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Abstract

This paper introduces an extended differentiable marching cubes (DMC) method for
end-to-end learning of precise 3D surface geometries using a neural network. The orig-
inal DMC method extracts the isosurface using a fixed-size voxel grid, similar to the
traditional marching cubes. Therefore, the original method involves a trade-off between
output resolution and memory consumption. In contrast, there remains room to increase
the output resolution without increasing the number of voxels because an output surface
often exists over a limited number of voxels. According to this observation, our method
deforms an input point cloud to occupy the voxel grid as widely as possible, thereby
refining small parts of the target shape. To obtain such deformation, we apply normaliz-
ing flow (NF), typically used to transform probability density functions. Its invertibility
allows us to reproduce a mesh for the input point cloud by cancelling the deformation
of the mesh obtained for the deformed point cloud using DMC. To obtain appropriate
deformation, NF is conditioned by a global shape feature and is trained by several loss
functions to inflate the input shape while preserving its manifold structure. We tested the
proposed method with two shape datasets and showed that our extended DMC achieves
higher performance than the original DMC, even used with a simple deformation.

1 Introduction

Three-dimensional (3D) shapes can be discretely represented using various formats, includ-
ing voxels, point clouds, meshes, and implicit fields, for different computational purposes.
These formats are often converted to meshes for graphics applications, such as rendering and
modelling, because of the good balance between data size and the capability of shape rep-
resentation. Therefore, surface reconstruction from the other formats has been a traditional
problem in computer vision and graphics [1]. Early approaches have focused on converting
the input point set to an implicit field [7, 12, 17, 29] and have extracted the output surface
using the traditional marching cubes (MC) algorithm [26]. In contrast, recent data-driven
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Figure 1: Our method deforms input points P by a deformation h defined by NF. The de-
formed points P ′ is supplied to the DMC layer to obtain the deformed mesh M′. We leverage
the invertibility of the NF to obtain the output mesh M by cancelling the deformation on M′.

approaches train a deep neural network with large-scale datasets to achieve surface recon-
struction from a point cloud. A deep neural network can define an implicit field [3, 27, 30],
while an isosurface must be extracted using the traditional MC algorithm, which prohibits
end-to-end learning of surface geometries. A more recent study, MeshSDF [32], made iso-
surface extraction differentiable with respect to the 3D position on the isosurface. MeshSDF
requires pretraining the neural network, which represents a signed distance field (SDF), using
the ground truth SDF, although obtaining such ground truth SDF is often challenging due to
the presence of non-manifold surfaces whose inside and outside are not well defined. Other
approaches use local patches [10, 45] and multi-resolution triangles [40, 41] to represent the
surfaces, although they do not guarantee manifoldness of the output surfaces.

For end-to-end learning of surface geometries, Liao et al. [23] proposed a differentiable
MC (DMC) algorithm, whose differentiability enables back-propagation of a loss defined
for the output mesh to the network representing the implicit field. In this way, they achieved
higher performance than the previous methods regressing the occupancy of voxels [3, 27] or
SDF [30]. However, DMC is performed on a 3D grid of voxels and performs 3D convolutions
on the grid, which requires a significant amount of memory on a finer voxel grid to improve
the resolution of output meshes.

To address this problem, we deform a given point cloud before extracting an isosurface
using DMC, aiming to increase the area of the isosurface and the resolution of the output tri-
angle mesh. As shown in Fig. 1, DMC extracts an isosurface M′ for a deformed point cloud
P ′. Deformation of the extracted isosurface must be cancelled to obtain the output mesh M
corresponding to the input points P , meaning that the deformation h must be invertible. We
define deformation h using the normalizing flow (NF), which is typically used to model prob-
ability density functions without closed-form representations. The NF deforms the known
probability density function using a series of learnable deformations, and the learned defor-
mation can be invertible. The flexibility and invertibility of the NF must be advantageous
for our purpose of deforming point clouds. However, simple application of the NF to point
and mesh deformation can complicate the surface extraction process by DMC. Therefore,
we introduce several techniques to achieve preferable deformation for DMC.

2 Related Work

Marching cubes on various grid primitives. While the original MC algorithm [26] is used
for a rectilinear grid of voxels, numerous studies have been conducted to define the MC al-
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gorithm on other types of grids, as summarised in a survey [28]. For example, the marching
tetrahedra method [38] divides a cubic cell into four tetrahedra and calculates the triangles
for each tetrahedron in the same manner as the original MC. Furthermore, the MC algorithm
is extended for a grid of octahedra and hexahedra [2] and scientific data defined on spherical
and polar coordinate systems [9]. Hierarchical data structures such as an octree are also pop-
ular choices to concentrate computational resources to the detailed part of shapes [35, 37].
In contrast, several approaches preserve sharp edges by optimising vertex positions inside
each cell of the grid [15, 20], while a recent study proposed a learning-based optimisation of
vertex placement inside the grid cells [4].

In contrast, we deform a given point cloud and apply DMC to extract a surface. In this
case, we can interpret the regular grid for the deformed point cloud as an irregular and non-
rectilinear grid for the input point cloud. To the best of our knowledge, our method is the
first extension of the MC algorithm, performed on such a nonlinearly deformed grid, which
is a technically interesting aspect of our study.

3D shape deformation. A goal of non-rigid shape deformation is to align the same or sim-
ilar objects with different poses. Early studies have targeted the extraction of good shape
descriptors for aligning shapes, often based on local geometric properties [39]. In contrast,
recent approaches acquire such descriptors by learning a large number of shape pairs with
ground truth correspondences [5, 24, 25, 42]. Such deformation has been applied to recon-
struct the surface geometry by fitting a template mesh to a point cloud [22, 36] or a deficient
mesh [21]. Recent approaches [43, 44] have been employed to deform template meshes
using deep neural networks to predict the 3D geometry associated with a single image.

However, all these approaches deform a given shape to align with another target shape.
The aim of our deformation is ambiguous because the target shape for extracting a high-
resolution mesh with DMC cannot be defined clearly. Therefore, we leveraged the flexibility
of learning-based deformation, trained to increase the surface area of the output mesh ex-
tracted by DMC on a grid with a limited number of voxels.

3 Extended Differentiable Marching Cubes

This section describes the algorithm of DMC [23] briefly, which corresponds to “no deform”
in Fig. 2(a). Then, we introduce a simple linear stretch to increase the area of the isosurface
(see Fig. 2(b)). Although we apply NF to deform the point cloud to further increase the
isosurface area, its direct application does not aid in isosurface extraction by DMC (see
Fig. 2(c)). We introduce a new loss function to preserve an underlying manifold structure of
the input point cloud, using vacant spaces in the grid to increase the resolution of extracted
meshes (see Fig. 2(d)).

3.1 Differentiable Marching Cubes
DMC extracts a triangular mesh corresponding to an isosurface at a specific level set of the
implicit field represented by a neural network. Similar to the traditional MC algorithm, DMC
uses a set of cubes to define the triangles on an isosurface. In this study, we refer to each
cube as a cell and assume that each corner of the cell corresponds to a voxel. Furthermore,
we refer to a 3D collection of cubes or voxels as grid.

Let D ∈ RN×N×N be a volume data or a discretized SDF, where N is the number of
voxels along each dimension, and n = (i, j,k) ∈ N3 be a multi-index for each voxel. When
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Figure 2: Illustrations for point clouds obtained by different deformation methods and cor-
responding isosurfaces extracted by DMC.

a voxel value dn on a voxel n is larger than a predefined threshold λ , we assume that the
voxel is occupied by an object. We further denote the occupancy data on the volume by
O ∈ {0,1}N×N×N and the occupancy of each voxel as on ∈ {0,1}. For an edge (n,n′) of the
cell between two voxels, a vertex is placed when on ̸= on′ . The location of the vertex v is
determined by the voxel values of two endpoints vn and vn′ , i.e. v = (1−u)vn +uvn′ using
u = (dn −λ )/(dn − d′

n). We refer to this interpolation ratio u as a displacement. Although
there are 3N2(N −1) edges on a voxel grid with N voxels along each dimension, we denote
displacement data simply as U ∈RN×N×N×3 by introducing redundant voxels. Then, the MC
algorithm processes each cubic cell defined by 2× 2× 2 neighbouring voxels. The binary
patterns of these eight corners define a topology T, and the topology T and the displacement
for the cell define a set of triangles assigned.

DMC [23] obtains the occupancy O and displacement U from an input point cloud using
a deep neural network, whereas the traditional MC evaluates an implicit field obtained, e.g.
by solving a Poisson equation [16, 17]. DMC first encodes the input point cloud as a set of
feature vectors F ∈ RN×N×N×C, where C is the number of feature dimensions. Then, F is
regularized by an hourglass network to obtain O and U. Different from traditional MC, the
occupancy of voxels is defined stochastically as O∈ [0,1]N×N×N , which defines the topology
for each cell stochastically as well. The probability density for a topology T induced by the
stochastic occupancy is obtained by a Bernoulli distribution:

pn(T) = ∏
m∈{0,1}3

(on+m)
tm(1−on+m)

1−tm ,

where tm ∈ {0,1} is a random variable which represents whether a cell m is occupied (t = 1)
or unoccupied (t = 0). The distance between the input point cloud and a stochastic surface
representation induced by T is integrated over all the voxels to define the point-to-mesh loss:

Lmesh = ∑
n
Epn(T)

[
∑

x∈Pn

∆(Mn(T,U),x)

]
, (1)

where Pn is a part of the target point cloud in cell n, Mn(T,U) is the mesh induced by
topology T and displacement U, and ∆ is a point-to-triangle distance. The original DMC
is trained using three more losses: the occupancy loss Locc, occupancy smoothness loss
Lsmooth, and curvature loss Lcurve. The overall training loss Ldmc is defined as a weighted
sum of these losses:

Ldmc = wmeshLmeth +woccLocc +wsmoothLsmooth +wcurveLcurve. (2)
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3.2 Manifold-preserving shape inflation

The purpose of deformation for a given point cloud is to improve the resolution of the
output mesh without increasing the number of voxels in a grid. The most straightforward
approach is to linearly stretch the input point cloud along each dimension. Let x•,y•,z•
(• ∈ {min,max}) be the minimum and maximum {x,y,z}-coordinates of a given point cloud.
Then, we can define the linear stretch with margin δ at the boundary of the grid, as follows:

x = ρ
x− xmin

xmax − xmin
+δ ,y = ρ

y− ymin

ymax − ymin
+δ ,z = ρ

z− zmin

zmax − zmin
+δ , (3)

where ρ = N − 1− 2δ is the size of the available space after the margin δ at both sides is
excluded. However, the linear stretch is often suboptimal when an object diagonally lies
toward the voxel grid and has some protruding parts, as shown in Fig. 2(b). Thus, we deform
the input point cloud using an approach based on a neural network and extract a surface mesh
for the deformed point cloud.

Shape deformation by Real NVP. As previously explained with Fig. 1, the deformation
defined by the neural network must be invertible because we need to cancel the deformation
of the deformed mesh M′ to obtain the output mesh M corresponding to the input points
P . Hence, we use the NF to ensure the invertibility of deformation. Specifically, we employ
real-valued non-volume preserving transformations (Real NVP) [8], which is a simple yet
powerful approach to transform a shape of function using a series of learnable affine trans-
formations. Meanwhile, most discussions below can also be applied to other NFs [11, 19].

The network of Real NVP comprises layers called an affine coupling layer. In this layer,
an input vector is separated into two parts along its dimension, and one is used to define the
parameters to deform the other. We separate the three coordinates {x,y,z} of a point into
two, e.g. {x} and {y,z}. Then, affine parameters to transform {x}, i.e. scalar scaling s and
translation t, are calculated using {y,z}:

x′ = sx+ t, s = σ(y,z), t = τ(y,z), (4)

where σ and τ are defined by neural networks. Let fi be the i-th transformation applied
to either of the three coordinates. Then, we can define the overall deformation as x′ =
( fn−1 ◦ · · · ◦ f0)(x) ≡ h(x) by n consecutive transformations, which we refer to as a shape
deformation layer. In Eq. (4), only x is transformed, and other coordinates, i.e. y and z,
remain unchanged. Therefore, s and t in Eq. (4) remain the same when they are calculated
for {x′,y,z}, which allows us to define the inverse deformation simply by x = (x′− t)/s.

When training Real NVP for probability density estimation, we often minimise the neg-
ative log determinant of its Jacobian. Because a Jacobian represents the change in a dif-
ferential volume, the minimisation of the negative log determinant seems to be appropriate
to achieve our target shape inflation. However, our preliminary experiment showed that the
simple application of Real NVP could disorder the original shape of an object because Real
NVP does not consider the adjacency of each point to its neighbours. Eventually, only using
the NF disorders the arrangement of points and prohibits DMC from extracting an isosurface
corresponding to the input point cloud (see Fig. 2(c)).

Manifold-preserving loss. To maintain the adjacency of points, we introduce a loss function
inspired by locally linear embedding (LLE) [33], which is a popular approach of manifold
learning. Let K(i) be the index set of the k-nearest neighbours of xi. Then, we can obtain
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affine combination weights wi = {wi j} j∈K(i) for each point xi and its neighbours {x j} j∈K(i)
as follows:

wi = argmin
wi

∥∥∥∥∥xi − ∑
j∈K(i)

wi jx j

∥∥∥∥∥
2

such that ∑
j∈K(i)

wi j = 1.

The solution for this constrained least-squares problem can be obtained by solving a small
linear system. We can preserve the manifold structure even after deformation by constraining
the deformed point cloud to have the local linearity defined by wi. A loss function to preserve
the manifold structure is defined as follows:

Lmp =
M−1

∑
i=0

∥∥∥∥∥x′i − ∑
j∈K(i)

wi jx′j

∥∥∥∥∥ ,
where M is the number of points in a given point cloud, and x′i is the position of the i-th
point after deformation. The loss prevents the NF from disordering the point arrangement
and helps DMC in extracting the isosurface from the inflated point cloud (see Fig. 2(d)).

Point-to-mesh loss for deformed shapes. In the original DMC method, a point-to-mesh
loss in Eq. (1) is defined as a weighted sum of the distances between a triangle induced by
topology T and each target point x. However, the deformation defined using Real NVP is
nonlinear, and triangles obtained by DMC become curvy after inverse deformation. Thus,
calculating the distance between a triangle and a point is not straightforward. Instead, we
calculate the point-to-mesh loss in Eq. (1) for the deformed points and the deformed mesh
rather than non-deformed ones. When the point-to-mesh loss is calculated for the deformed
shapes, an input point cloud can be deformed to shrink to a single point because the most
dominant Lmesh is minimised to be zero in that case. Therefore, we avoid such trivial solu-
tions by penalising the shrinkage of the differential volume measured by the Jacobian of the
deformation. We redefine the point-to-mesh loss in Eq. (1) by weighting each term for x′ by
the inverse of the Jacobian:

L∗
mesh = ∑

n
Epn(T)

[
∑

x′∈P ′

(
det

∂h(x)
∂x

)−1

∆(M′
n(T,U),x′)

]
,

where P ′ and M′ are the deformed point cloud and mesh, respectively, and the superscript
∗ denotes that the loss is defined for deformed shapes and uses the inverse Jacobian weight.
We can also avoid over-inflation of shapes using the inverse Jacobian weights because it
increases the loss where the Jacobian, i.e. the change in differential volume, is large.

Shape-aware deformation. To further enhance deformation quality, we extend the affine
coupling layers of Real NVP by passing a feature vector representing the global shape of an
input point cloud. We denote the NF conditioned by the feature vector as C-NF (conditional
NF). We calculate the global shape feature f of a given point cloud using PointNet++ [31]
and update σ and τ in Eq. (4) to take the feature vector, i.e. s = σ(y,z, f) and t = τ(y,z, f).
Even when the feature vector is passed to σ and τ , deformation is still easily invertible. The
supplementary document provides further details of the conditional affine coupling.

We can make the feature vector more informative by introducing a classifier network to
map feature vectors to the class labels. However, the training data for this extension needs
to have class labels representing the shape category. Thus, we use the classifier only as an
option, whereas we will later confirm its effect on the output mesh by an experiment.
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Point repulsion loss. We regularize the point arrangement after deformation using a point
repulsion loss [47]:

Lrep =
N−1

∑
i=0

∑
j∈K(i)

η(∥x′i −x′j∥)w(∥x′i −x′j∥)

η(r) = exp(−r2/ν
2), w(r) =−r,

where ∥ · ∥ is an ℓ2 norm, and ν controls the distance between two points. For ν , we used
a repulsion radiance of 10% of the size of an entire voxel grid. The index set K(i) is the
k-nearest neighbour of the input points. This loss penalizes any two points that are too close
or too distant. Hence, as the inverse Jacobian weights do, it also avoids over-inflation.

Loss function. The total loss function for the DMC and shape deformation layers is:

L= wdmcL∗
dmc +wmpLmp +wrepLrep,

where wdmc = 1.0 and wmp = wrep = 0.1 in the following experiments. A modified loss L∗
dmc

for the DMC layer is defined by replacing Lmesh with L∗
mesh in Eq. (2). We exclude the

curvature loss from Eq. (2) because we obtain a slight performance loss. The parameters of
both the DMC and shape deformation layers are optimized using Adam [18] with a learning
rate of γ = 10−4 and (β1,β2) = (0.9,0.999).

4 Experiments

The dataset used in the original DMC paper only includes three shape categories, which is
extremely few for verifying the robustness of the proposed method. Instead, we prepared
another dataset by pre-processing the ModelNet40 dataset [46] with 40 shape categories.
Because the original shape data in the ModelNet40 can be non-manifold, we first convert
the meshes to be manifold using a technique to obtain watertight meshes [13]. Then, we
sample random points on the surface using ordinary Poisson disk sampling [6]. The number
of points may vary depending on the input meshes; we further sample 3,000 points randomly
from them. In this way, we obtain 9,842 training samples1 and 2,468 evaluation samples. We
trained the network for 323 voxels over 10 epochs using mini-batches of size 8. The whole
training required approximately five hours using a single NVIDIA Quadro A6000 GPU. The
memory consumption of our method is less than 4 GB for the above experimental setup.

First, we confirm a key assumption of this study, i.e., whether learning-based point cloud
deformation improves the performance of DMC. To this end, we compare our extended
DMC (E-DMC) with the original DMC. We also test their variants where an input point
cloud is linearly stretched along each dimension using Eq. (3) with δ = 1. We denote these
variants as DMC+L and E-DMC+L. We tested these approaches on a grid of 323 voxels.
We compared these methods using the DMC layer with the traditional screened Poisson
surface reconstruction (SPSR) [16] as a baseline. We applied SPSR for two different grid
resolutions, i.e. 323 voxels (SPSR-5) and 2563 voxels (SPSR-8). In addition, we followed
the original DMC paper [23] and implemented the same baseline methods regressing either
occupancy (Occ) and truncated SDF (TSDF). Furthermore, wTSDF refers to a variant of
TSDF in which higher importance is given to voxels closer to the isosurface. We added

1We excluded a training data door #0059, which is a simple flat plane because we failed to process it using [13].
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SPSR-5 SPSR-8 Occ TSDF wTSDF DMC [23] DMC+L E-DMC E-DMC+L

ModelNet40
Acc. 1.204 0.454 0.642 0.429 0.580 1.102 0.171 0.454 0.167

Comp. 0.264 0.188 0.525 0.803 0.628 0.253 0.200 0.307 0.190
Overall 0.734 0.321 0.584 0.616 0.604 0.678 0.185 0.381 0.178

SHREC
Acc. 1.328 0.465 0.631 0.389 0.421 0.891 0.158 0.298 0.155

Comp. 0.309 0.196 0.509 1.035 0.688 0.273 0.218 0.314 0.215
Overall 0.819 0.330 0.570 0.712 0.554 0.582 0.188 0.306 0.185

Table 1: Comparison of the accuracy, completeness, and overall scores of previous methods
and the proposed method (lower is better). Among the three metrics, E-DMC performs
better than DMC, and E-DMC+L performs better than DMC+L. This behaviour is observed
commonly when the models are tested with the ModelNet40 [46] and SHREC [34] datasets.
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Figure 3: Visual comparison of our results with the original DMC [23] and other baseline
methods. E-DMC+L performs the best among all in terms of the overall score and well
reproduces shapes with non-zero genus such as a bookshelf and a cup with a handle.

Gaussian noise with σ = 0.15 voxels to the input point clouds during both training and
evaluation. For quantitative comparison, we used a set of distance-based metrics [14], i.e.
accuracy, completeness, and overall score (mean of the accuracy and completeness).

Figure 3 shows a visual comparison of the results. Although SPSR fails to reconstruct
surface geometries when vertex normals are not estimated appropriately, other approaches
using the DMC layer robustly reproduce surfaces without using vertex normals. In the cup
and lamp examples, E-DMC successfully increased the resolution of output meshes to a level
higher than those of DMC. Although the original DMC paper [23] reported that DMC outper-
forms other baselines, i.e. Occ, TSDF, and wTSDF, we obtained different results where DMC
is worse than the baselines. In contrast, our E-DMC achieved significantly better scores than
the other baselines. Comparing DMC+L and E-DMC+L, we found that E-DMC+L bet-
ter reproduces the shapes with holes with non-zero genus, observed in the bookshelf and
cup examples. Other results for all the 40 shape categories of ModelNet40 are provided
in the supplementary document. In addition to the better performance shown by the visual
comparison, the quantitative analysis in Table 1 shows that our methods, i.e. E-DMC and
E-DMC+L, perform better than the baseline methods, i.e. DMC and DMC+L, respectively.
All these results demonstrate that our learnable deformation improves the performance of
surface extraction by DMC.

We also tested our method on the SHREC dataset [34] with 55 categories, using the
model trained on ModelNet40 without any fine-tuning. We used 10,365 evaluation models
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Figure 4: Deformed point clouds and the corre-
sponding meshes extracted by the DMC layer.

Occ (↑) △ area (↓) # of △ (↑)
DMC [23] 0.047 0.444 728
DMC+L 0.134 0.192 1556
E-DMC 0.113 0.227 1318
E-DMC+L 0.179 0.160 1888

Table 2: Comparison of the average
number of occupied voxels (Occ, higher
is better), the average triangle area (△
area, smaller is better), and the number
of triangles of the output mesh (# of △,
larger is better). In all these standards,
E-DMC+L performed the best.

input points deformed points deformed mesh output mesh input points deformed points deformed mesh output mesh

Figure 5: Visualization of intermediate and final results of our E-DMC+L. The roof part of
the car is inflated more significantly than other regions in the left example (car 0203), and
the spherical shape of the cup is deformed to be cubic so that it occupies the entire voxel grid
in the right example (cup 0093).

of the SHREC dataset, which were processed equally as ModelNet40, and compared our
methods and baseline methods using them. The bottom part of Table 1 shows the results with
the SHREC dataset. As with the ModelNet40 dataset, E-DMC and E-DMC+L performed
better than their baseline methods, i.e. DMC and DMC+L, respectively. This result implies
that both the DMC and E-DMC (and their variants with linear stretching) equip sufficient
generalizability to extract isosurfaces for point clouds not in the training data, and more
importantly, E-DMC and E-DMC+L outperforms their baseline methods even in that case.

Next, we examine whether E-DMC+L, which performed the best in the previous experi-
ment, deforms input shapes as intended. Figure 5 shows the deformed points and meshes for
two example shapes. In the car example, the roof is inflated more significantly than the other
regions and fills the upward region of a cubic domain of the voxel grid. In the cup example,
the spherical shape of the cup is inflated to be cubic. Thus, the deformed shape occupies
most regions of the voxel grid. These results demonstrate that our conditional Real NVP
inflates the input shapes to occupy more voxels. Figure 4 shows a comparison between the
deformations of DMC+L and E-DMC+L. The top images in this figure depict the deformed
point clouds of DMC+L and E-DMC+L with yellow and blue dots, respectively. As indi-
cated by blue arrows in the top and side views for each of the two shapes, the deformation
by E-DMC+L moves the points to vacant regions near the grid corners. This deformation
helps the DMC layer to reconstruct intricate structures like small holes better. Let us further
compare the average number of occupied voxels, the average triangle area, and the number
of triangles to evaluate how much the output mesh resolution increases. As shown in Table 2,
deformation by the NF increases the average occupancy and the number of triangles and de-
creases the average triangle area when E-DMC and E-DMC+L are compared with DMC and
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GT

E-DMC+L

w/o rep. loss

w/o C-NFw/o MP loss

w/o inv. Jac. weight

Figure 6: Visual comparison of the output
meshes for the ablation study (toilet 0375).

Acc. Comp. Overall
E-DMC+L 0.167 0.190 0.178

w/o Lmp 1.128 0.346 0.737
w/o C-NF 0.180 0.207 0.193
w/o iJW 0.172 0.195 0.183
w/o Lrep 0.169 0.187 0.178
w/ classifier 0.160 0.189 0.174

E-DMC 0.454 0.307 0.381
w/o Lrep 0.646 0.252 0.449

Table 3: Quantitative comparison for the ab-
lation study. Although the effect of Lrep
is limited for E-DMC+L, it appropriately
works to improve the performance of E-
DMC without linear stretching.

DMC+L. These observations also demonstrate the improvement of mesh resolution by the
proposed method without increasing the number of voxels.

Finally, we conducted an ablation study to validate the effect of each technique proposed
in this paper. In this experiment, we ablated each component from E-DMC+L. The results
of this ablation study are shown in Fig. 6 and Table 3. The output meshes in Fig. 6 show that
a mesh topology obtained by DMC for the deformed point cloud is completely disordered
when the manifold-preserving loss Lmp is ablated. We also found that shape deformation
without using a global shape feature ignores the concavity of the toilet. The inflation of the
concave part of the toilet is insufficient, and its lid and body are inappropriately connected.
Thus, the global shape should be considered to obtain a better deformation. This fact is
supported by the result that the performance of E-DMC+L is further improved when the
shape feature encoder is trained together with a shape classifier.

In contrast, the output of E-DMC+L is approximately identical to those for the cases
where either of the inverse Jacobian weight and point repulsion loss Lrep is ablated. The
limited effect of these components is because DMC can obtain a somewhat precise surface
geometry by only linearly stretching the input shape. Particularly, the effect of the point
repulsion is almost negligible, as shown in Table 3, whereas the inverse Jacobian weight can
improve the surface reproduction performance quantitatively. To further analyse the effect of
the point repulsion, we ablated it from E-DMC without linear stretching. The results at the
bottom of Table 3 have shown that the point repulsion improves the performance of E-DMC
when the input shape is located locally in the voxel grid. Thus, all techniques presented in
this paper help DMC to extract higher-resolution surface meshes.

5 Conclusion

This study presented an extension of DMC [23] using learning-based point cloud inflation.
We employed Real NVP [8] to define the deformation and trained the whole network by
constraining the deformation to preserve the underlying manifold structure of the point cloud.
We evaluated our extension using the ModelNet40 and SHREC datasets with various shape
categories, thus demonstrating the enhancement of surface extraction using DMC.
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