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Abstract

A recent spate of state-of-the-art semi- and un-supervised solutions disentangle and
encode image “content” into a spatial tensor and image appearance or “style” into a
vector, to achieve good performance in spatially equivariant tasks (e.g. image-to-image
translation). To achieve this, they employ different model design, learning objective, and
data biases. While considerable effort has been made to measure disentanglement in vec-
tor representations, and assess its impact on task performance, such analysis for (spatial)
content - style disentanglement is lacking. In this paper, we conduct an empirical study
to investigate the role of different biases in content-style disentanglement settings and
unveil the relationship between the degree of disentanglement and task performance. In
particular, we consider the setting where we: (i) identify key design choices and learning
constraints for three popular content-style disentanglement models; (ii) relax or remove
such constraints in an ablation fashion; and (iii) use two metrics to measure the degree of
disentanglement and assess its effect on each task performance. Our experiments reveal
that there is a “sweet spot” between disentanglement, task performance and - surprisingly
– content interpretability, suggesting that blindly forcing for higher disentanglement can
hurt model performance and content factors semanticness. Our findings, as well as the
used task-independent metrics, can be used to guide the design and selection of new mod-
els for tasks where content-style representations are useful. Code is available at https:
//github.com/vios-s/CSDisentanglement_Metrics_Library.

1 Introduction
Recent work in representation learning argues that to achieve explainable and compact rep-
resentations, one should separate out, or disentangle, the underlying explanatory factors into
different dimensions of the considered latent space [2, 24]. In other words, it is beneficial
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Figure 1: (a) A schematic representation of disentanglement between spatial content C and
vector style S in the context of a primary and a secondary spatially equivariant task (I′, I∗).
Measuring the degree of C-S disentanglement using distance correlation (b) and information
encoded over the input bias (c). (d) A visual description of degrees of C-S (dis)entanglement.

to obtain representations that can separate latent variables that capture sensitive and useful
information for the task at hand from the less informative ones [1]. Disentanglement has
recently shown to improve task performance, model generalization, and representation inter-
pretability [11, 15, 19, 30, 41, 43, 48, 57]. Unfortunately, disentangling without supervision
is an ill-posed and impossible task [36, 37, 52] and, to obtain it, we must introduce restric-
tions and inductive priors [36, 37]. These priors are different forms of “bias” imposed by
model design (design bias), learning objectives (learning bias), and data (data bias).

In this work, we set out to reveal such choices of bias in state-of-the-art (SoTA) dis-
entanglement methods. Our particular focus is on “content-style” disentanglement, which
decomposes input images into spatial “content” and vector “style” representations. In prin-
ciple, content variables (C) should contain the semantic information required for spatially
equivariant tasks (e.g. segmentation and pose estimation), whereas style variables (S) con-
tain information on image appearance (e.g. colour intensity and texture). However, con-
trary to extensive research on quantifying the degree of disentanglement between vectors
[9, 17, 18, 28, 31, 44, 55], usually there is no analysis of C-S disentanglement. In fact, to the
best of our knowledge, there is no study identifying the training biases enforced in C-S disen-
tanglement settings or exposing the true relationship between the degree of disentanglement
and model performance. Herein, we attempt to bridge these gaps with our contributions:

• We identify and analyse the key biases in SoTA models that employ C-S disentangle-
ment. We show how the biases affect disentanglement and task performance (utility)
in three popular vision tasks: image translation, segmentation, and pose estimation.

• To make a quantitative analysis possible, we propose two complementary metrics
building on existing work, to evaluate C-S disentanglement (Fig. 1) in terms of amount
of information encoded in each latent variable (informativeness) and (un)correlation
between the encoded spatial tensor content and vector style (proxy for independence).

• We find that: a) lower C-S disentanglement benefits task performance if a specific
style-related prior is not violated; and b) performance is highly correlated with latent
variable informativeness. We also assess content semanticness (interpretability).

2 Related Work
Content-Style Disentanglement. Image-to-Image translation has extensively explored the
decoupling of image style and content [27, 32, 33, 34]. Content-style disentanglement was
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also used in other applications, such as semantic segmentation [8] and pose estimation [7],
where the content serves as a robust representation for downstream tasks. In general, most
methods derive latent spaces capturing C or S information using auto-encoder variants.

These models achieve C-S disentanglement through different biases, such as architectural
choices (e.g. AdaIN [26], content binarization [8]), learning objectives (e.g. Kullback-Leibler
divergence, latent regression loss, de-correlation losses in vector representations [6, 49]), or
supervisory signals (e.g. using content for segmentation [8]). However, the precise effect of
each bias on disentanglement and model performance is not thoroughly explored.

Evaluating Disentanglement. Recently, several methods have been proposed for assess-
ing the degree of disentanglement in a vector latent variable. A classical approach is latent
traversals: a visualization showing how traversing single latent dimensions generates varia-
tions in the image reconstruction. Latent traversals do not need ground truth information on
the factors, and can be used in mixed tensor spaces [8, 38] to offer qualitative evaluations.
Alternatively, latent traversals can be combined with pre-trained networks to measure the
perceptual distance between the produced embeddings [28].

There exist several ways in quantitatively evaluating representations learned by VAEs
and GANs. Unfortunately, these methods rely only on vector representations, and some also
peruse ground truth knowledge about the latent factors. In particular, some methods try to as-
sociate known factors of variations (e.g. rotation) with specific latent dimensions [23, 29] or
manifold topology [59]. Others measure the ability to isolate one factor in a single vector la-
tent variable [31], measuring compactness or modularity [9, 18, 55], linear separability [28],
consistency and restrictiveness [47], and explicitness of the representation [44]. Lastly, there
is work on measuring the factor informativeness in a vector latent variable w.r.t. the input,
independence among factors, as well as interpretability [17, 18].

The aforementioned metrics cannot be directly employed to C-S disentanglement set-
tings, where the latent factors have different dimensionality (i.e. the style is a vector and the
content a spatial multi-channel tensor). However, in this paper we attempt to transfer these
concepts to the C-S disentanglement domain, incorporating both spatial (tensor) and vector
representations1 to expand our understanding of the relation between C-S disentanglement
and: a) biases adopted by each model; b) task performance; c) representation interpretability.

3 Measuring Properties of Disentangled Content and Style
Given N image samples {Ii}N

i=1, we assume two representations of content and style: {Ci}N
i=1

and {si}N
i=1, respectively. Building on existing work in vector-based disentanglement [17,

18], we present two complementary metrics to evaluate two properties in the context of C-S
disentanglement: (un)correlation, and informativeness. We provide evidence that the metrics
offer complementary information in supplement Sec. 8. Then, we discuss two properties of
the disentangled representations, namely their utility and interpretability.

Distance Correlation (DC). Disentangled representations separate content and style into
independent latent spaces [24], satisfying p(C,s) = p(C)p(s). However directly measuring
independence between spatial C and vector S with existing metrics is not feasible. Since
independent representations must be uncorrelated [9], we use the empirical Distance Corre-
lation (DC) [51] to measure the correlation between tensors of arbitrary dimensionality. Note
that DC is bounded in the [0,1] range, while differently from other correlation-independence

1Note that the metrics used for our analysis are generic and can be readily applied to vector-based C-S disentan-
glement methods, such as [20].
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metrics, such as the kernel target alignment [13] and the Hilbert-Schmidt independence cri-
terion [21], it has the advantage of not requiring any pre-defined kernels.

For N samples, consider two N-row matrices T1 and T2. In general, T1 and T2 row di-
mension varies as they are formed by concatenating images Ii, content features Ci or style
features si. For Ii and Ci we first concatenate the channels and then row-scan to form a vector;
si is already a vector. DC is then defined as:

DC(T1,T2) =
dCov(T1,T2)√

dCov(T1,T1)dCov(T2,T2)
, with dCov(X ,Y ) =

√√√√ N

∑
i=1

N

∑
j=1

Ai, jBi, j

N2 . (1)

Here, dCov is the distance covariance between any two N-row matrices X and Y , while A
and B are their respective distance matrices. In particular, each matrix element ai, j of A is
the Euclidean distance between two samples ‖X i−X j‖, after subtracting the mean of row
i and column j, as well as the matrix mean. B is similarly calculated for Y . We estimate
disentanglement between C and S using distance correlation, DC(C,s), with values closer to
0 indicating higher disentanglement. C and S can be uncorrelated, e.g. DC(C,s) = 0, either
when they encode unrelated information or when one encodes all information and the other
encodes noise. The latter indicates posterior collapse, thus full entanglement. To tackle this,
DC(C,s) needs a complementary metric to measure the representations’ informativeness.

Information Over Bias (IOB). To explicitly measure the amount of information en-
coded in C and S, we introduce the Information Over Bias (IOB) metric, aiming to detect
posterior collapse when C and S are disentangled, but one (C or S) is not informative about
the input. Given latent variables z ∈ {C,s} produced from N images at inference, we mea-
sure the amount of information encoded in each representation. To do so, we train a decoder
Gθl , a neural network with parameters θl , to reconstruct images I, given the features z.

Thus, we define IOB as the expectation over the test images of the ratio:

IOB(I,z) = E
i

[
MSE(Ii,Gθ1(1))

MSE(Ii,Gθ2(zi))

]
=

1
N ∑

N
i=1

(
1
K ∑

K
k=1 ||Ik

i −Gθ1(1)||2
1
K ∑

K
k=1 ||Ik

i − Ĩi
k||2 + ε

)
, (2)

where I and Ĩ are an image and its reconstruction obtained through Gθl ; i = 1 . . .N, k =
1 . . .K, l = 1 · · ·+∞ are indices iterating on the test images, the image pixels, and the gen-
erator model index (different for each run), respectively; ε is a small value that prevents
division by zero. We justify the above definition of IOB by observing that a post-hoc min-
imization of the MSE between Ĩ and I is equivalent to maximizing the log likelihood (see
our analysis in supplement Sec. 1). Note that the ratio aims at ruling out from IOB both data
correlations (common structure, colours, pose, etc., across the images of the dataset) and ar-
chitectural biases that one could introduce in the design of Gθl . In particular, this is done by
computing the ratio between the MSE obtained after training Gθl to reconstruct the images
from their informative representation z (i.e. MSE(Ii,Gθ2(zi)), and after training Gθl from an
uninformative constant tensor 1 (i.e. MSE(Ii,Gθ1(1))). In the latter case, Gθl will only learn
the dataset bias it can model, given θl . Hence, high values of IOB can be associated with
higher information inside the representation z, while the lower bound IOB = 1 means that
no information of the images I is encoded in z.2

2Optimising Gθ with stochastic gradient descent can introduce noise and slightly alter the measure. For ex-
ample, IOB may, in practice, even be slightly smaller than 1. Thus, we average results across multiple runs and
initializations of Gθ , which contributes to the computational load of estimating IOB.
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Utility and Interpretability. As discussed, we can use DC and IOB to measure the de-
gree of disentanglement between latent representations. However, one of the primary goals
of disentanglement is to improve task performance (utility) and representation interpretabil-
ity, hence we also investigate the relationship between C-S disentanglement and these two
notions. In particular, we measure utility by quantifying performance on a downstream task,
which for disentangled representations is typically image translation [27, 33] to translate im-
age content from one domain to another. We also consider tasks using content e.g. to extract
segmentations [8] or landmarks [38], and therefore assess how effectively it can be used in
downstream tasks. We detail performance metrics for each application in Sec. 5.

Assessing interpretability is not trivial. Here, we assume that interpretability implies
semantic representations. Previously, vector representations were considered semantic if a
portion of the latent space corresponded to specific data variations [10, 60]. Style semantics
were qualitatively evaluated with latent traversals of individual dimensions [8]. Thus, we
consider a style interpretable if images produced by linear traversals in the style latent space
are realistic and smoothly change intensity. In spatial representations, such data variation
should be confined to individual objects: thus, semantic content should split distinct objects
into separate channels of C. Wherever possible, we evaluate this with qualitative visuals.

4 Validating the Effectiveness of DC and IOB

To verify the effectiveness of DC and IOB, we design an experiment using the synthetic
teapot dataset [18], which consists of 200k of 64× 64 pixel resolution images of a teapot
with varying pose and colour. Each image of this dataset is generated using 5 ground truth
(GT) generating factors, i.e. azimuth, elevation, red, green, and blue colour, independently
sampled from 5 uniform distributions. We consider the 3 colour factors as the GT style (GT
S) representation, while as GT spatial content (GT C) we leverage the object’s segmentation
mask, as it correlates with the azimuth and elevation factors (see Sec. 2 of the supplement).

We first evaluate DC and IOB using the GT C and S representations, and the input im-
ages. Then, we sample from a uniform distribution U[0,1] to generate a random style and
content representations for each image, and evaluate the metrics using the following scenar-
ios: a) random C, GT S and images; b) GT C, random S and images; c) random C, random
S and images. Finally, to approximate the highly entangled C and S scenario, we construct
the content-correlated style representations (correlated S) as the azimuth, elevation and red
colour factors. For each experiment, we randomly sample 5k images and the GT representa-
tions, while all results are the average of 3 different runs.

Results. From Table 1, we observe that for any combination of C and S (except for the
correlated S one), the DC(C,s) is low, which indicates that the representations are highly

Table 1: Empirical study results for the DC and IOB metrics evaluation using the teapot
dataset [18]. Results are in “mean ±std" format.

Metric GT C Random C GT C Random C GT C
GT s GT s Random s Random s Correlated s

DC(C,s) (↓) 0.17 ±0.00 0.13 ±0.04 0.05 ±0.00 0.13 ±0.04 0.53±0.02
DC(I,C) (↑) 0.64 ±0.03 0.16 ±0.05 0.64 ±0.03 0.16 ±0.05 0.64±0.03
DC(I,s) (↑) 0.87 ±0.00 0.87 ±0.00 0.04 ±0.00 0.04 ±0.00 0.33±0.00
IOB(I,C) (↑) 1.73 ±0.10 1.41 ±0.20 1.73 ±0.10 1.41 ±0.20 1.73±0.10
IOB(I,s) (↑) 2.47 ±0.78 2.47 ±0.78 0.76 ±0.15 0.76 ±0.15 2.70±0.26
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Figure 2: Model schematics. a) MUNIT: Instance normalization is used to remove style from
content; Es uses global pooling. b) SDNet: the content is represented with binary features;
style is forced to approximate a normal prior. c) PANet: content and style are encouraged to
be equivariant to intensity and spatial transformations.

uncorrelated. This result meets our expectation as the colour (S) and the azimuth or the
elevation factors (C) are independent in the teapot dataset. However, we also observe a high
DC(C,s) value, i.e. 0.53, between GT C and correlated S, which verifies that DC can indeed
detect the entangled representations case. Additionally, the effectiveness of the DC metric
is validated by the high DC(I,C) values when using GT C representations, versus the low
values when using random C ones. Note that the DC between the GT S and image is higher
than the one between GT C and image, which is reasonable as S and image have nearly
one-to-one mapping relationship, while the segmentation masks for different images can be
similar. The IOB results, reported in Table 1, also reflect that the segmentation mask is less
informative (IOB(I,C) = 1.73) about the input image compared to S (IOB(I,s) = 2.47) for
the GT C and GT S case. This is a result of the strong dataset bias, where given that the object
is always a teapot, it is the colour of the reconstructed image that makes it more similar to
the input one in terms of MSE.

5 Experimenting on Vision and Medical Applications
Many applications disentangle C from S [4, 20, 40, 46] or other attributes, such as pose,
geometry, and motion [14, 25, 54, 56], to improve performance in vision tasks. For our anal-
ysis, we select and discuss three SoTA approaches (see Fig. 2) from diverse applications,
namely image translation (MUNIT [27]), semantic segmentation (SDNet [8]), and pose es-
timation (PANet [38]). All resemble auto-encoders, mapping input images to disentangled
features but use several biases, which are detailed below. Our scope is to elucidate how each
bias affects disentanglement using these models and their chosen biases as exemplars.

Here we describe how each bias is enforced, whilst the detailed model descriptions and
a summary of their design and learning biases can be found in Sec. 4 of the supplement. In
particular, for: a) MUNIT we consider ablations removing Instance Normalization (IN) [53],
AdaIN layers, or style Latent Regression (LR) loss (for fairness, we do not remove LR of the
content as it is fundamental for the functioning of the model); b) SDNet we identify content
binarization, Gaussian approximation, LR and the FiLM-based [42] decoder as the main
biases that affect C-S disentanglement. We investigate their impact on the representations
and their effect on semantic segmentation; c) PANet we remove the Gaussian prior and
replace its specific C-S conditioning with AdaIN. We analyse PANet performance in pose
estimation. These models help us cover the following diverse cases: i) no supervision and
weak C constraints (MUNIT), ii) no supervision with strong C constraints (PANet), and iii)
supervision with strong C constraints (SDNet).
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Table 2: Comparative evaluation of MUNIT variants using the proposed metrics. We use
FID and LPIPS to measure translation quality and diversity between SYNTHIA [45] and
Cityscapes [12] samples. Results are in “mean ±std" format.

Learning Bias Design Bias

Metric Original w/o Latent w/o w/o Instance
Model Regression (LR) AdaIN Normalization (IN)

DC(C,s) (↓) 0.44 ±0.06 0.40 ±0.08 0.43 ±0.01 0.66 ±0.03
DC(I,C) (↑) 0.57 ±0.07 0.57 ±0.08 0.58 ±0.08 0.73 ±0.03
DC(I,s) (↑) 0.70 ±0.02 0.73 ±0.03 0.56 ±0.03 0.63 ±0.05
IOB(I,C) (↑) 4.36 ±0.38 4.34 ±0.58 4.85 ±0.10 5.01 ±0.12
IOB(I,s) (↑) 1.31 ±0.04 1.46 ±0.05 1.17 ±0.04 1.28 ±0.06
FID (↓) 73.48 ±8.35 104.51 ±4.21 52.48 ±5.03 71.4 ±4.86
LPIPS (↑) 0.08 ±0.01 0.09 ±0.01 0.06 ±0.01 0.10 ±0.01

Setup. For each model, we analyze the effect that design choices and learning objectives
have on disentanglement and task performance, and we evaluate utility and interpretability
of the learned representations. We use the implementations provided by the authors, ablating
only the components needed for our analysis. In all tables, arrows (↑,↓) indicate direction of
metric improvement; best results are in bold. Numbers are the average of 5 different runs.
Data description and learning settings can be found in supplement Sec. 4 (see D.1-D.4).

5.1 Image-to-Image Translation
We consider the original MUNIT and three variants: i) we replace the AdaIN modules of the
decoder with simple style concatenations, reducing the restrictions on the re-combination
of C and S. ii) We remove the LR loss, responsible for the style following a Gaussian. iii)
We remove IN from the content encoder, to confirm that it helps to cancel out original style
and retain the content only [26]. As [27] we evaluate quality and diversity of the translated
images using the Fréchet Inception Distance (FID) [22] and LPIPS [58].

Results. Table 2 reports the results of the ablations on the SYNTHIA [45] and City-
scapes [12] datasets. Replacing AdaIN (w/o AdaIN) with simple concatenation does not
affect the level of C-S disentanglement, but it leads to a 0.14 absolute decrease in IOB(I,s)
and DC(I,s), indicating that the style becomes less informative and less correlated with
the input. Here, we observe an information shift to the content (lower IOB(I,s), higher
IOB(I,C)) leading to better translation quality but worse diversity (LPIPS = 0.06). We infer
that this variant is worse than the original model, which had more balanced quality/diversity
scores. By removing the LR learning bias (w/o LR), the style becomes more correlated
to the input image. If the style distribution is no longer Gaussian, the style has more de-
grees of freedom to encode non-relevant information, which contributes to higher IOB(I,s)
and higher C-S disentanglement. This ablation leads to a significant translation quality de-
crease, while contrary to the analysis in [27], the diversity is not negatively affected. Finally,
by removing IN (w/o IN) we expect a more entangled content that is encoding also some
style information. Our expectations are confirmed by the decrease in C-S disentanglement
(DC(C,S) = 0.66), and a more informative content (which is also more correlated to the
input image). Interestingly, relaxing the content constraints for a task that does not require
a strictly semantic content (such as image segmentation), leads to the best quality/diversity
balance. Note that we define the best balance as achieving the highest average ranking in
FID and LPIPS (e.g. the “w/o IN" model variant is the 1st in LPIPS and 2nd in FID).

Summary. Our experiments reveal a trade-off between the translation quality/diversity
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Table 3: Comparative evaluation of SDNet variants using the proposed metrics. We use the
Dice score to measure semantic segmentation performance on the ACDC [3] dataset with
1.5% annotation masks. Results are in “mean ±std" format.

Learning Bias Design Bias

Metric Original w/o KLD w/o SPADEModel and Latent Reg. (LR) Binarization
DC(C,s) (↓) 0.49 ±0.02 0.64 ±0.03 0.44 ±0.00 0.52 ±0.01
DC(I,C) (↑) 0.94 ±0.01 0.94 ±0.01 0.98 ±0.02 0.93 ±0.01
DC(I,s) (↑) 0.43 ±0.02 0.66 ±0.00 0.44 ±0.01 0.45 ±0.01
IOB(I,C) (↑) 4.71 ±0.26 4.84 ±0.23 5.89 ±0.22 5.09 ±0.00
IOB(I,s) (↑) 1.00 ±0.01 1.00 ±0.04 0.98 ±0.04 1.00 ±0.04
Dice (↑) 0.62 ±0.02 0.61 ±0.04 0.63 ±0.04 0.75 ±0.02

and disentanglement in a translation task.3 Our metrics indicate that a partially disentan-
gled C-S space –with a near-Gaussian style latent space– leads to the best quality/diversity
performance. For MUNIT this is achieved by removing the IN design bias.

5.2 Medical Segmentation

In SDNet, content binarization and style Gaussianity are the key representation constraints.
We evaluate their effect and those of decoder design on segmentation performance measur-
ing the Dice Score [16, 50] after: i) removing content thresholding (w/o Binarization), ii)
removing style Gaussianity (w/o Kullback-Liebler Divergence (KLD) and LR), and iii) con-
sidering a new decoder, obtained replacing the FiLM style conditioning with SPADE [39].
SPADE is less restrictive, allowing the style to encode more image-related information, such
as textures, rather than just intensity (see supplement Sec. 6.1).

Results. Table 3 reports our findings on the ACDC [3] dataset. We highlight that when
using all the available annotations (fully supervised learning), all SDNet variants achieve a
similar accuracy (see supplement Sec. 6.2 for more details), suggesting that strong learn-
ing biases, such as supervised segmentation costs, make disentanglement less important.
Thus, we consider the semi-supervised training case with minimal supervision, using only
the 1.5% of available labelled data. Overall, the style encodes little information in all SD-
Net variants, probably because all medical images in ACDC have similar styles (data bias),
and reconstructing using an average style is enough to have low IOB(I,S). However, C-S
disentanglement is still important to obtain a good content representation. For example, in-
termediate levels of disentanglement (SPADE) lead to the best segmentation performance.
In this variant, disentanglement decreases compared to the original model, as some style in-
formation is probably leaked to the content (higher DC(C,s) and IOB(I,C)). On the other
hand, also removing C binarization (w/o Binarization) makes content more informative;
since the correlation between C and S decreases, we assume that the extra information en-
coded in C is not part of the style. Lastly, removing the Gaussian prior constraints from
the style (w/o KLD and LR) leads to the lowest degree of disentanglement as there is no
information bottleneck on S, and a slight decrease of the Dice score.

Summary. We find disentanglement to have minimal effect on task performance when
training with strong learning signals (i.e. supervised costs). In the semi-supervised setting, a
higher (but not full) degree of disentanglement leads to better performance, while the amount
of information in C alone is not enough to achieve adequate segmentation performance.

3Note that the effect of C-S disentanglement on task performance also depends on the data bias.
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Table 4: Comparative evaluation of PANet variants using the proposed metrics. We use SIM
to measure the performance in terms of pose estimation from landmarks on the DeepFash-
ion [35] dataset. Results are in “mean ±std" format.

Learning Bias Design Bias

Metric Original w/o Equivar. AdaIN AdaIN MLPModel w/o Gaussian
DC(C,s) (↓) 0.65 ±0.01 0.76 ±0.08 0.25 ±0.01 0.36 ±0.02 0.69 ±0.03
DC(I,C) (↑) 0.59 ±0.01 0.60 ±0.02 0.53 ±0.01 0.56 ±0.01 0.58 ±0.02
DC(I,s) (↑) 0.83 ±0.01 0.82 ±0.01 0.38 ±0.06 0.81 ±0.01 0.82 ±0.03
IOB(I,C) (↑) 1.50 ±0.08 1.50 ±0.08 1.53 ±0.06 1.52 ±0.08 1.49 ±0.06
IOB(I,s) (↑) 1.09 ±0.04 1.13 ±0.06 1.12 ±0.09 1.10 ±0.15 1.21 ±0.09
SIM (↑) 0.71 ±0.02 0.47 ±0.04 0.58 ±0.00 0.64 ±0.01 0.68 ±0.01

5.3 Pose Estimation
We consider the original PANet model and four possible variants, relaxing design biases on
both C and style, and learning biases. In detail: i) we experiment with a different condi-
tioning mechanism to re-entangle S and C, that consists of the use of AdaIN, rather than
just multiplying each S vector with a separate C channel (introducing a bias on S, similar to
MUNIT). ii) We consider the case where, instead of learning a different S for each channel
of C, we extract a global S vector, predicted by an MLP (relaxing the tight 1:1 correspon-
dence between C and S channels). iii) We also consider the case where each C part is not
approximated by a Gaussian prior. Since we cannot use the original decoder to combine C
and S, we reintroduce S using AdaIN. iv) Finally, we evaluated the effect of the equivariance
constraint, by removing it from the cost function.

Results. Table 4 reports results of the ablations on the DeepFashion [35] dataset. We
assess model performance using SIM [5] to measure the similarity between the predicted and
ground truth landmarks visualized as heatmaps. Whilst the original model is the best to pre-
dict landmarks, it only achieves average disentanglement (see DC(C,s)). Using an AdaIN-
based decoder consistently improves disentanglement as it has a strong inductive bias on
the re-entangled representation (see DC(C,s) for AdaIN, and AdaIN w/o Gaussian), but it
leads to worse landmark detection – the representation adapts tightly to the strongly-biased
decoder, and the content loses transferability to other tasks, and interpretability (see Figs. 3
and Fig. 7 of supplement). Using an MLP to encode S relaxes the specific conditioning be-
tween C and S (design bias) and reduces disentanglement. There is an information shift from
C to S, as indicated by the higher IOB(I,s) and the high DC(C,s). Here, a moderate decrease
of disentanglement shows slightly lower task performance. Finally, the equivariance cost is
the most important factor for disentanglement; removing it (w/o Equivariance) leads to the
most entangled representation (high DC(C,s)), and accuracy decrease in landmark detection.

Summary. Overall, lowering disentanglement leads to better landmark detection. Again,
balance is the key to improve the auxiliary tasks. Here, partial disentanglement is achieved
by carefully balancing the design biases used to extract style and to reintroduce it to content
while decoding. Relaxing such biases with AdaIN or MLP makes landmark detection worse.

5.4 Discussion
We now discuss the relationship between C-S disentanglement and inductive biases, task
performance, interpretability of the latent representations.

Do biases affect C-S disentanglement? Results in Sec. 5 illustrate that learning and de-
sign biases critically affect disentanglement. However, no evaluation can specifically char-
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Input

MUNIT Content (4 of 128 channels)

Input

PANet Content (4 of 16 channels)

Input

SDNet Content (4 of 8 channels)

Figure 3: Content interpretability of each original model (top row) and a variant with the
most correlated C and S (bottom row). Removing content-related design biases from SDNet
and PANet leads to less interpretable representations (same objects/joints appear in different
channels), such as the unconstrained content representations of MUNIT.

acterize the relative importance of each one, since this depends on the task at hand, as well as
the utilized data. In MUNIT, disentanglement is mainly encouraged by the content-related
design and learning biases. In fact, IN is key to removing style information from the content,
and the model cannot be successfully trained without LR of the content. Disentanglement in
SDNet is susceptible to the biases that affect both latent variables. Using a SPADE decoder or
removing content thresholding leads to more entanglement, while making the style Gaussian
through learning constraints restricts its informativeness and encourages disentanglement.
Similarly, PANet disentanglement is affected both by designing the content as Gaussian, and
by the equivariance of C and S w.r.t. spatial or intensity transformations, respectively.

What is the relationship between C-S disentanglement and task performance? Our
results showcase a clear sweet spot between C-S disentanglement and downstream task per-
formance. In particular, we observe that lowering disentanglement by relaxing constraints
on the content (e.g. removing IN), but preserving the biases that enforce style priors, such as
C-S equivariance, leads to better performance.

Does disentanglement affect content interpretability? Interpretability is hard to quan-
tify without metrics. Here, we consider the C interpretable if distinct objects appear in
different channels. We qualitatively analyze C interpretability in Fig. 3 (see also supplement
Sec. 9). Interpretability varies a lot with different design biases of the model, while learn-
ing biases do not seem to affect it. Without restrictive design bottlenecks on C, MUNIT
spreads the content across channels. Instead, SDNet and PANet original models encourage
C to encode different objects, or parts, into different channels. In SDNet, a semantic content
is encouraged by applying Softmax across channels and then binarize the output features,
while PANet approximates body parts as 2D Gaussians enforcing an information bottleneck
on each channel of C. Removing the C constraints from SDNet and PANet spreads the spatial
information across all channels, decreasing interpretability.

6 Conclusion
In this paper we evaluated the disentanglement between image C and S through experiment-
ing on 3 SoTA models, and showcased how design and learning biases affect disentanglement
and by extension task performance. Our findings suggest that whilst content-style disentan-
glement enables the implementation of certain equivariant tasks, partially (dis)entangled can
lead to better performance than fully disentangled ones. Additionally, our analysis suggests
that strict design constraints on the content space lead to increased interpretability, which
could be exploited in post-hoc tasks. Using our findings and the presented metrics will en-
able the design of better models that achieve the degree of disentanglement that maximizes
performance, rather than blindly pursuing very high (or low) disentanglement.
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