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Abstract

This paper challenges the cross-domain semantic segmentation task, aiming to im-
prove the segmentation accuracy on the unlabeled target domain without incurring addi-
tional annotation. Using the pseudo-label-based unsupervised domain adaptation (UDA)
pipeline, we propose a novel and effective Multiple Fusion Adaptation (MFA) method.
MFA basically considers three parallel information fusion strategies, i.e., the cross-model
fusion, temporal fusion and a novel online-offline pseudo label fusion. Specifically, the
online-offline pseudo label fusion encourages the adaptive training to pay additional at-
tention to difficult regions that are easily ignored by offline pseudo labels, therefore re-
taining more informative details. While the other two fusion strategies may look stan-
dard, MFA pays significant efforts to raise the efficiency and effectiveness for integration,
and succeeds in injecting all the three strategies into a unified framework. Experiments
on two widely used benchmarks, i.e., GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes,
show that our method significantly improves the semantic segmentation adaptation, and
sets up new state of the art (58.2% and 62.5% mIoU, respectively). We will make the
code publicly available.

1 Introduction
This paper considers the unsupervised domain adaptation (UDA) for semantic segmenta-
tion. In real-world segmentation tasks, there usually exists a domain gap between the train-
ing (source domain) and testing data (target domain), which substantially compromises the
segmentation accuracy. Instead of using additional annotated data on the target domain for
adaptation, which is notoriously expensive, an alternative way is to adapt the already-learned
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Figure 1: The proposed Multiple Fusion Adaptation (MFA) employs a co-learning frame-
work to integrate three information fusions i.e., cross-model fusion, temporal fusion and
online-offline pseudo label fusion. The learner (Net A) is co-supervised by the offline pseudo
labels, as well as the online labels generated by it co-learner (Net B). To make the online la-
bel predictions more stable, MFA smooths the co-learner by temporal average (Mean Net B).
Importantly, we design the online pseudo labels to be complementary to the offline pseudo
labels, which promotes better fusion effect. In the co-learning framework, Net A and Net B
will exchange their role of learner and co-learner. We only present Net A as the learner here
for easier understanding.

model through UDA [6, 19, 24]. In another word, we aim to improve the segmentation ac-
curacy on an unlabeled target domain without incurring additional annotation.

A popular pipeline adopted by many state-of-the-art methods [19, 21, 22] consists of two
training stages, i.e., a warm-up supervised training on the source domain and a sequential
self-training on the target domain. Specifically, the first stage trains a warm-up model on
the source domain data. For better generalization ability, the warm-up training process is
typically assisted with some domain alignment constraints [9, 18]. Then, the second training
stage further adapts the warm-up model to the target domain through self-training [24, 25].
The self-training usually uses the warm-up model to assign pseudo labels on the target do-
main, which are used to re-train (fine-tune) the model.

This paper proposes a novel and effective Multiple Fusion Adaptation (MFA) method,
based on the above-described two-stage UDA pipeline. We employ three basic information
fusion to improve the domain adaptation, namely a novel online-offline pseudo label fusion,
cross-model fusion and temporal fusion. In MFA, all the three fusion strategies are integrated
in a co-learning framework, as illustrated in Figure 1. Each learner is co-supervised by two
types of pseudo labels, i.e., the online and the offline pseudo labels. The offline pseudo labels
are generated with a popular method [24], while the online pseudo labels are generated by
the temporal average model of the co-learner. This MFA pipeline has two advantages:
• The novel online-offline pseudo label fusion. So far as we know, prior two-stage UDA

methods [19, 22] usually employ the offline pseudo labels. Among the iterations of “as-
signing pseudo label” and “re-training”, the pseudo labels are updated after several training
epochs, yielding the “offline” manner. While the offline manner allows additional post-
processing and has the advantage of balanced pseudo labels [24], it is prone to the ignorance
of hard and informative samples [10]. It is because the offline manner only preserves the
most confident predictions among all the target domain data, which are relatively easy. As a
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remedy, we supplement the offline pseudo labels with online ones, which focus on the rel-
atively hard details (i.e., the informative samples) within each training iteration. Moreover,
since the online pseudo labels are generated by the up-to-date model (which has better accu-
racy than the historical ones), they reduce the exposure to noisy supervision and thus benefit
the self-training process.
• A highly efficient integration of three fusion strategies. While the cross-model fusion

and temporal fusion are quite popular, MFA pays significant efforts to raise the efficiency and
effectiveness for integration, and succeeds in injecting all the three strategies into a unified
framework. Specifically, MFA employs a co-learning framework consisted of two learners,
as illustrated in Figure 1. Each learner (model) in MFA is co-supervised by the offline
pseudo labels generated by itself, as well as the online labels generated by its co-learner. To
make the online predictions more stable, MFA smooths the co-learner by temporal average.
Consequentially, MFA simultaneously enforces information fusion between 1) a model and
its co-learner (and vice versa), 2) the up-to-date status and the temporal-averaged status and
3) online and offline pseudo labels. Combining these parallel fusions, MFA suppresses the
pseudo label noises in the self-training stage and thus improves the segmentation adaptation.

Equipped with these two advantages, MFA is capable to improve UDA for semantic seg-
mentation. First, the novel online-offline pseudo label fusion enables MFA to retain more
informative details for adaptive training. Second, MFA manages a highly efficient integra-
tion of the online-offline pseudo label fusion and two commonly-adopted fusions, which
further increases the accuracy of the pseudo labels. We evaluate the proposed MFA through
extensive experiments. Experimental results show that MFA significantly improves the base-
line and achieve performance on par with the state of the art. For example, on GTA5-to-
Cityscapes and SYNTHIA-to-Cityscapes, MFA achieves 58.2% and 62.5% mIoU, respec-
tively. Moreover, ablation study validates the effectiveness of each component in MFA. The
main contributions of this paper are summarized as follows:

• We propose MFA, an unsupervised semantic segmentation adaptation method based
on self-training. MFA efficiently integrates three different information fusion strate-
gies to improve the pseudo-label-based UDA.

• Among the three fusion strategies of MFA, the online-offline pseudo label fusion is a
novel one specifically designed for adaptive segmentation. The online pseudo labels
supplement the self-training with relatively hard and informative samples, which may
be easily ignored by the offline pseudo labels.

• We conduct extensive experiments to evaluate the proposed MFA. Experimental re-
sults show that MFA achieves superior adaptive semantic segmentation and the train-
ing cost is relatively low.

2 Related work

Semantic segmentation adaptation. We divide the existing UDA semantic segmentation
methods into two categories: domain alignment [6, 7, 18, 19] and self-training [11, 12, 15,
24, 25], and the existing state-of-art approaches are usually a combination of two meth-
ods. The main motivation of domain alignment is to reduce the discrepancy between two
domains. CyCADA [6] uses CycleGan [23] to transfer image style. FDA [19] proposes
exchanging the low-frequency component of fourier transform without learning to achieve
the same purpose. In addition, SIM [18] introduces the feature alignment of things and
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stuff respectively. In self-training, pseudo label learning [24] is a widely used approach.
CBST [24] proposes an iterative pseudo label learning strategy and solve the class imbalance
issue by class-independent confidence ranking. The improvement of pseudo label learning
is an important research direction. In CRST [25], a confidence regularized self-training
method is proposed to address the problem of overconfident wrong label. [15] presents a
two-phase pseudo label densification framework through voting-based and easy-hard classi-
fication based method. In [12], weak labels are explored to enhance pseudo label learning.
Our work considers suppressing the pseudo label noise through multiple fusion strategies.

Temporal average. Temporal ensembling [8] averages the outputs of the network-in-training
to increase the prediction accuracy for the unlabelled samples. The mean teacher [16] av-
erages model weights at different training steps to get a teacher model. The teacher model
offers supervision signal through consistency constraint on the unlabeled samples. These
works show that the temporal average of the deep model is more stable and accurate than the
deep model at a single training step.

Learning with noisy labels. The information fusion between different models is an effec-
tive approach to suppress noises in labels. Co-teaching [4] cross-trains two networks and let
them teach each other given the possibly clean labels by small-loss trick. Co-teaching+ [20]
bridges the “Disagreement” strategy with the Co-teaching to enhance robustness under ex-
tremely noisy supervision. In these works, the labels are all available, which is different from
the unsupervised domain adaptation problem.

We note that [21, 22] also consider the noise issue of pseudo labels on semantic segmen-
tation adaptation. [22] estimates the uncertainty of predictions and reduces the impact of
low-confidence samples during pseudo label learning. [21] take this issue by exploiting the
feature distances from prototypes. Our method tackles the noisy pseudo label problem from
a different viewpoint. We use co-learning and integrate multiple fusion strategies to resist
the noisy pseudo labels, as well as to retain informative samples. Experimental results show
that the proposed MFA marginally surpasses [21, 22].

3 Approach
The proposed MFA adopts the popular UDA pipeline of two-stage training, i.e., a warm-
up training on the source domain and a following self-training on the target domain. We
first give a formal description of the two-stage UDA pipeline in Section 3.1. Based on
this pipeline, MFA improves the adaptive segmentation through multiple fusions in the self-
training stage, as illustrated in Figure 2. Basically, MFA uses two independent models (Net
A and Net B) to set up a co-learning framework. Both models have the dual role of learner
and co-learner. Before we collaboratively fine-tune them through self-training, we combine
the two warm-up models to generate offline pseudo labels on the target domain (Section 3.2).
During self-training, MFA smooths each model through temporal moving average and gets
a corresponding “mean net” (i.e., Mean Net A and Mean Net B in Figure 2). The function
of Mean Net (or the temporal moving average operation) is two-fold. First, temporal mov-
ing average stabilizes the update of each mean net , therefore making the online predictions
more stable. Second, according to the discovery in semi-supervised learning [16], temporal
moving average benefits from the ensemble of multiple models and thus maintains higher
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prediction accuracy. Given the current training mini-batch , each mean net predicts a respec-
tive set of online pseudo labels (Section 3.3). Finally, MFA enforces co-supervision on each
model. Specifically, each learner is co-supervised by the offline pseudo labels, as well as the
online ones generated by its co-learner (Section 3.4).

3.1 Preliminaries on Two-stage UDA

In domain adaptive segmentation, we have two datasets belonging to different domains, i.e.,
the source domain and the unlabeled target domain. The source domain dataset is denoted as
DS =

{
xi

S,y
i
S

}NS
i=1, where xS ∈ RH×W×3 is a color image in source domain, NS is the number

of source data and yS ∈RH×W is the corresponding semantic map. The definition of the target

domain dataset DT =
{

x j
T ,y

j
T

}NT

j=1
is similar, except that yT is unknown. Let F represents

a semantic segmentation network, and θ stands the parameters of F . The goal of the UDA
problem is to estimate θ to minimize the prediction error on the unlabeled target domain.

In two-stage UDA, the parameter θ of the warm up model are first obtained through
training on the source domain (i.e., stage 1). Then in the self-training (i.e., stage 2), given
the input sample from target domain, the prediction ŷT = F (xT | θ) is the predicted class
probability map, where ŷT ∈RH×W×C and C is the number of classes. And max(ŷc

T )∈RH×W

is the prediction confidence map. The one-hot map of pseudo labels is obtained by:

P̂(xT | θ) = one-hot
(

argmax
c

F (c | xT ,θ)

)
(1)

In the standard self-training strategy, an optional way is to retrain the initialized model multi-
ple times by merging the pseudo label data with the source data, which is applied in [18, 19].
However, this strategy needs to reinitialize F to start training, which is very time-consuming.
Therefore, we choose another way used in [22] as our baseline, i.e., fine-tune the warm-up
model on the pseudo labels. The loss function for self-supervision is formulated as follows:

Lsel f (xT ,θ) =− ∑
batch

m · p̂T · log(F (xT | θ)) (2)

Where p̂T is obtained by xT and θ in Equation 1. And m ∈ RH×W is a binary mask for
filtering out the unreliable pseudo labels. Specifically, if mh,w = 1, then we have P̂T,h,w
selected for training. In contrast, if mh,w = 0, the corresponding pseudo label is regarded as
unreliable and thus ignored.

3.2 Offline Pseudo Label

In Equation 2, the pseudo labels are typically selected in an offline manner, i.e., they will
not be instantly updated during model optimization. MFA combines two different warm-up
models for offline pseudo label prediction ỹT . Consequentially, the offline pseudo labels
benefit from model ensemble. Given the raw predictions, we use the CBST [24] method to
select the training samples (pixels) by:

m =

{
1 if c = argmax(ỹc

T ) & max(ỹc
T )> τc

0 otherwise
(3)
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(a) The proposed Multiple Fusion Adaptation (MFA) framework (b) Examples of the online and offline pseudo labels
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Figure 2: (a) The overall framework of the proposed Multiple Fusion Adaptation (MFA).
MFA collaboratively trains two models (Net A and Net B), with two supervision signals
(Section 3.4), i.e., the offline and online pseudo labels. The offline pseudo labels are gen-
erated by a popular baseline CBST [24], as introduced in Section 3.2. The online pseudo
labels for Net A are generated by the temporal average of Net B (mean Net B), and vice
versa (Section 3.3). (b) Some examples of the online and offline pseudo labels. We highlight
some regions with red bounding boxes to draw attention of the complementarity between
these labels. For example, in the first column, the offline pseudo labels omit some important
details about the pedestrians, and the online pseudo labels make up for this problem. In the
second column, the person riding a motorcycle is recalled by online pseudo labels.

where c ∈ [0,C) is the class index, and τc is the thresholds for the corresponding class.
Following [24], we set each threshold τc to ensure class balance, i.e., all the classes has an
identical proportion of the selected pixels.

The offline manner of CBST has the advantage of stabilizing supervision signals and
avoiding the gradual dominance of large classes [24]. In MFA, the ensemble of two warm-
up models further benefits the accuracy of the pseudo labels. However, the offline manner is
prone to the problems of ignorance of hard samples [10] and longer exposure to the potential
noisy labels. We thus introduce the online pseudo labels as a supplementary.

3.3 Online Pseudo Label

Temporal average. MFA instantly assigns online pseudo labels to images in the current
mini-batch. In another word, the online pseudo labels do NOT require a post-processing
over the whole target domain samples. To alleviate the potential instability issue, MFA first
smooths each model through temporal average to generate mean net, which is formulated as:

θ
mean
t = αθ

mean
t−1 +(1−α)θt (4)

Where α is a smoothing coefficient hyper-parameter, θ denotes the model parameters and t
is the training step. Given the mean net with parameters θ mean and an input image xT , MFA
generates the corresponding online pseudo labels by Equation 1.

Online CBST. The online pseudo labels require to be filtered as well, so as to remove the
labels with relatively low confidence. To this end, we propose a novel Online-CBST.
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Algorithm 1 Online CBST
Input: Mean Net F(θA) and F(θB), minibatch tar-
get data xb.
Parameter: Ratio ϕ of selected pseudo labels.
Output: LP1

b and LP2
b from θA and θB, respec-

tively.
P1

b = F (xb | θA)
P2

b = F (xb | θB)
LP1

b = argmax
(
P1

b ,axis = 1
)

LP2
b = argmax

(
P2

b ,axis = 1
)

for i=1 to 2 do
MPi

b = max
(
Pi

b,axis = 1
)

for c=1 to C do
MPi

c,b = MPi
b

[
LPi

b == c
]

Mi
c = sort

(
MPi

c,b,order = descending
)

leni
c = length(Mi

c)×ϕ

τ i
c = Mi

c
[
leni

c
]

LPi
b

[
LPi

b == c & LPi
b < τ i

c
]
= 255

end for
end for
return LP1

b , LP2
b

It is similar to the original CBST,
except that it uses the data in cur-
rent mini-batch (rather than the whole
training data) as the reference for la-
bel selection. In other words, we set
a respective filtering threshold for each
class, so that all the classes have equal
proportion of pseudo-labeled samples
in current mini-batch. In analogy to the
original CBST, we design the Online-
CBST to have linearly-increasing pro-
portion ϕ(t)∈ [ρmin,ρmax], which is the
desired proportion in the t−th training
step. ρmin and ρmax are the pre-defined
minimum and maximum proportions.
Initially, the accuracy of each warm-up
model is relatively low. So we use a
small ϕ(0) = ρmin to retain the most
confident pseudo labels and abandon
the others.

Since the online pseudo labels are
generated by the up-to-date model,
they reduce the exposure to noisy su-
pervision. Moreover, Online CBST is
beneficial for recalling the relatively hard details (i.e., the informative samples) within each
training iteration. In Section 4.5, we analyzed this in more detail. Given the online pseudo
labels P(xT | θ mean

A ) and P(xT | θ mean
B ), the Online-CBST correspondingly generates two

masks mA and mB for selecting the pixels. The pseudo code for generating the online labels
is to be accessed in Algorithm 1.

3.4 Co-supervision in MFA
Given both the offline and online pseudo labels, MFA enforces a co-supervision on each
learner in Figure 2 (a). We illustrate the loss functions for such co-supervision as follows.

To cooperate with the offline pseudo labels, MFA uses the loss function Lsel f defined by
Equation 2 for self-supervision on both Net A and Net B. As for the online pseudo labels,
MFA uses P(xT | θ mean

A ) (predictions from Net A) for supervising Net B and uses P(xT |
θ mean

B ) for supervising Net A, yielding the so-called cross-model supervision. The detailed
loss functions are formulated as:

Lcross(θA,θ
mean
B ) =− ∑

batch
mB ·P(xT | θ mean

B ) · log(F (xT | θA))

Lcross(θB,θ
mean
A ) =− ∑

batch
mA ·P(xT | θ mean

A ) · log(F (xT | θB))
(5)

in which mB (mA) is the selection-mask for P(xT | θ mean
B ) (P(xT | θ mean

A )) generated by the
proposed Online-CBST.

Besides the co-supervision with online and offline pseudo labels, MFA enforces a re-
spective consistency constraint between each learner and its temporal average. Similar to
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mean teacher [16], the consistency loss is the expected distance between the prediction of
the model and the prediction of the temporal average model, which is formulated as:

Lcst(θ ,θ
mean) = Ex [‖F (xT | θ mean)−F (xT | θ)‖] (6)

In summary, MFA sums up all the losses to collaboratively train Net A and Net B by:

Lall =Lsel f (xT ,θA)+Lsel f (xT ,θB)

+λcst (Lcst (θA,θ
mean
A )+Lcst (θB,θ

mean
B ))

+λcross (Lcross (θA,θ
mean
B )+Lcross (θB,θ

mean
A )) ,

(7)

in which λcst and λcross are the weighting factors for Lcst and Lcross, respectively.

4 Experiments

4.1 Datasets

We evaluate the proposed MFA under two widely adopted cross-domain segmentation set-
tings, i.e., GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes. GTA5 and SYNTHIA are
both synthetic datasets. The GTA5 [13] dataset consists of 24,966 synthesized images of
resolution 1914×1052. Same as existing works, we evaluate our method on 19 common cat-
egories shared by GTA5 and Cityscapes. The SYNTHIA [14] dataset has 9,400 synthesized
images of resolution 1280× 720 with fine annotations. Following [18, 19], we report the
per-class IoU and mIoU on the 13 common categories shared by SYNTHIA and Cityscapes.

Cityscapes is a real-world semantic segmentation dataset [3], which consists of 5,000
images of resolution 2048×1024 with pixel-level annotations. It is split into a training set,
validation set and test set with 2,975, 500 and 1,525 images, respectively. In line with the
standard evaluation setting, we use the 2,975 training images (without the ground-truth la-
bels) as target domain images, and then evaluate the domain adaptive segmentation accuracy
on the validation set.

4.2 Implementation Details

Following [18, 19], we use DeepLabV2 [1] based on ResNet101 [5] as the backbone model.
We recall that MFA is based on the two-stage UDA pipeline and requires warm-up training.
To promote the divergence between the initial status of two learners, we adopt two state-of-
the-art domain alignment methods proposed by FDA [19] and SIM [18]. These two methods
serves as the strong baseline for MFA. That being said, we will show that MFA achieves sig-
nificant improvement over these (e.g., +10.1% mIoU on GTA5-to-Cityscapes), which results
in the state-of-the-art performance. Moreover, MFA is compatible to any warm-up models
and is potential to benefit from the future progress in domain alignment.

We use SGD optimization strategy with momentum 0.9. We initialize the learning rate
to 2e−4, and adjust it according to the poly learning rate scheduler with a power of 0.9. As
for the hyper-parameters, Equation 4 has α = 0.99 for temporal average, and Online-CBST
has ρmin = 0.2, ρmax = 0.7. Moreover, we set λcst = 1.0, λcross = 0.5 for Equation 7.
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AdaStruct [17] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4
Cycada [6] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7
WSDA [12] 91.6 47.4 84.0 30.4 28.3 31.4 37.4 35.4 83.9 38.3 83.9 61.2 28.2 83.7 28.8 41.3 8.8 24.7 46.4 48.2
BDA [9] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5
SIM [18] 90.6 44.7 84.8 34.3 28.7 31.6 35.0 37.6 84.7 43.3 85.3 57.0 31.5 83.8 42.6 48.5 1.9 30.4 39.0 49.2
Seg-U [22] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3
FDA [19] 92.5 53.3 82.4 26.5 27.6 36.4 40.6 38.9 82.3 39.8 78.0 62.6 34.4 84.9 34.1 53.1 16.9 27.7 46.4 50.5
TPLD [15] 94.2 60.5 82.8 36.6 16.6 39.3 29.0 25.5 85.6 44.9 84.4 60.6 27.4 84.1 37.0 47.0 31.2 36.1 50.3 51.2
ProDA [21] 91.5 52.4 82.9 42.0 35.7 40.0 44.4 43.3 87.0 43.8 79.5 66.5 31.4 86.7 41.1 52.5 0.0 45.4 53.8 53.7
MFA(ours) 94.5 61.1 87.6 41.4 35.4 41.2 47.1 45.7 86.6 36.6 87.0 70.1 38.3 87.2 39.5 54.7 0.3 45.4 57.7 55.7
ProDA* [21] 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5
MFA*(ours) 93.5 61.6 87.0 49.1 41.3 46.1 53.5 53.9 88.2 42.1 85.8 71.5 37.9 88.8 40.1 54.7 0.0 48.2 62.8 58.2

Table 1: Results on GTA5-to-Cityscapes. MFA surpasses all the competing methods. For a
fair comparison, “*” indicates additional distillation stage is used, which is proposed in [21].

4.3 The Effectiveness of MFA
Table 1 compares MFA against several state-of-the-art UDA methods on the GTA5-to-Cityscapes
benchmark, from which we draw two observations. First, comparing MFA against all the
competing two stage methods, we find that MFA surpasses all the competing methods by
a large margin. For example, it achieves 55.7% mIoU, which is higher than the strongest
competitor ProDA by +2.0%. We achieve the best scores on most categories (11 in 19).
Second, under the fair comparison, MFA* presents 58.2% mIoU, with additional model dis-
tillation stage [21]. In line with [21], we use the SimCLRv2 [2] pretrained weights and same
distillation strategy.

We also compare MFA with competing methods on the SYNTHIA-to-Cityscapes bench-
mark in the Table 2 and draw consistent observations as on GTA5-to-Cityscapes. MFA
achieves higher mIoU than prior state-of-the-art methods. We report 58.7% mIoU (after
self-training stage) and 62.5% mIoU (after distillation stage) on this benchmark.

4.4 The Efficiency of MFA
The basic self-training strategy needs iteration of “assigning pseudo label” and “re-training”,
which is adopted by [19, 24]. Benefit from the online-offline fusion, MFA converges faster
without multiple iterations and reinitialization. The training in MFA lasts 65 epochs, and
is more efficient than other methods [19, 21, 22, 24]. We note that the warm-up models
in FDA [19] and the proposed MFA achieve close performance, but MFA achieves 55.7
mIoU after self-training stage (compared to 50.5 in FDA after two round self-training stage).
We thus infer that the superiority of MFA is due to the well-engineered self-training with
multiple information fusion.

4.5 The Benefit of Online Pseudo Labels
We visualize some examples of online and offline pseudo labels in Figure 2 (b). It is clearly
observed that online pseudo labels are complementary to the offline ones and focus on the
relatively hard details. In the first column, the offline pseudo labels omit the pedestrians,
which look small in the image. In contrast, the online pseudo labels succeed in pointing
the existence of these pedestrians. In the second column, the person riding a motorcycle is
omitted by the offline pseudo labels and is recalled by online pseudo labels. We owe this
to two reasons. First, the mean net is updated in time, which is conducive to producing

Citation
Citation
{Tsai, Hung, Schulter, Sohn, Yang, and Chandraker} 2018

Citation
Citation
{Hoffman, Tzeng, Park, Zhu, Isola, Saenko, Efros, and Darrell} 2018

Citation
Citation
{Paul, Tsai, Schulter, Roy-Chowdhury, and Chandraker} 2020

Citation
Citation
{Li, Yuan, and Vasconcelos} 2019

Citation
Citation
{Wang, Yu, Wei, Feris, Xiong, Hwu, Huang, and Shi} 2020

Citation
Citation
{Zheng and Yang} 2020

Citation
Citation
{Yang and Soatto} 2020

Citation
Citation
{Shin, Woo, Pan, and Kweon} 2020

Citation
Citation
{Zhang, Zhang, Zhang, Chen, Wang, and Wen} 2021

Citation
Citation
{Zhang, Zhang, Zhang, Chen, Wang, and Wen} 2021

Citation
Citation
{Zhang, Zhang, Zhang, Chen, Wang, and Wen} 2021

Citation
Citation
{Zhang, Zhang, Zhang, Chen, Wang, and Wen} 2021

Citation
Citation
{Zhang, Zhang, Zhang, Chen, Wang, and Wen} 2021

Citation
Citation
{Chen, Kornblith, Swersky, Norouzi, and Hinton} 2020

Citation
Citation
{Yang and Soatto} 2020

Citation
Citation
{Zou, Yu, Vijayaprotect unhbox voidb@x protect penalty @M  {}Kumar, and Wang} 2018

Citation
Citation
{Yang and Soatto} 2020

Citation
Citation
{Zhang, Zhang, Zhang, Chen, Wang, and Wen} 2021

Citation
Citation
{Zheng and Yang} 2020

Citation
Citation
{Zou, Yu, Vijayaprotect unhbox voidb@x protect penalty @M  {}Kumar, and Wang} 2018

Citation
Citation
{Yang and Soatto} 2020



10 ZHANG, SUN, WANG, LI, HU: MULTIPLE FUSION ADAPTATION

Method ro
ad

sd
w

k

bl
dn

g

lig
ht

sig
n

ve
g

sk
y

ps
n

rid
er

ca
r

bu
s

m
ot

o

bi
ke

m
Io

U

AdaStruct [17] 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7
BDA [9] 86.0 46.7 80.3 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 51.4
WSDA [12] 92.0 53.5 80.9 3.8 6.0 81.6 84.4 60.8 24.4 80.5 39.0 26.0 41.7 51.9
SIM [18] 83.0 44.0 80.3 17.1 28.7 15.8 81.8 59.9 33.1 70.2 37.3 28.5 45.8 52.1
TPLD [15] 80.9 44.3 82.2 20.5 30.1 77.2 80.9 60.6 25.5 84.8 41.1 24.7 43.7 53.5
Seg-U [22] 87.6 41.9 83.1 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 54.9
FDA [19] 79.3 35.0 73.2 19.9 24.0 61.7 82.6 61.4 31.1 83.9 40.8 38.4 51.1 52.5
ProDA [21] 87.1 44.0 83.2 45.8 34.2 86.7 81.3 68.4 22.1 87.7 50.0 31.4 38.6 58.5
MFA(ours) 85.4 41.9 84.1 22.2 23.9 83.6 80.7 71.5 35.8 86.6 47.6 37.2 62.5 58.7
ProDA* [21] 87.8 45.7 84.6 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 62.0
MFA*(ours) 81.8 40.2 85.3 38.0 33.9 82.3 82.0 73.7 41.1 87.8 56.6 46.3 63.8 62.5

Table 2: Results on SYNTHIA-to-Cityscapes. MFA achieves better performance than the
other state-of-the-art methods. The symbol “*” indicates additional distillation stage is used.

more high-quality pseudo labels along with self-training. Second, since the proposed online
CBST focuses on current batch of samples, the relatively difficult samples are more likely to
be recalled in the confidence ranking.

4.6 Ablation Study

Method TF CMF OOF mIoU Gain
Warm 45.6
ST 49.4 3.8
TF X 50.6 5.0
TF&CMF X X 51.7 6.1
TF&OOF X X 52.7 7.1
MFA X X X 55.7 10.1

Table 3: Ablation study on the GTA5-to-
Cityscapes adaptation. ST: the basic self-
training method without any fusions. TF:
temporal fusion by consistency loss. CMF:
cross-model fusion by jointly generating of-
fline pseudo labels. OOF: online-offline fu-
sion through online pseudo label supervision.

Table 3 investigates the contribution of
each component of MFA on GTA5-to-
Cityscapes. In the first row, “Warm” is
the best warm-up model based on domain
alignment methods [18, 19]. “ST” is the ba-
sic self-training ( without any information
fusion). We divide MFA to three key com-
ponents, i.e., the temporal fusion (TF), the
cross-model fusion (CMF) and the online-
offline pseudo label fusion (OOF). Accord-
ingly, we draw three observations. First,
self-training brings +3.8% mIoU improve-
ment over the warm-up training. Such im-
provement is consistent with many other
two-stage UDA methods [18, 19, 22]. Second, all the three components are important for
MFA. By incrementally adding the key components, the performance reached 50.6%, 51.7%
and 55.7%, respectively. Third, these three fusion strategies adds up to +6.3% mIoU im-
provement compared to basic ST. They jointly enable MFA achieve significant superiority
against other two-stage UDA methods.

5 Conclusion
We propose a self-training method named Multi-Fusion Adaptation (MFA) for domain adap-
tive semantic segmentation. Through a co-learning framework, MFA integrates three infor-
mation fusion strategies, i.e., cross-model fusion, temporal fusion, and online-offline pseudo
label fusion. These fusions jointly suppress the pseudo label noises and explore informative
samples during the self-training procedure. Consequentially, MFA significantly improves
adaptive semantic segmentation and sets new state of the art on two popular benchmarks.

Citation
Citation
{Tsai, Hung, Schulter, Sohn, Yang, and Chandraker} 2018

Citation
Citation
{Li, Yuan, and Vasconcelos} 2019

Citation
Citation
{Paul, Tsai, Schulter, Roy-Chowdhury, and Chandraker} 2020

Citation
Citation
{Wang, Yu, Wei, Feris, Xiong, Hwu, Huang, and Shi} 2020

Citation
Citation
{Shin, Woo, Pan, and Kweon} 2020

Citation
Citation
{Zheng and Yang} 2020

Citation
Citation
{Yang and Soatto} 2020

Citation
Citation
{Zhang, Zhang, Zhang, Chen, Wang, and Wen} 2021

Citation
Citation
{Zhang, Zhang, Zhang, Chen, Wang, and Wen} 2021

Citation
Citation
{Wang, Yu, Wei, Feris, Xiong, Hwu, Huang, and Shi} 2020

Citation
Citation
{Yang and Soatto} 2020

Citation
Citation
{Wang, Yu, Wei, Feris, Xiong, Hwu, Huang, and Shi} 2020

Citation
Citation
{Yang and Soatto} 2020

Citation
Citation
{Zheng and Yang} 2020



ZHANG, SUN, WANG, LI, HU: MULTIPLE FUSION ADAPTATION 11

Acknowledgments. This work was supported by the National Natural Science Foundation
of China under Grant 61802380, the National Key Research and Development Program of
China under Grant 2019YFB1405100 and the Strategic Priority Research Program of the
Chinese Academy of Sciences under Grant No. XDA19020500.

References
[1] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L

Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE transactions on pattern analysis and ma-
chine intelligence, 40(4):834–848, 2017.

[2] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hin-
ton. Big self-supervised models are strong semi-supervised learners. arXiv preprint
arXiv:2006.10029, 2020.

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3213–3223, 2016.

[4] Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Tsang,
and Masashi Sugiyama. Co-teaching: Robust training of deep neural networks with
extremely noisy labels. Advances in neural information processing systems, 31:8527–
8537, 2018.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[6] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei Efros, and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adap-
tation. In International conference on machine learning, pages 1989–1998. PMLR,
2018.

[7] Jiaxing Huang, Shijian Lu, Dayan Guan, and Xiaobing Zhang. Contextual-
relation consistent domain adaptation for semantic segmentation. arXiv preprint
arXiv:2007.02424, 2020.

[8] Samuli Laine and Timo Aila. Temporal ensembling for semi-supervised learning. arXiv
preprint arXiv:1610.02242, 2016.

[9] Yunsheng Li, Lu Yuan, and Nuno Vasconcelos. Bidirectional learning for domain adap-
tation of semantic segmentation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 6936–6945, 2019.

[10] Ke Mei, Chuang Zhu, Jiaqi Zou, and Shanghang Zhang. Instance adaptive self-training
for unsupervised domain adaptation. arXiv preprint arXiv:2008.12197, 2020.



12 ZHANG, SUN, WANG, LI, HU: MULTIPLE FUSION ADAPTATION

[11] Fei Pan, Inkyu Shin, Francois Rameau, Seokju Lee, and In So Kweon. Unsupervised
intra-domain adaptation for semantic segmentation through self-supervision. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 3764–3773, 2020.

[12] Sujoy Paul, Yi-Hsuan Tsai, Samuel Schulter, Amit K Roy-Chowdhury, and Manmohan
Chandraker. Domain adaptive semantic segmentation using weak labels. In Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part IX 16, pages 571–587. Springer, 2020.

[13] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing for data:
Ground truth from computer games. In European conference on computer vision, pages
102–118. Springer, 2016.

[14] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and Antonio M
Lopez. The synthia dataset: A large collection of synthetic images for semantic seg-
mentation of urban scenes. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 3234–3243, 2016.

[15] Inkyu Shin, Sanghyun Woo, Fei Pan, and In So Kweon. Two-phase pseudo label densi-
fication for self-training based domain adaptation. In European conference on computer
vision, pages 532–548. Springer, 2020.

[16] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results. In Ad-
vances in neural information processing systems, pages 1195–1204, 2017.

[17] Yi-Hsuan Tsai, Wei-Chih Hung, Samuel Schulter, Kihyuk Sohn, Ming-Hsuan Yang,
and Manmohan Chandraker. Learning to adapt structured output space for semantic
segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7472–7481, 2018.

[18] Zhonghao Wang, Mo Yu, Yunchao Wei, Rogerio Feris, Jinjun Xiong, Wen-mei Hwu,
Thomas S Huang, and Honghui Shi. Differential treatment for stuff and things: A
simple unsupervised domain adaptation method for semantic segmentation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 12635–12644, 2020.

[19] Yanchao Yang and Stefano Soatto. Fda: Fourier domain adaptation for semantic seg-
mentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4085–4095, 2020.

[20] Xingrui Yu, Bo Han, Jiangchao Yao, Gang Niu, Ivor W Tsang, and Masashi Sugiyama.
How does disagreement help generalization against label corruption? arXiv preprint
arXiv:1901.04215, 2019.

[21] Pan Zhang, Bo Zhang, Ting Zhang, Dong Chen, Yong Wang, and Fang Wen. Prototyp-
ical pseudo label denoising and target structure learning for domain adaptive semantic
segmentation. arXiv preprint arXiv:2101.10979, 2:1, 2021.



ZHANG, SUN, WANG, LI, HU: MULTIPLE FUSION ADAPTATION 13

[22] Zhedong Zheng and Yi Yang. Rectifying pseudo label learning via uncertainty esti-
mation for domain adaptive semantic segmentation. arXiv preprint arXiv:2003.03773,
2020.

[23] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In Proceedings of the
IEEE international conference on computer vision, pages 2223–2232, 2017.

[24] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong Wang. Unsupervised domain
adaptation for semantic segmentation via class-balanced self-training. In Proceedings
of the European conference on computer vision (ECCV), pages 289–305, 2018.

[25] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confidence
regularized self-training. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5982–5991, 2019.


