · `(s(zi),yi)

+a ·
⇣

b`F

⇣
h(vi), bVi

⌘⌘
, (4)
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Figure 2: Impact of a in different distillation techniques. Experiments are conducted with
ResNet-50 on the ImageNet-LT validation set.

where bVi = [bvi
1, . . . , bvi

K ] concatenates K feature descriptors output by the teacher models,
and h : Rd ! Rd·K is a linear layer which maps the feature descriptor vi to a higher dimen-
sional space where the cosine distance can be computed (the classifier gW is then stacked on
top of h(vi)). We refer to this variant as CBDENS in our experiments.

The feature extractors of the teacher models account for the complementary information
of the long-tailed training set. By jointly distilling knowledge from them, we transfer the
enhanced feature representations to the student feature extractor fq , which eases the learning
of the classifier gW .

4 Experiments

4.1 Experimental Setup

Datasets. We experiment with three long-tailed datasets, namely, ImageNet-LT [41], iNat-
uralist18 [27] and iNaturalist17[54]. Please refer to Section A.1 of the appendix for details
of each dataset. Top-1 accuracy is the evaluation metric for all experiments. We also follow
the protocol in [41] to report the accuracies for many-shot classes (more than 100 images
per class), mid-shot classes (between 20 and 100 images) and few-shot classes (less than 20
images), separately.

Implementation Details. We use the ResNet-{50,152} [21] architectures for ImageNet-LT,
and ResNet-{50,101} for iNaturalist17 and iNaturalist18. See Section A.2 of the appendix
for training details. The scaling parameter in Eq. (2) is set to b = 100 based on the accuracy
in the ImageNet-LT validation set (see Section A.3 in Appendix). Other parameters, such as
a and the number of teacher models K are chosen based on the experiments in Section 4.2.

4.2 Ablation Study

We study the impact of some of the hyper-parameters and components of CBD. All experi-
ments in this section are evaluated on the validation set of ImageNet-LT.

Distillation. We first evaluate different distillation techniques, i.e. feature distillation (Eq. (2))
and classification distillation (Eq. (3)) in Figure 2. We report classification distillation with
different temperature T values. We also show the impact of the distillation coefficient a in
the same figure. This parameter controls the strength of distillation in the loss function, see
Eq. (2).
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Vanilla Data Aug. Acc. (%)

K = 1 3 - 52.7
- 3 53.9

K = 2
33 - 54.2
- 33 55.5
3 3 56.2

K = 3 3 33 56.7

K = 4 33 33 56.9

K = 5 33 333 56.9

Table 1: Different ensembles of teachers. Comprehensive evaluation of different types of
K teacher models on the ImageNet-LT validation set with ResNet-50. Each row corresponds
to a different ensemble. Multiple 3refer to multiple models of the same type trained with
different random seeds.

Figure 2 shows that T = 2 achieves the highest accuracy for classification distillation.
Feature distillation outperforms all variants of classification distillation. It also outperforms
a variant (Hybrid) which combines feature and classification distillation (T = 2) together.
Feature distillation is also more stable for different a . This is expected, as the first stage
model (instance sampling) produces relatively good features but a sub-optimal classifier.
Therefore, it is more beneficial to transfer information directly from the features, rather than
the classifier. It is also shown that feature distillation remains relatively stable when a > 0.
Note that a = 0 means that no distillation loss term is used during the training, which is
equivalent to class-balanced sampling. We set a = 0.4, which gives the top performance in
Figure 2, for the remainder of our experiments.
Number of teacher models. We train K teacher models when ensembling is used. The en-
semble may contain teacher models of different types, i.e. standard and data augmentation.
When using the same type multiple times, e.g. two standard models, each model is trained
with different random seeds to achieve diversity between models. These teacher models are
then fused into a single model with distillation – Eq. (4). We refer to this variant of our
method as CBDENS.

Table 1 shows the impact of different number of standard and data augmentation models
when used in an ensemble. We report all combinations for K = 1 and K = 2, but only show
the variant with the highest accuracy for K > 2. For K = 1, the data augmentation model
achieves a better performance than the standard model. Nevertheless, we achieve the best
accuracy with some combination of standard and data augmentation models for K > 1. The
validation accuracy saturates after K = 4, therefore we use the K = 4 for CBDENS for the
remainder of our experiments.

4.3 Comparison with Baselines

We compare our method against various baselines. The results are reported on the ImageNet-
LT test set. Please refer to Section 3.2 more detailed description of each baseline. For single-
stage models, we evaluate standard and data augmentation models separately with instance
and class balanced sampling strategies. For two-stage models, we evaluate fine-tuning 1 and

1The network is fine-tuned for 10 epochs with 0.01 learning rate in the second stage, which was the best setup
for this method on ImageNet-LT
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Method Many-shot Mid-shot Few-shot All

Standard - Instance 66.6 40.4 13.0 46.7
Standard - Class Bal. 60.4 40.0 14.3 44.3
Data Aug. - Instance 66.2 38.6 11.2 45.4
Data Aug. - Class Bal. 58.4 45.2 19.9 46.8

Standard - Fine-tuning 62.8 46.1 24.8 49.6
Standard - Classifier Re-Training 62.9 46.0 25.7 49.8
Data Aug. - Fine-tuning 63.1 48.4 26.9 51.1
Data Aug. - Classifier Re-Training 62.2 47.1 27.8 50.3

Teacher Ensemble 71.6 44.4 13.8 50.7

Ours - CBD 65.2 48.0 25.9 51.6
Ours - CBDENS 68.5 52.7 29.2 55.6

Table 2: Baseline comparison. Comprehensive evaluation on ImageNet-LT (test set) with
the ResNet-50 architecture. The accuracy for many-shot , mid-shot and few-shot classes are
reported separately.

classifier-retraining, which is our re-implementation of cRT [33] with the cosine classifier.
We also evaluate the data augmentation version of two-stage baselines, where the first stage
is trained with the data augmentation model and the second stage is trained with the standard
model. Finally, we evaluate the Teacher Ensemble baseline, which simply takes the average
output of teacher models during testing.

Table 2 reports the comparisons against the baselines. We report the accuracy of many-
shot, mid-shot, and few-shot classes separately, in addition to the overall accuracy for all
classes. When compared to other two-stage models, both CBD and CBDENS show significant
improvements. This confirms that our method is a better option as a two-stage model, even if
a single teacher model is used (CBD). Note that the two-stage baselines reduce the accuracy
of many-shot classes in the second stage. Ensemble baselines improve the performance for
many-shot classes, but show no improvements for mid-shot and few-shot classes. This is not
the case for CBDENS on ImageNet-LT, which shows improvements for all class types. We
also observe that the data augmentation model does not show any significant improvements
except for CBDENS. This demonstrates that our method is capable of combining diverse
models in the most effective way.

Longer training of baselines. In order to justify that the improvement is not only due to the
longer training, we train the Standard - Instance model for two times the number of epochs.
This means that the model is trained for 180 epochs on ImageNet-LT and 400 epochs on
iNaturalist18, i.e. the total number of epochs it takes to train CBD. We obtain 47.1 and 64.7
overall accuracy for ImageNet-LT and iNaturalist18, respectively. When compared to the
Standard - Instance model on Table 2, the improvement is minimal, which confirms that the
improvements of CBD are not due to longer training.

We also repeat the same procedure for the Classifier re-Training baseline, where we train
the linear model for 90 (ImageNet-LT) and 200 (iNaturalist18) epochs in the second stage.
We obtain 50.1 and 67.2 for ImageNet-LT and iNaturalist18, respectively. When compared
to the Classifier re-Training model on Table 2, the gains are again minimal. This again
confirms that the efficacy of CBD and CBDENS is not due to the longer training times.

Complexity. CBD requires higher training complexity compared to other baselines. A net-
work is trained from scratch in each stage. We demonstrate that if other baselines (Instance
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ImageNet-LT

Method R-50 R-152

LWS [33] 47.7 50.5
cRT [33] 47.3 50.1
cRT+SSP [61] 51.3 -
Logit Adj. [44] 51.1 52.1
ELF(LDAM) [15] 52.0 -

Ours - CBD 51.6 53.9
Ours - CBDENS 55.6 57.7

iNaturalist18

Method R-50 R-101

LWS [33] 69.5 69.7
cRT [33] 68.2 70.7
cRT+SSP [61] 68.1 -
Logit Adj. [44] 68.4 70.8
ELF(LDAM) [15] 69.8 -

Ours - CBD 68.4 70.5
Ours - CBDENS 73.6 75.3

iNaturalist17

Method R-50 R-101

CB [12] 58.1 60.9
Rethinking CB [30] 59.4 -
Feature Aug. [10] 62.0 65.9
cRT [33] 63.9 65.2
BBN [65] 65.8 -

Ours - CBD 64.6 66.5
Ours - CBDENS 69.3 71.3

Table 3: State-of-the-art comparison. Comparison of CBD variants against the state of the
art with ResNet-50 and ResNet-152.

and Classifier re-Training ) are given the same amount of training resources, their perfor-
mance is still lower than CBD. CBDENS requires training multiple (K = 4) teacher models in
the first stage, which further increases the training complexity. However, the teacher models
do not interact with each other during the training, which means that all teacher models can
be trained in parallel, which can significantly improve the overall time for training. Memory
consumption does not depend on the scale of the dataset, as it is fixed (e.g. 4 ResNet-50
models) regardless of the size of the dataset. Note that both CBD and CBDENS require a
single model during the inference. Therefore, the test time efficiency remains the same as
for all the other baselines.

4.4 Comparison with State of the Art

Table 3 compares CBD and CBDENS with K = 4 teachers to the state of the art on ImageNet-
LT, iNaturalist18 and iNaturalist17 datasets, respectively. Our method shows consistent im-
provement for all datasets with different network architectures. On ImageNet-LT, we observe
3.6% improvement with CBDENS (ResNet-50) over the prior best. CBDENS outperforms the
state of the art on iNaturalist18 (iNaturalist17) by 3.8% (3.5%) with ResNet-50. Relative
improvement is even higher when a larger network is used; we observe 5.5% improvement
over state of the art with CBDENS with ResNet-152 in ImageNet-LT, and 4.5% improvement
over state of the art in iNaturalist18 with ResNet101. See Section A.7 of the Appendix for
result for each class split separately.

To investigate the compatibility of CBD with existing methods, we also include a vari-
ant where the loss function in CBD is replaced by the loss function proposed in the work
of Menon et al. [44]. On ImageNet-LT, CBD + Logit Adjustment [44] gains 0.6% over
CBD, i.e., it obtains 52.2 accuracy, and CBDENS + [44] improves 0.5% over CBDENS, i.e.,
it achieves 56.1 accuracy.

5 Conclusions

In this paper, we have introduced a new two-stage method for long-tailed recognition called
CBD. Our approach leverages knowledge distillation to combine information from two sam-
pling strategies. Both the feature representation and the classifier evolve between stages,
leading to a more effective model. We thoroughly evaluate the effectiveness of our method
by comparing it against baselines and previous work. Our experiments demonstrate that
CBD significantly improves the state of the art in long-tailed recognition benchmarks.
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