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Abstract

Graph convolutional networks (GCNs) have been applied to 3D human pose esti-
mation (HPE) from 2D body joint detections and have demonstrated promising per-
formance. However, since the vanilla graph convolution is performed on the one-hop
neighbors of each node, it is unable to capture the long-range dependencies between
body joints. They can help reduce the uncertainty caused by occlusion or depth ambigu-
ity. To resolve this issue, we propose a high-order GCN for 3D HPE. Its core building
block, termed a high-order graph convolution, aggregates features of nodes at various
distances. As a result, the network can model a wide range of interactions among body
joints. Furthermore, we investigate different methods to fuse those multi-order features
and compare how they affect the performance. Experimental results demonstrate the
effectiveness of the proposed approach.

1 Introduction

3D human pose estimation (HPE) aims to predict the 3D locations of body joints in the
camera coordinate system from a monocular image. It is a fast-growing research area and
has attracted extensive attention in the computer vision community due to its numerous real-
world applications such as human-computer interaction, action recognition, video synthesis,
and motion capture. However, 3D HPE remains a challenging problem especially as multiple
valid 3D poses can be projected to the same 2D pose in the image space.

The state-of-the-art 3D HPE systems are built on deep neural networks [23] due to their
strong capability to learn powerful feature representations. Some approaches [34, 41, 42, 48,
54] directly regress the 3D pose via a convolutional neural network [22, 24] from an image
and demonstrate superior performance over earlier methods relying on handcrafted features
[2, 17, 38]. Other works formulate the problem as 2D keypoint detection [9, 16, 43, 44]
followed by 2D-to-3D pose lifting [6, 10, 30, 36, 50]. For example, Martinez et al. [30] use
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a simple fully connected network with only 2D keypoints detection as input and achieve the
state-of-the-art 3D HPE performance.

Some recent approaches [6, 10, 50] exploit graph convolutional networks (GCNs) [4,
14, 21] to model the relationships between neighboring body joints and demonstrate their
superiority over the fully connected networks. A GCN consists of multiple graph convolu-
tion layers and repeatedly transforms and aggregates features of neighboring nodes to get
increasingly more powerful representations. However, one potential limitation of existing
GCNs designed for 3D HPE is that they perform graph convolutions only on the one-hop
neighbors of each node. As a result, they are unable to capture the long-range dependencies
between body joints, which can be critical to reduce the uncertainty caused by occlusion or
depth ambiguity.

To address this problem, this paper introduces a high-order GCN for 3D HPE. Its core
building block, termed a high-order graph convolution, aggregates features of nodes at var-
ious distances, which enables the model to learn a wide range of interactions among body
joints. It is easy to find the k-hop neighbors of each node in a graph by computing the kth
power of the adjacency matrix. However, one critical problem in designing the high-order
GCN is how to fuse the features of these multi-hop neighbors. The most simple strategy is
to connect the distant nodes directly on the graph, which is equivalent to summing up the
adjacency matrix up to its kth power. Unfortunately, naively modifying the graph structure
degrades the performance possibly because the model cannot distinguish neighbors at differ-
ent hops. Thus, we investigate two alternative fusion strategies. Specifically, we transform
the features of nodes at different distances separately and then aggregate them via summation
or concatenation. Extensive ablation study shows that (1) the fusion method has a signifi-
cant impact on the performance of high-order GCNs and the concatenation-based approach
leads to the best performance and (2) the high-order GCN outperforms the vanilla GCN,
which demonstrates the importance of modeling long-range relationships among body joints
as well as the effectiveness of the proposed approach.

In sum, the contribution of this paper is threefold.

e We introduce high-order GCNs for 3D HPE. They can learn long-range dependencies
among body joints, which is critical to resolve the uncertainty caused by occlusion or
depth ambiguity.

e We investigate three strategies to fuse the features of multi-hop neighbors and show
that it is critical to choose the optimal strategy to achieve the best performance.

e We conduct extensive ablation study to compare the high-order GCNs and the vanilla
GCN as well as different feature fusion methods. Experimental results demonstrate
that the proposed approach can outperform state-of-the-art methods.

2 Related Work

2.1 3D Human Pose Estimation

The problem of predicting 3D poses from images can be dated back to Lee and Chen [25].
A standard method is to predict the 2D poses first, and use them to infer the 3D poses by K-
Nearest Neighbor [7, 19, 49]. Recently, state-of-the-art 3D HPE approaches take advantage
of deep neural networks, and they can be roughly divided into two categories.
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The first category of approaches mainly exploit convolutional neural networks (CNNs)
to obtain the 3D pose directly from the input image [31, 33, 34, 42, 53, 54]. Some of them
tend to learn robust and powerful representations. For example, Zhou ef al. [54] integrate
a 3D depth regression sub-network into a state-of-the-art 2D detector. Pavlakos et al. [34]
propose a fine discretization of the 3D space around the subject and train a CNN to predict
the per voxel likelihood for each body joint. Sun et al. [42] design a simple integral operation
to relate and unify the heat map representation and joint regression. Some other approaches
incorporate 3D geometry prior to deep learning. Zhou et al. [53] train a deep neural network
with a kinematic object model embedding into it for general articulated object pose estima-
tion. Zhou et al. [52] utilize a sparsity-driven 3D geometric prior and temporal smoothness
to regress 3D poses from uncertain 2D keypoints maps via the EM algorithm.

The second category of approaches formulate the task of 3D HPE into two subtasks
[5, 30, 32, 50]. An off-the-shelf 2D pose detector first obtains the coordinates of 2D body
joints from the input image. Then, they are passed to a neural network for 3D pose regres-
sion. Our approach belongs to this family. The work most related to ours are [6, 10, 29, 50]
as they also rely on graph convolutional networks (GCNs). Cai et al. [6] use graph pooling
and upsampling techniques to build a local-to-global network and expand the graph con-
volution as a summation of multiple kernels corresponding to different semantic meanings.
Zhao et al. [50] propose a semantic GCN by multiplying a learnable mask to the affinity
matrix and applying different weights to each output channel. Ci et al. [10] introduce a lo-
cally connected network to enhance the representation capability of GCN. Liu et al. [29]
have a comprehensive investigation of weight sharing in a GCN. Our proposed high-order
GCN differs from previous methods in that it aggregates features of body joints at various
distances via mixing powers of the adjacency matrix, which boosts the representation capa-
bility of GCNs by capturing long-range dependencies among body joints. Also, we explore
the optimal way to fuse the multi-order feature representation.

2.2 Graph Convolutional Networks

GCNs [4, 11, 14, 21] generalize convolutional neural networks by performing convolutions
on graph data. There are roughly two types of GCNs depending on whether they are con-
structed from a spectral [11, 26, 40] or spatial perspective [4, 14, 21, 45]. The proposed
high-order GCN performs convolutions directly on the graph nodes and their neighbors,
which is more related to spatial GCNs. GCNs, as an effective alternative of CNNs, have
been applied to other computer vision tasks, e.g., action recognition [51], visual question
answering [27], object detection [47], tracking [13], multi-label image recognition [8].

The work most related to ours is Sami et al. [1], which designs a higher-order GCN to
mix feature representations of neighbors at various distances. Our work is different from
them in three aspects. First, we focus on 3D human pose estimation which is a regression
task, while their task is node classification. Second, they only explore a shallow network
with two layers and limit the network to two-hop message passing. By contrast, we use a
much deeper network and compare GCNs involving different hops of neighbors. Last but
not least, we explore different ways to fuse the multi-order feature representations, which
they ignore. Bai et al. [3] exploit a high-order GCN for skeleton-based action recognition,
but their high-order adjacency matrix is constructed via summing up the mixed powers of
the original adjacency matrix. We will discuss the limitation of this simple method and show
it leads to inferior 3D HPE performance.
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3 Our Approach

We first revisit the graph convolutional network [21] (Sec. 3.1). The high-order GCN is
proposed to learn long-range dependencies among body joints (Sec. 3.2). Finally, we show
our network architecture in detail (Sec. 3.3).

3.1 Reyvisit GCN

Let G ={V,E} denote a graph where V is a set of N nodes and £ is the collection of all
edges. The edges can be encoded via an adjacency matrix A € {0,1}¥*¥. Each node i is
associated with a D-dimensional feature vector x; € RP. The collection of all feature vectors
can be written as a matrix X € R?*V where the ith column of X is x;. A graph convolution
layer updates the features of each node via the equation below:

X' = 6(WXA) 6))

where A is the symmetrically normalized version of A with self-connections [21], W €
RP'*D is a learnable weight matrix transforming the feature dimension from D to D', & (-) is
an activation function, X’ € RPN is the updated feature matrix. A GCN consists of multiple
graph convolution layers that repeatedly transform and aggregate features of neighboring
nodes to get increasingly more powerful representations, which are used by the last layer to
predict the output.

We empirically find that decoupling the transformations for the self-nodes and the 1-hop
neighbors can significantly improve the performance of 3D HPE:

X' =o(WOX+WWUXA) )

where W) € RP'*D and WD) € R’ %P are the weight matrices corresponding to the self

and neighbor transformations respectively, A is the symmetrically normalized version of A
without self-connections. We will take Eq. (2) as a strong baseline in the experiments.

3.2 High-order GCN

As shown in Fig. 1(a), the graph convolutions defined in Eqgs. (1) and (2) only focus on the
1-hop neighbors, which limits their ability to capture the long-range dependencies among
nodes. To address this problem, we propose high-order graph convolutions to take into
account multi-hop neighbors when updating the node features, which is illustrated in Fig.
1(b).

If A is the adjacency matrix of a graph, the element (i, j) of the matrix A (i.e., the matrix
product of k copies of A) is nonzero if and only if the nodes i and j are k-hop neighbors of
each other. Note A” is an identity matrix, which indicates the self-connections widely used
in the conventional GCNs can be considered as the 0-hop neighbors. Thus, a naive way to
capture the multi-hop neighbors in a graph convolution is to sum up the mixed powers of the
adjacency matrix and use it in the original graph convolution:

K
X =o(WX ) A% 3)
k=0

where K is the maximum order of the neighbors to be involved. A* first raises A to its kth
power and then applies the symmetrical normalization. This formulation means to merge the


Citation
Citation
{Kipf and Welling} 2016

Citation
Citation
{Kipf and Welling} 2016


ZOU, LIU, WANG, TANG: HIGH-ORDER GRAPH CONVOLUTIONAL NETWORKS 5

(a) (b)

Figure 1: Comparison between the vanilla graph convolution and the high-order graph con-
volution performed on a skeleton graph. The number k € {0,1,2,3} in a node indicates
the corresponding body joint is a k-hop neighbor of the pelvis. The range of dependencies
modeled by each graph convolution is represented by the orange ellipse. (a) A vanilla graph
convolution only focuses on the 1-hop neighbors. (b) A high-order graph convolution takes
into account neighbors at different distances.

multi-order relationships among edges into a single adjacency matrix, which is equivalent
to modifying the graph structure by connecting the distant nodes directly on the graph. A
potential problem of this strategy is that it turns the indirect relationships between distant
body joints into direct ones.

As a result, it inherits the drawback of the graph convolution defined in Eq. (1) that a
shared weight matrix is used to transform the features of all neighbors at different distances.
Actually, Eq. (1) can be considered as a special case of Eq. (3) with K = 1. Our experimental
results demonstrate that this kind of oversimplified multi-hop modeling leads to inferior
performance.

Thus, we propose the following alternative form of a high-order graph convolution:

X = o(F({WH XA k=0, K})) @

F is a fusion function, W) is the weight matrix corresponding to the k-hop neighbors. Eq.
(4) means to transform and aggregate node features at different hops via unshared weight
matrices and then fuse them, which can address the limitation of Eq. (3). We consider two
fusion functions widely used in deep learning: summation and concatenation. After instan-
tiating the fusion function F as a summation function, the high-order graph convolution can
be rewritten as «

X =o() wh xA%) 5)

k=0
It assigns a different weight matrix W®) to neighbors at different hops and fuses the features
via summation. Note the graph convolution defined in Eq. (2) can be considered as a special
case of Eq. (5) when K = 1.
Alternatively, we can instantiate the fusion function F as a concatenation function:

X = o(Cat(W® XA?, ... WK XAK)) (6)

where the concatenation occurs on the channel dimension.
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Figure 2: An example high-order GCN for 3D human pose estimation. 17 is the number of
body joints.

3.3 Network Architecture

As illustrated in Fig. 2, the input of a high-order GCN is the 2D coordinates of body joints
in the image space. Inspired by Martinez et al. [30], we use the residual block consisting
of two HighOrderGCony layers as a building block and repeat it several times. All High-
OrderGConv layers are followed by batch normalization and a ReLLU activation except for
the last one. The last HighOrderGCony outputs the 3D body joint coordinates in the camera
coordinate system. An L2-norm loss is used to compare the 3D human pose prediction and
the ground truth during training.

4 Experiments

4.1 Setting

Dataset. We evaluate our approach on the Human3.6M dataset [18]. It is the most widely
used benchmark in the 3D HPE literature. Human3.6M consists of 3.6 million images which
are taken from 4 synchronized cameras with different views. There are 15 daily activities
(walking, eating, sitting, etc.) captured by 11 human subjects (5 females and 6 males) in an
indoor environment. The 3D human pose is represented as the 3D coordinates of 17 body
joints. The annotation includes precise 2D and 3D body joint coordinates as well as camera
parameters. The ground truth are obtained by motion capture devices. Following previous
work [30], we use standard normalization to preprocess the 2D and 3D poses before feeding
them to our model. The hip joint is adopted as the root joint of 3D poses for zero-centering.

Evaluation protocols. The Human3.6M benchmark defines two protocols for evalua-
tion. Protocol #1 uses five subjects (S1, S5, S6, S7 and S8) for training and two subjects
(S9 and S11) for testing. Another protocol adopts six subjects S1, S5, S6, S7, S8 and S9 as
the training set, and S11 is used as the testing set. We refer this as Protocol #2. Evaluation
is performed on every 64th frame of the testing set. Following previous work, two metrics
are utilized to evaluate our approach on Human3.6M. The metric applied in Protocol #1 is
the mean per-joint position error (MPJPE) which measures the average euclidean distance
in millimeter between the ground truth and the prediction after aligning the root joint (the
hip joint). Another metric is the mean per-joint position error after Procrustes alignment
(P-MPIJPE), which is used in Protocol #2. This metric is invariant to both rotation and scale.

Implementation details. Following previous work [36], we use the cascaded pyramid
network (CPN) [9] to extract the 2D poses from input images, and the pose bounding boxes
are obtained by the Mask-RCNN [16] with a ResNet-101-FPN [28] backbone. Both the
Mask-RNN and CPN (pre-trained on the COCO dataset) are fine-tuned on Human3.6M since
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Method Channels | # Params | MPJPE | P-MPJPE
2-hop A-summation 385 1.20M 43.69 35.64
2-hop feature-summation 223 1.20M 42.64 33.46
2-hop feature-concatenation 128 1.20M 39.68 31.69
3-hop A-summation 385 1.20M 45.18 34.95
3-hop feature-summation 193 1.20M 40.74 31.86
3-hop feature-concatenation 96 1.20M 39.52 31.07

Table 1: Ablation study on variants of high-order graph convolutions. The units of MPJPE
and P-MPJPE are millimeters (mm).

Method Channels | # Params | MPJPE | P-MPJPE
1-hop feature-concatenation 192 1.20M 42.99 34.67
2-hop feature-concatenation 128 1.20M 39.68 31.69
3-hop feature-concatenation 96 1.20M 39.52 31.07

Table 2: Ablation study on the impact of orders. The units of MPJPE and P-MPJPE are
millimeters (mm).

the keypoints in COCO are different from those in Human3.6M. In our ablation study, the
2D ground truth is used as input to eliminate the influence of the 2D pose detector.

We implement our model in PyTorch and optimize it via Adam [20]. All experiments
are conducted on a single NVIDIA RTX 2080 Ti GPU. We initialize the weights in high-
order GCNs with the initialization technique described in [15]. Max-norm is used to keep
the weights in each layer within [0, 1]. 3D pose regression from 2D detections is more
challenging than that from 2D ground truth as the former needs to deal with some extra
uncertainty in the 2D space. We find it is beneficial to set different configurations for them
to avoid overfitting and achieve better convergence. For the 2D ground truth, we set the
initial learning rate 0.001, the decay factor 0.96 per 100,000 steps, the batch size 64. For 2D
pose detections, we set the initial learning rate 0.005, the decay factor 0.8 per 100,000 steps,
the batch size 256. In the ablation study, we test the impact of the order and fusion methods
on the performance. When comparing with state-of-the-art methods, we use a three-hop
high-order GCN with feature concatenation as the fusion method, i.e., Eq. (6).

4.2 Ablation Study

We conduct extensive ablation experiments on the Human3.6M dataset. The 2D ground
truth is taken as input. The objective is to test the impact of the order and fusion methods on
the performance. Specially, we denote the three variants of high-order graph convolutions
defined in Eq. (3), Eq. (5) and Eq. (6) as A-summation, feature-summation and feature-
concatenation, respectively. We use the graph convolution defined in Eq. (2) as our baseline
GCN.

Variants of high-order graph convolutions. We compare the three strategies to model
the multi-hop neighbors in a high-order graph convolution. The results on the Human3.6M
dataset are shown in Tab. 1. We adjust the number of channels, i.e., the number of rows
of W), to control the size of all the models.We show that simply summing up the mixed
powers of the adjacency matrix leads to the worst performance. The method of feature-


Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Glorot and Bengio} 2010


8 ZOU, L1U, WANG, TANG: HIGH-ORDER GRAPH CONVOLUTIONAL NETWORKS

Method Channels | # Params | MPJPE | P-MPJPE
baseline GCN 136 0.30M 41.79 33.55
3-hop feature-concatenation 48 0.30M 40.77 31.88
baseline GCN 273 1.20M 40.99 31.75
3-hop feature-concatenation 96 1.20M 39.52 31.07

Table 3: Comparison between the baseline GCN and the proposed high-order GCN. The
units of MPJPE and P-MPJPE are millimeters (mm)

Method # Params | Training time | Inference time
baseline GCN 1.20M 0.040s 0.008s
1-hop feature-concatenation 1.20M 0.040s 0.009s
2-hop feature-concatenation 1.20M 0.050s 0.011s
3-hop feature-concatenation 1.20M 0.060s 0.013s

Table 4: Comparison of (per-batch) training and inference time between the baseline GCN
and the proposed high-order GCN.

Method Model size Example (K =3, C = 128)
baseline GCN 0(2C?) 0.27M
K-hop A-summation 0(C?) 0.14M
K-hop feature-summation O((K +1)C?) 0.53M
K-hop feature-concatenation | O((K + 1)°C?) 2.12M

Table 5: Comparison of model size between the baseline GCN and the proposed high-order
GCN. C denotes channels, i.e., the number of rows of the weight matrix wk),

concatenation defined in Eq. (6) outperforms the other two methods by a large margin in
both two-hop and three-hop cases. Thus, we will use feature-concatenation as the high-order
graph convolution in the remaining experiments.

Impact of orders. We change the range of neighbors involved in the high-order GCN
and show the results in Tab. 2. We can see that the 2-hop model reduces the MPJPE and P-
MPJPE of its 1-hop counterpart by 3.31mm and 2.98mm respectively. The 3-hop model has
slightly better performance than the 2-hop model. These results indicate that the proposed
high-order GCN can effectively capture the long-range dependencies among body joints and
improve the 3D HPE.

Comparison with the baseline. In Tab. 3, we compare our model with the baseline
GCN defined in Eq. (2). We can see that our model outperforms the baseline regardless of
the model size.

Impact of orders on training/inference time and model size. In Tab. 4, we investigate
the impact of high-order relations on training and inference time. The number of parame-
ters is fixed as 1.20M. The inclusion of high-order relations will increase the training and
inference time as the processing of nodes of different orders, e.g., W& XA* in Eq. (4), is
implemented sequentially. In Tab. 5, we further study the influence of high-order relations
on the model size. The model size depends on the number of rows of the weight matrix
W(k), i.e., channels in Tabs. 1-3, and we denote it by C here. The number of its columns is
determined by the input of each layer.



ZOU, LIU, WANG, TANG: HIGH-ORDER GRAPH CONVOLUTIONAL NETWORKS 9

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Martinez ez al. [30] 51.8 562 581 59.0 695 784 552 581 740 946 623 59.1 65.1 49.5 524 629
Sun et al. [41] 528 548 542 543 618 672 531 536 717 867 615 534 616 47.1 534 591
Yang et al. [48] 51.5 589 504 57.0 62.1 654 498 527 692 852 574 584 43.6 60.1 47.7 58.6
Fang et al. [12] 50.1 543 570 57.1 66.6 733 534 557 72.8 88.6 60.3 57.7 62.7 475 50.6 60.4
Pavlakos et al. [35] 485 544 544 520 59.4 653 499 529 658 711 56.6 529 60.9 447 47.8 56.2
Zhao et al. [50] 473  60.7 514 605 61.1 499 473 68.1 86.2 55.0 67.8 61.0 42.1 60.6 453 57.6
Sharma et al. [39] 48.6 545 542 557 622 720  50.5 543 700 783 58.1 554 61.4 452 49.7 58.0
Ours 490 545 523 536 592 716 496 498 660 755 551 538 585 409 454 556

Table 6: Quantitative comparisons on Human3.6M under Protocol #1. Errors are in millime-
ters.

Method Dire. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD. Smoke Wait WalkD. Walk WalkT. Avg.
Zhou et al. [54] 479 488 527 550 568 490 455 608 81.1 537 655 516 50.4 54.8 559 553
Pavlakos et al. [34] 475 505 483 493 507 552 461 480 611 781 51.1 483 529 415 464 519
Martinez et al. [30] 395 432 464 470 51.0 560 414 406 565 694 492 450 495 38.0 43.1 47.7

Sun et al. [41] 42.1 443 450 454 515 53.0 432 413 593 733 51.0 440 48.0 383 448 483
Fang et al. [12] 382 417 437 449 485 553 402 382 545 0644 472 443 473 36.7 417 457
Hossain & Little [37] 357  39.3 44.6 43.0 472 540 383 375 516 613 465 414 473 342 394 441
Ours 38.6 428 418 434 446 529 375 386 533 600 444 409 46.9 322 379 43.7

Table 7: Quantitative comparisons on Human3.6M under Protocol #2. Errors are in millime-
ters.

4.3 Comparison with the State of the Art

We quantitatively compare our approach with some state-of-the-art methods on Human3.6M.
The results are shown in Tabs. 6 and 7.

Note that many leading approaches, complementary to ours, have exploited ideas or
strategies from which our high-order GCN can also benefit. For example, Sharma et al.
[39] train a conditional variational autoencoder to generate 3D pose samples and use ordinal
annotations. Some other methods [6, 36] focus on video-based 3D pose estimation. Our
method does not outperform them in their single-frame settings. [36] uses a fully connected
network, whose model size is nearly 7 times as large as ours. [6] uses several strategies to
boost their performance, including data augmentation, an additional symmetric loss, non-
local layers and an additional pose refinement network, and their model size is more than 3
times as large as ours. These strategies are complementary to our method and can be used to
improve the performance.

Tab. 8 further compares our high-order GCN with the Semantic GCN (SemGCN) [50],
a state-of-the-art variant of GCN designed for 2D-to-3D pose lifting. To eliminate the in-
fluence from the 2D pose detector, we report results on 2D ground truth. We can see that
our high-order GCN (3-hop feature-concatenation) can outperform the SemGCN (without
non-local) by 2.62mm under Protocol #1 and 2.46mm under Protocol #2. Note the non-local
module [46] is designed to capture the non-local relationships among nodes but SemGCN
with non-local modules still performs worse than our approach. This demonstrates the great
advantage of our high-order GCN.

4.4 Qualitative Results

Fig. 3 shows some qualitative results obtained by our high-order GCN on the Human3.6M
dataset. Our high-order GCN can infer 3D poses from input images in various situations.
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Method MPIJPE | P-MPJPE
SemGCN 42.14 33.53
SemGCN w/ non-local [46] | 40.78 31.46
Ours 39.52 31.07

Table 8: Comparison between our high-order GCN and the Semantic GCN (SemGCN) [50]
on Human3.6M. All models take 2D ground truth as input. Errors are in millimeters

Our prediction Ground truth

48

PR

Figure 3: Qualitative results obtained by our high-order GCN on the Human3.6M dataset.

Input Our prediction Ground truth

When the 2D detector fails due to self-occlusion, our model can provide plausible results.

5 Conclusion

In this paper, we introduce a conceptually simple but effective high-order graph convolu-
tional network for 3D HPE. It learns a wide class of interactions among body joints and
effectively captures the long-range dependencies between each body part and their distant
neighbors. We also study different methods to fuse those multi-hop features. Experimental
results demonstrate the effectiveness of the proposed approach.
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