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Abstract

The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery
(CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of
research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human
genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Addi-
tionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computa-
tional methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is
greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in
different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based
drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, pro-

tein—ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

Introduction

Bringing a pharmaceutical drug to the market is a long term
process that costs billions of dollars. In 2014, the Tufts Center
for the Study of Drug Development estimated that the cost asso-
ciated with developing and bringing a drug to the market has in-
creased nearly 150% in the last decade. The cost is now esti-
mated to be a staggering $2.6 billion dollars. The probability of
a failure in the drug discovery and development pipeline is high
and 90% of the drugs entering clinical trials fail to get FDA
approval and reach the consumer market. Approximately 75%

of the cost is due to failures that happen along the drug
discovery and design pipeline [1]. Nowadays with faster high-
throughput screening (HTS) experiments, which can assay thou-
sands of molecules with robotic automation, human labor asso-
ciated with screening of compounds is no longer necessary.
However, HTS is still expensive and requires a lot of resources
of targets and ligands. These resources are frequently not avail-
able in academic settings. Additionally, many pharmaceutical

companies are now looking for ways that can avoid screening of
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ligands that have no possibility of showing success. Therefore,
computer-aided drug discovery (CADD) tools are getting a lot

of attention in the pharmaceutical industry and academia.

CADD technologies are powerful tools that can reduce the
number of ligands that need to be screened in experimental
assays. The most popular complementary approach to HTS is
the use of virtual (i.e., in silico) HTS. Computer-aided drug
discovery and design not only reduces the costs associated with
drug discovery by ensuring that best possible lead compound
enters animal studies, but it may also reduce the time it takes for
a drug to reach the consumer market. It acts as a “virtual
shortcut” in the drug discovery pipeline. CADD tools identify
lead drug molecules for testing, can predict effectiveness and
possible side effects, and assist in improving bioavailability of
possible drug molecules. For example, in a recent study of
CADD it was found that by introducing a triphenylphosphine
group into the base molecule pyridazinone, it is possible to
obtain inhibitors for proteasome [2]. Further, analogs have been
generated using this starting structure which showed high po-
tency. Many studies show how CADD can influence the devel-
opment of novel therapeutics [3-6].

CADD methods can be broadly classified into two groups,
namely structure-based (SB) and ligand-based (LB) drug
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discovery (Figure 1). The CADD method used depends on the
availability of target structure information. In order to use
SBDD tools, information about target structures needs to be
known. Target information is usually obtained experimentally
by X-ray crystallography or NMR (nuclear magnetic
resonance). When neither is available, computational methods
such as homology modeling may be used to predict the three-
dimensional structures of targets. Knowing the structure makes
it possible to use structure-based tools such as virtual high-
throughput screening and direct docking methods on targets and
possible drug molecules. The affinity of molecules to targets
can be evaluated by computing various estimates of binding
free energies. Further filtering and optimization of possible drug
molecules subsequently follow. The final selected lead mole-
cules are tested in vitro for their activity. When the target struc-
ture is not experimentally determined or it is not possible to
predict the structure using computational methods, ligand-based
approaches are often used as an alternative. These methods,
however, rely on the information about known active binders of
the target.

CADD has played a significant role in discovering many avail-
able pharmaceutical drugs that have obtained FDA approval and
reached the consumer market [7-9]. The field of CADD is
rapidly improving and new methods and technologies are being

=

Figure 1: Schematic representation of a computer-aided drug discovery (CADD) pipeline. CADD methods are broadly classified into structure-based
and ligand-based methods. Structure-based methods require the 3D information of the target to be known. Ligand-based methods are used when the
3D structure of the target is not known. They use information about the molecules that bind to the target of interest. Hits are identified, filtered and op-
timized to obtain potential drug candidates that will be experimentally tested in vitro.
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developed frequently. It has immense potential and promise in
the drug discovery workflow. In this review we give an
overview of structure-based and ligand-based methods used in
CADD, focusing on recent successes of CADD in the pharma-
ceutical industry. We outline structure prediction tools that are
routinely used in structure-based drug discovery, widely used
docking algorithms, scoring functions, virtual high-throughput
screening, lead optimization and methods of assessment of

ADME properties of drugs.

Review
Structure-based drug discovery (SBDD)

If the three-dimensional structure of a disease-related drug
target is known, the most commonly used CADD techniques are
structure-based. In SBDD the therapeutics are designed based
on the knowledge of the target structure. Two commonly used
methods in SBDD are molecular docking approaches and de
novo ligand (antagonists, agonists, inhibitors, etc. of a target)
design. Molecular dynamics (MD) simulations are frequently
used in SBDD to give insights into not only how ligands bind
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with target proteins but also the pathways of interaction and to
account for target flexibility. This is especially important when
drug targets are membrane proteins where membrane perme-
ability is considered to be important for drugs to be useful
[10,11].

Successes have been reported for SBDD and it has contributed
to many compounds reaching clinical trials and get FDA
approvals to go into the market [12]. HIV-1 (Human Immuno-
deficiency Virus I) protease is a prime drug target for anti-AIDS
therapeutics. In the early 1990s many approved HIV protease
inhibitors were developed to target HIV infections using struc-
ture-based molecular docking. It was a ground breaking success
at that time and made it possible for HIV infected individuals to
live longer than they could have without the treatment [13,14].
Saquinavir is one of the first HIV-1 protease targeted drugs to
reach the market (Figure 2a and 2c¢) [15]. Amprenavir is another
drug that was developed to target HIV-1 protease that was also
developed influenced by SBDD (Figure 2b and 2d) [16]. In

another study, structure-based computational methods have

(c)

NH;

(d)

Figure 2: FDA approved drugs Saquinavir and Amprenavir for the treatment of HIV infections. (a) The structure of Saquinavir in complex with HIV-1
protease (30XC) (b) the structure of Amprenavir in complex with HIV-1 protease (3NU3) (c) the molecular structure of Saquinavir and (d) the molecu-
lar structure of Amprenavir. Amprenavir and Saquinavir target HIV-1 protease and, in part, have been discovered through structure-based computer

aided drug discovery methods.
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been used to predict binding sites, which are important for in-
hibitor binding, in AmpC beta lactamase which have been ex-
perimentally verified [17]. FDA approved Dorzolamide is a
carbonic anhydrase II inhibitor which is used in the treatment of
glaucoma and was developed using structure-based tools
(Figure 3) [7,8].

Protein structure determination

All structure-based methods rely on the three-dimensional
target structure. The most common way to determine a protein
structure is by X-ray crystallography and NMR spectroscopy.
Recently, cryo-electron microscopy (cryoEM) has experienced
a ‘resolution revolution’, leading to an increasing number of
near-atomic resolution structures [18]. Experimental methods
such as X-ray crystallography and NMR spectroscopy are asso-
ciated with cost and time constraints, and are also limited by ex-
perimental challenges. X-ray crystallography is only possible if
the target protein can be crystallized. Some proteins, for exam-
ple membrane proteins which account for about 60% of the ap-
proved drug targets today [19], are usually difficult to crystal-
lize, thus experimental methods are not always successful in de-
termining their structures [20]. One of the disadvantages
of NMR is that it generally is limitated to smaller
proteins. Attempts are continuously being made to overcome
these challenges and limitations of experimental methods [21].

SBDD methods rely on the protein structure and in the cases
where the target structure is not possible to be determined by
experimental methods, computational methods become useful.
Determining structures from sequences using computational
methods is a powerful tool that can bridge the sequence—struc-
ture gap. Importance of protein structure prediction methods
and their role in drug discovery pipeline are well reviewed in
literature [22-25]. Several methods have been used for protein
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structure prediction including homology modeling [26,27],
threading approaches [28], and ab initio folding [29,30]. Several
computational protein structure prediction tools that are com-
monly used are listed in Table 1. Large-scale genomic protein
structure modeling has also been accomplished [31,32].

Homology (comparative) Modeling

Homology modeling is a popular computational structure
prediction method for obtaining the 3D coordinates of struc-
tures. It is well known that the protein structure remains more
conserved than the sequence during evolution [33,34]. The basis
for homology modeling is the fact that evolutionary-related pro-
teins often share similar structures. Knowing structures that
have amino acid sequences similar to the target sequence of
interest, can assist in predicting the target structure,
function and even possible binding and functional sites of the
structure.

In homology modeling, the first task is to find a homologous
structure to the sequence of interest. To do that, the sequence is
compared against a database of protein sequences where the
three-dimensional structures are known [35]. NCBI Basic Local
Alignment Search Tool (BLAST) is one of the most popular
bioinformatics sequence alignment tools used with sequence
similarity searches [36]. Once a homologous protein structure
for the sequence has been identified, building the models for the
target structure is done using comparative modeling algorithms
[37]. The models built are evaluated and refined. Assessment of
the general stereochemistry of a protein structure, such as satis-
faction of bond lengths and angle restraints of generated
models, is done in the model evaluation stage. Once the models
are verified to be acceptable in terms of their stereochemistry,
they are then evaluated using 3D profiles or scoring functions
that were not used in their generation. It is generally possible to
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Figure 3: (a) The crystal structure showing the binding of Dorzolamide (orange) to carbonic anhydrase Il (purple) (4M2U) (b) the structure of
Dorzolamide. Dorzolamide is an FDA approved drug that targets carbonic anhydrase Il to treat patience with glaucoma.
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Table 1: Some of the popular structure prediction tools, methods of prediction and their availability.

Beilstein J. Org. Chem. 2016, 12, 2694-2718.

Tool Method Availability Citation
Homology

3D-JIGSAW Fragment-based assembly server [58]
MODELLER Satisfaction of spatial restraints server/download [46]
HHpred Pairwise comparison of profile HMMs server/download [47]
RaptorX Single/multi-template threading, alignment quality prediction server [69,60]
Swiss model Fragment-based assembly and local similarity server [44]
Phyre2 Advanced remote homology detection, effect of amino acid variants  server [61,62]
Fold recognition

MUSTER Profile-profile alignment with multiple structural information server [53]
GenTHREADER Sequence alignment, threading evaluation by neural networks server/download [62]
I-TASSER Iterative template fragment assembly server/download [63]

Ab initio

QUARK Replica-exchange MC and optimized knowledge-based force field server [57]
Rosetta/Robetta Fragment assembly, simulated annealing server/download [65,64,65]
I-TASSER Fragment assembly server/download [63]
CABS-FOLD User provided distance restraints from sparse experimental data server [66]
EVfold Calculate evolutionary variation by co-evolved residue pairs server [67]

use homology modeling to predict the structure of a protein se-
quence that has over 40% identity to a protein of a known three-
dimensional structure. When the sequence similarity drops
below 30%, homology modeling is not reliable enough for
structure prediction [26]. Success of homology modeling is well
documented and has been continuously shown in CASP (Criti-
cal Assessment of protein Structure Prediction) which is a bian-
nual competition aimed at determining protein structure using
computational methods [38,39].

Homology modeling is commonly applied in structure-based
drug discovery to predict target structures that are important in
diseases [40,41]. Homology modeling of HIV protease from a
distantly-related structure has been used in the design of inhibi-
tors for this structure [42]. Similarly, M antigen structure
prediction by homology modeling has given insights into func-
tion by revealing that the structures and domains are similar to
fungal catalases [43]. One of the pioneering comparative
modeling servers developed in the early 1990s, which is still
popular today, is the SWISS-MODEL server [44,45].
MODELLER is also a popular comparative modeling program
that is available as a server and also as a standalone program
[46]. HHpred which is available as a server uses hidden Markov
model (HMM) profiles for the detection of homology and struc-
ture prediction [47].

Fold recognition (threading)
Fold recognition or threading methods are used to identify pro-

teins that do not have any sequence similarities but still have

similar folds [35,48]. Fold recognition is based on the fact that
over billions of years of protein structure evolution, consider-
able sequence divergence is observed but only small overall
structural changes have occurred in protein folds [49]. Here the
sequence of a known protein structure is replaced by the query
sequence of the target of interest for which the structure is not
known. The new “threaded” structure is then evaluated using
various scoring methods [50,51]. This process is repeated for all
experimentally determined 3D structures in a database and the
best fit structure for the query sequence is obtained [35]. This
process of identifying the best structure corresponding to the
target sequence is known as fold recognition and has been
used in structure-based drug discovery studies [48].
GenTHREADER is a popular fold recognition program that
uses neural networks for the evaluation of the alignments [52].
MUSTER is a freely available webserver that generates se-
quence—template alignments for a query sequence and identi-
fies best structure matches from the PDB [53]. In addition to se-
quence profile alignments, it also uses multiple structure infor-
mation as well. DescFold is another webserver which employs
SVM-based machine learning algorithms in protein fold recog-
nition [54].

Ab initio (de novo) modeling

Ab initio or de novo modeling is employed when there is no
sufficiently homologous structure to use comparative modeling.
De novo protein modeling does not rely on a template structure.
It models the target structure solely based on the sequence. Ab

initio structure prediction implemented in Rosetta is a popular
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de novo structure prediction technique [55]. Here a knowledge-
based scoring function is used to guide a fragment-based Monte
Carlo search in conformation space. This method will generate
a protein-like structure having centroid atoms to represent the
side chains. Another step follows to refine this centroid-based
structure using an all-atom refinement function in order to relax
the structure. Rosetta protein structure prediction methods have
shown successes in CASP experiments [56]. Ab initio structure
prediction server QUARK, developed by the Zhang group has
also shown great success in recent CASP experiments [57].
QUARK uses atomic knowledge-based potential functions and
models are built from small residue fragments by replica
exchange Monte Carlo simulations. In both CASP9 and
CASP10, QUARK was the number one ranked server in the
template free modeling category outperforming the Rosetta
server though Rosetta remains to be one of the most popular
methods of ab initio structure prediction. Many other ab initio
structure prediction software packages have been developed in
the last three decades and some of the popular ones are listed in
Table 1.

De novo modeling with sparse experimental
restraints

AD initio prediction of protein structures starting from the se-
quence is challenging and success is often limited to only small
proteins [65]. However, ab initio structure prediction can be
guided by the use of sparse experimental data [68]. NMR infor-
mation has been used in many studies to intelligently guide pro-
tein structure prediction [69-71]. NMR Nuclear Overhauser
Effect (NOE) data and chemical shifts have been used in combi-
nation with Rosetta ab initio structure prediction to obtain better
protein structure predictions [72]. Freely available CABS-
FOLD uses a reduced representation approach and lets the user
provide experimental distant restraints in ab initio structure
prediction [66]. This method was successful when tested in
CASP6 for targets for which the necessary NMR data already
existed [69]. NMR data is not the only form of experimental
data that can be used in ab initio structure prediction. With the
EM-Fold method it is possible to obtain atomic level protein
structures using only the protein sequence information and me-
dium-resolution electron density maps [73,74]. Sparse electron
paramagnetic resonance (EPR) spectroscopy data has also been
used in high-resolution de novo structure prediction [75-77].

Protein and small molecule databases

Information about drug molecules and target structures is criti-
cal in using SBDD tools and many repositories collect and store
such information about small molecules and target proteins.
PubChem, a small molecule repository is available through NIH
which contains millions of biologically relevant small mole-

cules [78]. ZINC is a virtual high-throughput screening com-
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pound library which is a free public resource [79,80]. This data-
base contains over 35 million molecules that are purchasable
and are available in 3D formats. These molecules have all been
pre-processed and are ready for docking. DrugBank has about
5000 small molecules and more than 3000 of these are experi-
mental drugs [81]. There are over 800 compounds in DrugBank
that are FDA approved.

The Protein Databank (PDB), which was first introduced in
1970s, is a global resource that contains a wealth of 3D infor-
mation about experimentally determined biological macromole-
cules [82,83]. The structures in the PDB are individual macro-
molecules, protein-DNA/RNA or protein—ligand complexes.
Experimental methods used in structure determination are
mostly X-ray crystallography and NMR spectroscopy. As of
2016, the PDB databank contains around 120,000 biological
macromolecular structures that have been deposited. It has
structural information on over 20,000 bound ligand molecules
as well. Swiss-Prot is a database which has non-redundant pro-
tein sequences which are manually annotated to contain descrip-
tions such as functional information of protein sequences and
post-translational modifications [84]. PDB and Swiss-Prot are
both general purpose biological databases.

There are other databases that contain specific biological infor-
mation as well. The BIND database contains protein complex
information and biomolecular interactions [85]. BindingDB
contains measured binding affinity information of proteins that
are considered to be targets for drugs [86]. This database
contains over one million binding data points.

Binding pocket identification and volume calculation
Once a protein’s three-dimensional structure is known, finding
binding pockets on that protein is an important next step in
structure-based drug discovery. It can give indications of where
small molecules can bind to target structures, which are associ-
ated with diseases, contributing to increase or decrease of target
activity. Binding sites in target proteins can be experimentally
determined; for example using site-directed mutagenesis or
X-ray crystallography. There are also a variety of computa-
tional binding pocket identifying algorithms available for the
drug discovery scientific community [87].

Binding pocket predicting algorithms can be grouped into two
broad categories; geometry-based and energy-based methods. In
many cases the binding pocket is considerably larger than all
the other pockets in a target and it has been found that in 83%
of enzymes that are single chain, the ligands bind to the largest
pocket in the enzyme [88]. According to this finding, the
binding pockets of a target could be predicted by the geometry
of the target. Therefore the size of the pocket is important for
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function as well. One of the geometry-based binding site identi-
fication servers is 3V [89]. Even though for some cases the
largest pocket or cleft of a protein is its binding pocket, it is not
necessarily true for all target proteins. Energy-based methods
have been developed to address this issue and have shown more
success than geometry-based methods [90]. In Q-SiteFinder a
van der Waals probe is used and the interaction energy between
the probe and the protein is found in order to identify binding
sites of the protein [91]. The SiteHound program is another
energy-based method that uses two kinds of probes; a carbon
probe and a phosphate probe which are used to identify the
binding sites for drug-like molecules and phosphorylated
ligands (such as ATP) respectively [92]. The best ligand
binding site identified in HIV-1 protease by SiteHound is
shown in Figure 4. This ligand binding site is the known inhibi-
tor binding site in HIV-1 protease. Another energy-based
method, FTMAP, uses 16 probes in identifying hot spots in
structures and was more recently extended to include any user
provided small molecule as an additional probe [93,94]. Many
other binding pocket finding programs exist. PEP-SiteFinder
[95], SiteMap available through Schrodinger [96] and MolSite
[97] are a few of these programs.

Figure 4: The best ligand binding site identified by SiteHound in HIV-1
protease. The ligand binding pocket is shown in blue spheres and is
the known inhibitor binding site of HIV-1 protease.

When the binding pocket of a target is known one significant
characteristic to be calculated is its binding pocket volume.
With this information elimination of ligands that are too bulky
to fit in the pocket can be done during the lead identification
process. One algorithm that calculates the volume of a binding
pocket is POVME (POcket Volume MEasurer) [98]. McVol is
another standalone program that can identify and calculate the
volume binding cavities in protein structures by using a Monte
Carlo algorithm [99].

Beilstein J. Org. Chem. 2016, 12, 2694-2718.

Scoring functions used in docking

In molecular docking, how well a drug binds to its target is de-
termined by the binding affinity prediction of the pose. This is
done by scoring. Scoring is used to evaluate and rank the
target—ligand complexes predicted by docking algorithms.
Scoring functions are used in SBDD for scoring and evaluating
protein—ligand interactions [100,101]. The scoring function
used by docking algorithms is a crucial part of the algorithm. It
is used in the exploration of the binding space of the ligand and
also in the evaluation of target—ligand complexes in molecular
docking. The scoring functions can be categorized into know-
ledge-based [102,103], force-field based [104,105], empirical
[106,107] and consensus [108,109]. These will be discussed
below. The accuracy of different scoring functions has been
evaluated in the literature [110-113]. These comparative studies
that evaluate docking method scoring functions use evaluation
criteria such as binding pose, binding affinity and ranking of
true binders [114]. Wang et al. evaluated the performance of
fourteen different scoring functions using 800 protein—ligand
complexes in the PDBbind database [113]. The performance
was evaluated by the predicted binding affinities of
protein—ligand complexes by different scoring functions. Ac-
cording to this study X-Score, DrugScore and ChemScore were
among the best performing scoring functions. Ferrara et al. used
nine scoring functions and assessed the performance of these
functions using 189 protein—ligand complexes [110]. They
found that ChemScore shows the best correlation for experi-
mental binding energies and predicted binding scores. In
another study done by Marsden et al., calculated binding free
energies with knowledge-based potential function Bleep agreed
best with experimental binding constants [115].

Knowledge-based scoring functions

Knowledge-based scoring functions are statistical potentials and
are derived from experimentally determined protein—ligand
information. The frequency of occurrence of interactions of a
large number of target-ligand complexes are used to generate
these potentials. The basis of these potentials is the Boltzmann
distribution. The frequency of occurrence of atom pairs is con-
verted into a potential using Boltzmann’s distribution of states.
Since these potentials use target—ligand complex data already
available, they are highly dependent on the dataset used to
create them. DrugScore uses knowledge-based potential func-
tions to predict binding affinity [116]. Other knowledge-based
scoring functions include the PMF (Potential of Mean Force)
[117] and Bleep [118].

Force-field-based scoring functions
Force-field based energy functions are developed using clas-
sical molecular mechanics. Electrostatic (coulombic) interac-

tions and van der Waals interactions (Lennard-Jones potential)
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contribute to the interaction energy between a target—ligand
complex. Two of the most widely used molecular mechanical
force-fields are CHARMM [119] (Chemistry at HARvard
Macromolecular Mechanics) and AMBER [120] (Assisted
Model Building and Energy Refinement) which have been built
mainly for molecular dynamics simulations. The molecular
docking program DOCK [121] uses force-field based scoring
functions derived from molecular dynamics force-field
AMBER.

Empirical scoring functions

Empirical scoring functions are obtained by using data from ex-
perimentally determined structures and fitting this information
to parameters. The idea here is that the binding free energy is
calculated as the weighted sum of terms that are uncorrelated.
These terms can be the number of hydrogen bonds, hydro-
phobic effect, and different types of contacts and their types etc.
Regression analysis is usually done to obtain weights of the
terms using experimental target-ligand complexes with known
binding free energy data [122]. Unlike knowledge-based
scoring functions, which are obtained by directly converting
frequency of occurrence of different interactions into potentials
using Boltzmann principle, these functions take into account
multiple terms or contributions and find the best weights for
each term using regression analyses. The HYDE scoring func-
tion is an empirical energy function which is a part of
BioSolvelT tools [123]. Here the binding energy of a
target-ligand complex is solely estimated by a hydrogen bond
term and a dehydration energy term. ChemScore [122] and
SCORE [124] are two other scoring functions that are also
empirical.

Consensus-based scoring functions

Current scoring functions are not perfect and no one scoring
function can do well in every docking complex studied.
Consensus scoring was introduced to combine different scoring
functions in the hope that it can balance out errors and improve
accuracy [125]. Consensus scoring function X-CSCORE [126]
was developed by combining three different empirical scoring
functions, namely Bohm’s scoring function [127], SCORE and
ChemScore. Another example of consensus scoring is Multi-
Score [128]. This score function is a combination of eight
different scoring functions and have shown improved

protein—ligand binding affinities.

Protein-ligand docking algorithms

In docking, predictions are made on how intermolecular com-
plexes are formed between a target and a ligand. These algo-
rithms search for the best target-ligand poses with the right con-
formational state and relative orientation. The algorithms also

crudely estimate the binding affinities of the target-ligand com-
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plexes in terms of scoring. The docking algorithms therefore
comprise a search algorithm that searches the conformational
space to find docking poses and a scoring function to predict the
affinity of the ligand in that pose. Computationally docking a
target structure to a molecule is a challenging process. Even
when target flexibility is ignored there are still a huge number
of ways a molecule can be docked. The total number of possible
modes increases exponentially as the size of the two docked
molecules increases. Therefore efficient search methods that are
fast and effective, and reliable scoring functions are critical
components of docking algorithms.

Once a target protein structure is known and a potential drug
binding site has been identified, small molecules that bind to
this site need to be determined. In drug discovery, docking algo-
rithms are used to find the best fit between a target and a small
molecule drug. Docking algorithms require a target protein
structure and a library of small molecules. The target protein
structure is usually determined using experimental methods
such as X-ray crystallography and NMR, or else it is computa-
tionally modeled. Molecular docking aims to predict the
binding mode and binding affinity of a protein-ligand complex.
A library of small molecules is virtually placed (docked) into
the desired protein—target binding site and thousands of possible
poses of binding are obtained and evaluated. The pose which is
scored with the lowest energy is predicted to be the best
possible binding mode. The models are evaluated using a
scoring function and the poses are ranked and a group of high
ranking compounds are chosen for the next step of experimen-
tal verification.

One of the very first studies that developed algorithms to eval-
uate docking poses by looking at steric overlaps was published
in the 1980s [129]. Ever since then many docking algorithms
have been developed [130-135]. Popular molecular docking
programs include Glide [131], Fred [136], AutoDock3 [137],
AutoDock Vina [134], GOLD [138] and FlexX [139].
AutoDock3 uses an empirical scoring function that has five
terms. These terms are weighted with experimental
target—ligand data. It can model side chain flexibility of the
target molecule. AutoDock Vina is the new generation of
AutoDock. The scoring function used in AutoDock Vina is a
hybrid scoring function that combines knowledge-based and
empirical scoring functions [134]. GOLD uses a force-field
based scoring function and allows the ligand to be fully flexible.
It allows target side chain flexibility to be taken into account.
FlexX is an incremental fragment-based docking algorithm
where the conformational space sampling is done using a tree-
search method. It is an ensemble method that can incorporate
target structure flexibility. The scoring function is a modified

version of empirical Bohm’s scoring. Glide is a highly popular
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docking algorithm that uses an empirical scoring function [131].
Fred, by OpenEye Scientific, finds protein—ligand docking
poses by using a non-stochastic exhaustive method. It uses
filters that take shape complementarity into account and the top
scoring poses selected are further optimized [136]. Docking
algorithms are discussed in detail in reviews [140-142] and
comparative assessment of algorithms have been done
[112,143-145]. Zhou et al. evaluated the performance of several
flexible docking algorithms by calculating enrichment factors
for a set of pharmaceutical target—drug complexes and found
that Glide XP was superior to other methods tested [144]. The
study done by Perola et al. shows that Glide is superior to other
methods tested for the prediction of binding poses but virtual

screening is mostly target-dependent [112].

The best docking algorithm should be the one with the best
scoring function and the best searching algorithm. The perfor-
mance of various docking algorithms has been evaluated and
they are able to generate docked ligand conformations that are
similar to experimental complexes [146]. Compared to co-crys-
tallized X-ray structures of target-ligand complexes docking
results can sometimes even predict poses with RMSDs of less
than 1 A [147]. Measuring RMSD (root mean square deviation)
is the most common way to compare the structural
similarity between two superimposed structures. RMSD is
given by:

n
RMSD = | 13 a2
M =1

where 7 is the number of atom pairs and dy is the distance be-

tween the two atoms in the x! atom pair.

However, it is important to note that no single docking method
performs well for all targets and the quality of docking results is
highly dependent on the ligand and the binding site of interest
[148-150]. The best four binding poses predicted for the known
inhibitor Dorzolamide binding to carbonic anhydrase II ob-
tained by AutoDock Vina are shown in Figure 5.

Preprocessing of target and ligands

Target and ligand preparation steps are crucial and are often
done before docking is performed to ensure good screening
results [151]. In experimental methods such as X-ray crystallog-
raphy the hydrogen atoms of structures are not generally
present. However, the presence of these atoms and the loca-
tions of these bonds are important for molecule docking algo-
rithms. Additionally, the target protein structures, if used with-
out preprocessing, can give rise to potential issues due to

missing residues, atom clashes, crystallographic waters and
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Figure 5: Binding mode prediction. The known inhibitor Dorzolamide is
docked into Carbonic anhydrase Il crystal structure (4M2U) (blue)
using AutoDock Vina. Four binding poses predicted are shown in
green, cyan, red and yellow. The molecular structure of Dorzolamide is
shown in Figure 3b.

alternate locations. In target preprocessing, missing atoms such
as hydrogen are added and atomic clashes are removed. The
same is true for the ligands that are used. During ligand prepro-
cessing, ligand three-dimensional geometries are predicted. All
possible ionization, stereoisomeric and tautomer states are
assigned [152]. The protonation states of structures are also im-
portant in prediction of docking poses because protonation
states affect how ligands bind to the binding site [100]. Opti-
mizing protonation states of binding pockets and also positions
of polar hydrogens can lead to identifying the most native-like
docking poses.

SPORES is one program that is used for the prepossessing of
proteins for protein—ligand docking. It can generate different
protonated states, tautomeric states and stereoisomers for pro-
tein structures [152]. LigPrep from the Schrodinger Suite [153]
allows to obtain all-atom 3D structures of ligands. It is avail-
able through the maestro interface or by command line. A web-
based ligand topology generating server, PRODRG, can
generate 3D coordinates for ligands that are of equal or better
quality than other methods [154].

De novo ligand design

By using fragment-based de novo ligand design it is possible to
assemble molecules that are drug-like with much less search
space having to be explored. In some cases, de novo drug
design is less successful in generating drug candidates com-
pared to other methods such as high-throughput virtual
screening methods for large databases. One limitation of this
approach can be attributed to its high complexity. When a high-

resolution target structure is available, ligand growing programs

2702



such as biochemical and organic model builder (BOMB) can be
used to design ligands that bind to the target without using
ligand databases [155,156]. Using BOMB it is possible to grow
molecules by adding substituents into a core structure. It has
been possible to design inhibitors for Escherichia coli RNS
polymerase using the de novo drug design program SPROUTS
[157]. In another study that used the SPROUT program, novel
inhibitors were developed for Enterococcus faecium ligase
VanA using hydroxyethylamine as the base template structure
[158]. It is generally necessary to synthesize molecules that are
obtained by de novo drug design. Whereas when using virtual
screening methods, since the screening is usually done with
databases of commercially available molecules, it is possible to
purchase these molecules without the need to synthesize them.
LigMerge is another novel algorithm that can generate novel
ligands for drug targets [159]. It uses known ligands of a target
and generates models with similar chemical features by finding
the maximum common substructure of known ligands. Chemi-
cal groups of superimposed ligands are attached to the common
substructure. This produces different molecules that have fea-
tures of the known ligands. The algorithm is able to identify
novel ligands for several known drug targets that have pre-
dicted affinities higher than their known binders. The Auto-
Grow software is a drug molecule optimizing program. It can be
used to optimize ligands according to various properties and
binding affinities and is available to download [160]. If two
fragments bind to two non-overlapping nearby sites on a target
protein, these fragments can be joined to obtain a possible new
drug molecule. In the SILCS (site identification by ligand
competitive saturation) method, molecular dynamics simula-
tions are used to identify fragments that bind to a target
[161,162]. SILCS uses explicit molecular dynamics simula-
tions where the target molecule is simulated in an aqueous solu-
tion that contains different fragments. Using multiple simula-
tions SILCS determines high probability binding areas of the
target for the different fragments which can be used in frag-
ment-based drug design. Another de novo ligand design
program is LigBuilder which is available for download
[163,164]. Here the ligands are either grown or linked by user’s
choice, and an empirical scoring function is used to estimate

binding affinities.

Structure-based virtual high-throughput screening
(VHTS)

Structure-based virtual high-throughput screening (VHTS) is
large scale in silico screening of drug molecules in databases of
small molecule compounds for a target of interest. Here a target
is “screened” against a library of drug-like molecules and
binding affinities of the ligands to the target are estimated using
the scoring functions described previously. In addition to

finding the best docking pose VHTS also ranks docking results
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according to their predicted affinities for the entire database.
Since large databases are screened, it is important that the
target—ligand docking algorithms used in VHTS are both fast
and sufficiently accurate, to be able to identify a subset of
possible drug compounds. Small molecules that are predicted to
bind to the target with high affinity can be identified. These
“hits” are then generally further optimized and subsequently
tested experimentally. With improving computational resources
and parallel processing cluster availability, it is now possible to
screen millions of compounds within a matter of hours or days.
Because of VHTS it is possible to experimentally test a rather
small number of molecules. Testing thousands of available
compounds in databases experimentally may no longer be

necessary.

Structure-based high-throughput screening has been used to
identify inhibitors of protein kinase CK2 targeting its ATP
binding site [165]. CK2 is an important target in developing
antitumor drugs. About 400,000 compounds have been
screened, from which 12 hits were selected for evaluations
using in vitro assays. Out of these hits a novel drug was identi-
fied which was able to inhibit CK2 enzymatic activity with an
IC50 of 80 nM. At the time it was discovered, this drug was
considered one of the most potent drugs for a protein kinase. In
another study, VHTS was used to show proliferator-activated
target agonistic behavior with Sulfonylureas and Glinides
binding [166]. This finding has implications in the treatment of
type-2 diabetes and it was also confirmed by experimental
assays. Recently, virtual screening has been used to find
anitiviral inhibitors that target the Ebola virus. This study found
a lead candidate from the TCM database that shows a decrease
in activity for the protein encoded by the virus [3]. This promis-
ing candidate also shows good pharmacokinetic properties.
VHTS was also used to find a novel quinolinol that binds to
MDM2 in a fashion mimicking the binding of p53 and inhibit
the MDM2-p53 interaction [167]. This inhibition can activate
p53 in cancer cells. There are many more examples where
VHTS has been used in drug discovery studies [168-172].

Target flexibility in molecular docking

Experimental methods such as X-ray crystallography represent
proteins as static structures. However proteins are dynamic
systems and show internal motions. The functionality of pro-
teins is governed by their internal dynamics. In order to explain
their function it is important to understand their dynamic char-
acteristics [173]. In the first molecular docking attempts in the
1980s, the rigidity of the target protein was always assumed
[129]. This has not changed significantly until recently; some
newer docking algorithms can account for target flexibility. It is
important to account for target protein flexibility because pro-

tein structures are dynamic in nature and their structures change
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upon binding of drug molecules. These changes may involve
overall backbone structure rearrangements or they can be subtle
where only the side chains near the ligand binding site change
to accommodate the bound ligand. However, this dynamic
nature of targets is frequently ignored and protein flexibility is
underrepresented in CADD. In conventional docking algo-
rithms the target is held rigid while the ligand molecule is gen-
erally assumed to be flexible. This rigid body docking of
ligands to the target is not realistic and can give misleading
results because targets are actually able to freely undergo side
chain and backbone movements as a result of ligand binding by
an induced fit mechanism [174]. Two approaches that can be
taken to account target flexibility are induced fit docking

methods and ensemble-based screening methods.

In induced fit docking the target protein structures are modeled
as flexible, not rigid. They are able to accommodate induced fit
that is caused by the ligand molecule binding to it. Schrodinger
has introduced induced fit docking protocols through Glide
[174]. RosettaLigand also accounts for target flexibility and
shows success in predicting target—ligand poses. All residue
side chain flexibility of the ligand binding pocket and target
backbone flexibility are taken into account by Rosettaligand.
This method uses a Monte-Carlo-based minimization algorithm
and the Rosetta full-atom energy function [175].

Ensemble-based docking is an alternative method to induced fit
docking. With ensemble-based screening methods there is no
need to choose flexible residues of interest to binding [176-
180]. The relaxed complex scheme (RCS) method uses struc-
ture dynamics and docking algorithms in combination to
account for target flexibility [181,182]. One successful applica-
tion of RCS was reported for HIV integrase. MD simulations
that were performed with the holo-structure of HIV integrase
bound to a known ligand showed signs of a novel binding
pocket opening in close proximity to its active site [183]. RCS
ligand docking showed that this binding site is a possible
binding pocket for drug molecules. This finding paved the way
for the development of raltegravir to treat HIV infection which
was later approved by the FDA (Figure 6) [184,185]. These en-
semble-based screens use an experimentally determined starting
target structure and use various methods to generate target
structure ensembles. These methods include molecular dynam-
ics simulations [186], Monte Carlo simulations [187], enhanced
sampling [177] or just simply experimental ensembles from
NMR or multiple crystal structures, to generate an ensemble of
conformations based on the starting target structure. By doing
so, conformations of the target structure that are relevant to the
biological function which are not accessible by experimental
structure determination, can be obtained. The trajectories can be

clustered to obtain a set of representative conformations. The
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difference here is that instead of using one structure, an ensem-
ble of structures is used in docking. Due to the range of confor-
mations generated by these methods a more representative
set of small molecules can now bind to the ensemble
[6,188,189].
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Figure 6: The molecular structure of Raltegravir. Raltegravir is an FDA
approved drug used in the treatment of HIV infection.

Enhanced sampling methods

Ensemble-based methods which are typically employed to
account for target flexibility use enhanced sampling methods.
One of the tools that is extensively and routinely used to under-
stand protein motions and conformational space that is acces-
sible for protein structures is molecular dynamics (MD) simula-
tions [190]. The most widely used molecular dynamics soft-
ware packages are NAMD [191], GROMACS [192] and
AMBER [120]. The typical time-scale of a molecular dynamics
simulation is in the order of nanoseconds to microseconds.
However to capture biologically important conformational tran-
sitions, frequently it is important to probe dynamics in the order
of milliseconds. Simulating on that timescale makes it possible
to overcome high-energy barriers in some important biological
transitions. With conventional all-atom MD simulations and
typically available computational resources this can be a very
time consuming process. Millisecond-scale MD simulations are
possible with high speed supercomputers, although most
computational scientists do not have access to such powerful
machines [193]. This is considered a major limitation of MD. It
may take months to complete a one microsecond molecular dy-
namics run on a system having around 25000 atoms on
24 processors [194]. Enhanced sampling methods have been
introduced to address this issue [176,195]. With enhanced
sampling methods it is possible to find conformational states
that are relevant to the function of proteins that are not explored
in conventional MD. Enhanced sampling methods introduce a
bias on the system being simulated. Several methods of en-
hanced sampling are introduced in literature, including: acceler-
ated molecular dynamics [196,197], metadynamics [198,199],
umbrella sampling [200] and temperature-accelerated molecu-
lar dynamics [201,202].
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Accelerated molecular dynamics (aMD) simulations reduce the
energy barrier of wells or in other words raise the energies of
the wells that are below a certain threshold energy [203]. This
leaves the high-energy states above the cutoff unaffected. When
the original energy of the system is below the calculated energy,
an additional potential term is added (a boost potential), thereby
allowing energy barriers to be smaller. This makes it possible
for the system to access conformations which are not accessible

without the energy barrier reduction [203-205].

In metadynamics a history-dependent bias potential (which is a
function of a set of collective variables) or a force is added to
the Hamiltonian of the system to accelerate the system in
consideration by pushing it from the local energy minimum
[199]. It is important that the collective variables used can
describe the initial, final and intermediates states. Commonly
used collective variables are interatomic angles, dihedrals and
distances. By doing so, it is possible to sample rare events that
are otherwise not sampled by conventional MD. Finding the set
of collective variables however is challenging especially when
the simulated biological system is more complex. Recently, in-
duced fit docking has been coupled with metadynamics to
predict protein—ligand complexes in a reliable way. By incorpo-
rating metadynamics with induced fit methods, the predictive
power of these methods can be enhanced without requiring too

much computational resources [4].

The umbrella sampling technique is used to calculate free
energy differences in systems [200]. An additional energy term
or a bias potential is introduced to the system along a reaction
coordinate. This bias potential can then drive the system from
the reactant state to the product state. Each of the intermediate
states is simulated by MD. Most of the time, for reasons of
simplicity, bias potentials are applied as harmonic potentials
[200,206].

In temperature-accelerated MD, the system simulation is done
at a high enough temperature which makes it possible to accel-
erate the sampling. Temperature accelerated MD has been used
in the study of ligand dissociation from the inducer binding
pocket in the Lac repressor protein [202]. By using this method,
it was possible to sample the dissociation trajectories in a rela-
tively short period of time to capture the ligand dissociation.
The replica exchange method runs a number of independent
replicas in different ensembles of the systems at different tem-
peratures and allows exchange of replica coordinates to take
place between these ensembles [207]. This method can also en-
hance sampling in cases where the energy landscape of a
system has many minima and where it is not possible to
cross the barriers between them during standard simulation

times.
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Rigorous binding free energy calculations

Rigorous binding free energy calculations can be used to more
precisely estimate the binding affinity of target-ligand com-
plexes and these affinities can be used to rank the fit of drug
molecules for a particular target. Binding affinities can be used
to infer how drug binding will be affected by target mutations
[208]. The potency of a drug is assumed to be directly related to
the target—drug molecule binding affinity. Therefore it is impor-
tant to be able to accurately predict the target-ligand binding
affinity [209]. Currently the most accurate approaches to calcu-
late binding free energies are rigorous approaches [210]. Monte
Carlo algorithms and molecular dynamics simulations are used
for generating ensemble averages to model complexes in the
presence of explicit water molecules using classical force-fields.
Two rigorous binding free energy approaches are the free
energy perturbation (FEP) methods and thermodynamic integra-
tion (TI) methods [211-215]. These methods are much more
accurate than virtual screening. Both of these methods are
rigorous alchemical (non-physical) transformations, where the
transformation happens via an alchemical pathway of states in a
thermodynamic cycle (Figure 7). By using these intermediate
states, the starting state of a biological system can be trans-
formed into another state. Turning off atom charges is one ex-
ample of an intermediate pathway of an alchemical
thermodynamic cycle. The binding free energy is
computed as a sum of all the steps in the cycle from unbound to

bound.

Free energy perturbation is one of the most popular molecular
simulation-based free energy calculation methods [213]. It was
first introduced by Zwanzig in the 1950s [216]. This method
uses statistical mechanics as well as molecular dynamics and
Monte Carlo simulations. It requires that there are a sufficient
number of alchemical intermediate states especially if the end
state perturbation is large. An alternative to FEP is thermo-
dynamic integration. In thermodynamic integration a coupling
parameter is introduced to define a series of non-physical inter-
mediate states. The free energy change of two states is then
calculated by integrating the derivative of potential energy over
all coupling parameters [215]. The energy calculation methods
employed in docking algorithms are fast and therefore useful in
screening large databases of molecules. Rigorous free energy
based methods are not suggested for screening large databases
since they are much more time consuming. Even though energy
calculations used in virtual high-throughput screening experi-
ments can lead to the identification of hits, they are not reliable
in predicting accurate binding affinities. Therefore they cannot
be reliably used in lead optimization [112,217]. Recently, free
energy calculation guided (FEP-guided) lead optimization has
started to evolve [156]. The novel method BEDAM (binding
energy distribution analysis method), based on statistical
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Figure 7: An example alchemical thermodynamic cycle for a protein—ligand binding free energy calculation. The protein is shown in blue spheres. The
ligand, depicted in solid black, indicates there are no coulombic or van der Waals (VDW) interactions with the environment. The ligand, depicted in
solid orange, indicates there are coulombic and VDW interactions with its environment. The systems that are subjected to simulations in each cycle
are highlighted in blue boxes. All simulations are run in a water environment. The first step is to add restraints between ligand and the protein in order
to keep the ligand confined to the binding pocket and to avoid the ligand leaving the pocket when its interactions are removed. The systems with
restraints turned on are indicated by red hexagons. In the next step the coulombic and VDW interactions of the ligand are removed. This step is fol-
lowed by the removal of the restraints applied to the ligand. Next the coulombic and VDW interactions of the ligand are turned on such that the ligand
is in contact with solvent. Summing up the free energy changes along the thermodynamic cycle would give the protein-ligand binding free energy.

mechanics, is used to calculate binding free energies of target-
ligand complexes [218]. BEDAM is an implicit solvent method
that is implemented using Hamiltonian replica exchange molec-
ular dynamics. Recently BEDAM showed success in the
SAMPLA (statistical assessment of the modeling of proteins and
ligands) challenge in predicting free energies of binding for a
set of octa-acid host—guest complexes [219]. VM2 is another
method used in target-ligand binding energy calculations which
falls between rigorous free energy calculation methods and ap-
proximate docking and scoring algorithms in its complexity
[220]. It is an implicit solvent method and uses empirical force-
fields. Its implementation is based on mining minima end point
method (M2). In this method the binding site is taken to be fully
flexible and the other parts of the target are kept fixed. Due to
the flexibility of the binding site, it can adapt according to dif-
ferent bound ligands. The free energy is estimated to be the sum

of all local energy minima.

Lead optimization and assessment of ADME and
drug safety

When hits are obtained for a target structure by screening small
molecule databases, the next step usually is lead optimization.
During lead optimization, the effectiveness of promising hits
obtained is generally enhanced while at the same time obtain-
ing the desired pharmacological profiles to reach the required
affinity, pharmacokinetic properties, drug safety, and ADME
(absorption, distribution, metabolism, and excretion/elimina-
tion) properties. By increasing the affinity of a drug to the target
its potency (efficacy) can be increased. The free energy of
binding of a drug is a measurement of the potency of a drug to
the target of interest. This could be done by doing alchemical
free energy calculations in complex with running molecular dy-
namics simulations. One simulation starts with the target-ligand
bound complex and slowly removes the ligand, and the other

slowly removes the ligand from the solution. It is possible to
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find chemical changes of a possible drug candidate that can
improve its potency using alchemical free energy calculations.
This is done by gradually converting one atom of the
ligand to another and calculating the binding affinity.
These affinity changes with atom modifications
can be used as guides for improving potency of drug candidates
[194].

The permeability of a drug through the intestines and solubility
are both important factors that affect drug absorption [221].
Therefore, in silico prediction of solubility and membrane
permeability of drugs is an important part of lead optimization
[222]. If an orally administrated drug has poor solubility or a
high dissolution rate, the drug tends to be excreted by the body
without entering the blood stream. This causes the drug to be in-
efficient and can even cause other biological side effects. To ex-
perimentally measure the solubility, the synthesis of the drug is
needed which is a time consuming process. However, predicting
solubility using computational methods is fast. It is possible to
perform solubility calculations on large molecule libraries with-
out needing a lot of computational resources. The solubility data
can assist medicinal chemists to evaluate the drug candidates
without having to synthesize molecules at all. This greatly
reduces the costs of molecule synthesis and time for experimen-
tal solubility measurements. Huynh et al. used an in silico
method for the prediction of solubility of docetaxel (DTX), an
anti-cancer molecule used to treat various types of cancer [223].
In this study solubility parameters for DTX were obtained using
MD simulations. This in silico model was in agreement with the
experimental solubility of DTX. Simulation-based approaches
are frequently used in computational permeability prediction
[224,225]. In one study, trajectories obtained by molecular
dynamic simulations have been used to obtain diffusion coeffi-
cients of permeation of drug-like molecules through the blood-
brain barrier [225]. In silico approaches to predict drug solu-
bility in both aqueous media and DMSO are discussed in a
review [226].

Human intestinal absorption of a candidate drug is of high
importance because it can affect the bioavailability of a drug.
According to the Lipinski’s ‘Rule of 5°, poor absorption or
permeation is more likely when: there are more than 10 H-bond
acceptors, more than 5 H-bond donors, Log P is over 5, and the
molecular weight is over 500 [227]. There are extensions of the
Rule of 5 in predicting drug-likeliness as well [228]. One such
extension later proposed is the ‘Rule of 3° which was used in
the construction of fragment libraries for lead generation [229].
These rules are generalized rules for evaluating the drug-like-
ness and bioavailability of compounds. Various statistical and
mathematical models have been based on these rules and their

extensions. Machine learning algorithms such as neural
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networks have been used in the prediction of drug-likeness and
bioavailability [230,231].

QikProp is an ADME program offered by Schrodinger that
predicts pharmaceutically relevant and physically significant
descriptors for small drug-like molecules [232]. The VolSurf
package can be used to calculate ADME properties and
generate ADME models [233]. These ADME models can then
be used to predict the behavior of novel molecules. It can also
be used to find molecules with similar ADME properties as
active ligands of interest. FAF-Drugs2 is an ADME and toxici-
ty filtering tool that can calculate physicochemical properties,
toxic and unstable groups, and key functional components
[234]. Even though many possible drug molecules go to experi-
mental verification stage or even animal models, they do not
reach clinical trials. This is mostly due to the fact the drugs
have poor pharmacokinetic properties and toxicity [235]. Thus
filters for ADME properties are important for drug screening
[236]. Computational ADME methods have advanced greatly in
the last few decades and pharmaceutical companies are showing

great interest in this area [237].

Ligand-based drug design (LBDD)

The main alternative to SBDD is LBDD. In the case where the
potential drug target structure is unknown and predicting this
structure using methods such as homology modeling or ab initio
structure prediction is challenging or undesirable, the alterna-
tive protocol to use is Ligand-based drug design [238,239]. Im-
portantly, however, this method relies on the knowledge of
small molecules that bind to the target of interest. Pharma-
cophore modeling, molecular similarity approaches and QSAR
(quantitative structure—activity relationship) modeling are some
popular LBDD approaches [240]. In molecular similarity
methods, the molecular fingerprint of known ligands that bind
to a target is used to find molecules with similar fingerprints
through screening molecular libraries [241]. In ligand-based
pharmacophore modeling, common structural features of
ligands that bind to a target are used to do the screening [242].
QSAR is a computational method that models the relationship
between structural features of ligands that bind to a target and
the corresponding biological activity effect [243].

Similarity searches

The main idea of similarity-based or fingerprint-based ap-
proaches is to select novel compounds based on chemical and
physical similarity to known drugs for the target. Ligand simi-
larity search methods are simple but effective approaches based
on the theory that structurally similar molecules tend to have
similar binding properties [244]. These similarity measures do
not take into account information about activities of known

binders of the target. G-protein-coupled target GPR30 specific
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agonist that activates GPR30 was developed using similarity
searches. The final similarity score that was used comprised a

2D score and a 3D structure similarity component [245-247].

Pharmacophore modeling

A pharmacophore is a molecular framework that defines the
essential features responsible for the biological activity of a
compound. When structural information about the drug target is
limited or not known, pharmacophore models may be built
using the structural characteristics of active ligands that bind to
the target [248]. When 3D information of the target structure is
known this binding site information can also be used in gener-
ating pharmacophore models [242]. Pharmacophore models that
use chemical features such as acidic/basic residues and hydro-
gen bond acceptors and donors are found to be the most effec-
tive models [248]. Pharmacophore modeling has also been used
in virtual screening of drugs in large databases [249]. There are
programs developed to identify and generate pharmacophore
models such as DISCO, GASP and Catalyst. It has been re-
ported that GASP and Catalyst perform better than DISCO in
reproducing the pharmacophore models [250]. One naturally
occurring anti-cancer molecule identified using QSAR is I3C
(indole-3-carbinol). However, this molecule has never gone past
clinical trials due to its low potency. This active compound was
optimized using ligand-based pharmacophore modeling to
develop highly potent analog SR13668 which is a novel drug
that shows to be highly potent against several cancer types [5].
Pharmacophore model construction steps can be summarized as
follows:

1. The active compounds known to be binding to the
desired target, that are also known to have the same
interaction mechanism, are identified either by a litera-
ture search or a database search.

2. (a) For a 2D pharmacophore model essential atom types
and their connectivity are defined (b) For a 3D pharma-
cophore model the conformations are defined using
IUPAC nomenclature.

3. Ligand alignment or superimposition is used to find
common features required in binders.

4. Pharmacophore model building.

5. Ranking of the pharmacophore models and selecting the
best models.

6. Validation of pharmacophore models.

QSAR (quantitative structure—activity relationships)

QSAR methods are based on statistics that correlate activities of
target drug interactions with various molecular descriptors. The
basis of the QSAR method is the fact that structurally similar
molecules tend to show similar biological activity [251]. These

models describe mathematically how the activity response of a
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target, that binds a ligand, varies with the structural features of
the ligand. QSAR is obtained by calculating the correlation be-
tween experimentally determined biological activity and various
properties of small ligand binders [243]. QSAR relationships
can be used to predict the activity of new drug molecule
analogs.

In order to quantify the activity of a drug molecule, several
values can be used. Half maximal inhibitory concentration
(ICs0) and inhibition constant (Kj) are the most commonly used
measures. QSAR models, unlike the pharmacophore models,
can be used to find the positive or negative effect of a particu-
lar feature of a drug molecule to its activity. QSAR methods
have been used successfully on various drug targets such as
carbonic anhydrase [252,253], thrombin [254,255] and renin
[256]. Different machine learning techniques have also been
used in constructing QSAR models [257-259]. In classical or
2D QSAR methods, the biological activity is correlated to
physical and chemical properties such as electronic hydro-
phobic and steric features of compounds [260]. In more ad-
vanced 3D QSAR methods, in addition to physical and
geometric features of active drug molecules, quantum chemical
features are also used. Recently QSAR models have also been
developed for membrane systems [261].

The basic steps (Figure 8) of the QSAR method can be summa-

rized as follows:

1. The active molecules that bind to the desired drug target
and their activities are identified through a database
search, a literature search, or HTS experiments.

2. Identification of structural or physicochemical molecu-
lar features (fingerprint) affecting biological activity (e.g.
bond, atom, functional group counts, surface area etc.).

3. Building of a QSAR between the biological activity and
the identified features of the drug molecules.

4. Validation of the QSAR biological activity predictive
power.

5. Use of the QSAR model to optimize the known active
compounds to maximize the biological activity.

6. The new optimized drug molecule activities are tested
experimentally.

Success of a QSAR depends on the molecular descriptors
selected and the ability of these models to predict biological ac-
tivity. If there is not enough activity data to extract patterns,
QSARs cannot perform well. Therefore, this method requires a
certain minimum amount of training data in order to build a
good predictive model and it is often linked to high-throughput
screening. Statistical methods have been used in linear QSAR to

pick molecular descriptors that are important in predicting the
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Figure 8: Schematic diagram showing the steps involved in QSAR.
Known drug molecule activity and descriptor data is obtained and the
mathematical model of QSAR is built such that descriptors can predict

the activity of each molecule. The predictive power of models are vali-
dated and used in predicting activities of novel compounds.

biological activity. MLR (multivariable linear regression) can
be used to find molecular descriptors that have a good correla-
tion with the target—ligand biological activity. It is only possible
to use linear regression methods if the activity descriptor rela-
tion is linear. However the relationship between biological ac-
tivity and the molecular descriptors are not always linear [262].
Machine learning approaches such as neural networks and
support vector machine methods are used to generate QSAR
models to address this issue of non-linear fitting [263-265].
Principal component analysis (PCA) can be used to simplify the
complexity by removing the descriptors that are not indepen-
dent [266]. Once the right set of features is identified and the
QSAR is built, these models can be validated using methods
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such as cross validation [267,268]. QSAR models can be used
to predict the biological activity of novel molecules by just
using the molecular features. Thus these models can be used to
screen a database of molecules to find potential active mole-
cules.

Some of the drugs that are on the market with the help of
ligand-based drug discovery are Zolmitriptan, Norfloxacin and
Losartan [8]. Norfloxacin is a drug that is used in urinary tract
infections and was developed using a QSAR model and ap-
proved by the FDA in 1986 [269]. Losartan [270] is used to
treat hypertension and Zolmitriptan [271] is used as a treatment
to migraine (Figure 9).

One difference between pharmacophore models and QSAR is
that the pharmacophore model is constructed based on the
necessary or essential features of an active ligand, whereas
QSAR takes into account not only the essential features but also
the features that affect the activity. One important structural fea-
ture used in both the pharmacophore model and in QSAR is the
volume of the binding site. It is well established that the binding
pocket volume has a big influence on the biological activity. In
the cases where the binding pocket volume is known, elimina-
tion of molecules that are too large to fit in the binding pocket
can be done in early stages of drug discovery process
(see section “Binding pocket identification and volume calcula-

tion™).

Role of machine learning in LBDD

Machine learning algorithms can be trained to identify patterns
in data and used to do predictions on test data sets. These algo-
rithms are extensively applied in the field of biology and drug
discovery [272-275]. Machine learning is used in many stages
in the drug discovery pipeline including in the QSAR analysis
stage [276]. Support vector machine (SVM) based algorithms
are commonly used and have been shown to have high predic-
tive power. SVM are often used for classification of sets of bio-
logical data. For example, they can be used to distinguish be-
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Figure 9: A few drugs discovered with the help of ligand-based drug discovery tools. (a) Zolmitriptan: used as a treatment to migraine (b) Norfloxacin:

used in urinary tract infections and (c) Losartan: used to treat hypertension.
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tween molecules that have high affinity for a target and those
that have no affinity. Machine learning based scoring functions
can also be used in structure-based drug discovery to predict
target—ligand interactions and binding affinities [277]. Com-
pared to conventional scoring functions, machine learning based
scoring functions have often shown comparable or even im-
proved performance. Moreover these algorithms can be trained
to distinguish active drugs from decoys that do not have known
drug activity [278]. Artificial neural networks (ANNs) have
been used in drug discovery as a powerful predictive tool for
non-linear systems [279]. For example, ANNs were used to
construct the QSAR of a set of known aldose reductase inhibi-
tors and biological activities of new molecules were predicted
based on the QSAR [280]. Docking algorithms were then used
to find novel inhibitors that bind to aldose reductase. ANN-
based prediction models are also used in predicting biotoxicity
of molecules as well [281].

Conclusion

In the past 10 years the identification rate of disease-associated
targets has been higher than the therapeutics identification rate.
With considerable rise in the number of drug targets, computa-
tional methods such as protein structure prediction methods,
virtual high-throughput screening and docking methods have
been used to accelerate the drug discovery process, and are
routinely used in academia and in the pharmaceutical industry.
These methods are well established and are now a valuable inte-
gral part of the drug discovery pipeline and have shown great
promise and success. It is cheaper and faster to computationally
predict and filter large molecular databases and to select the
most promising molecules to be optimized. Only the molecules
predicted to have the desired biological activity will be screened
in vitro. This saves money and time because the risk of commit-
ting resources on possibly unsuccessful compounds that would
otherwise be tested in vitro is reduced.

Structure-based and ligand-based virtual screening methods are
popular with most of the applications being directed towards
enzyme targets [282]. Even though structure-based methods are
more frequently used, ligand-based methods have led to the
discovery of an impressive number of potent drugs. In SBDD
knowing the three-dimensional structure of the target of interest
is required. However, in some cases it is not possible to deter-
mine structures of targets using conventional experimental
methods due to experimental challenges. In the cases where ex-
perimental methods fail, computational methods become useful
and potentially necessary for SBDD [23]. In the absence of an
experimentally determined structure or a computationally
generated model for a target of interest LBDD tools can be
used. These tools require the knowledge of active drugs that
bind to the target. LBDD tools such as 2D and 3D similarity
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searches, QSAR and pharmacophore modeling have proven

successful in lead discovery.

Experimental methods usually represent proteins as static struc-
tures. However proteins are highly dynamic in character and
protein dynamics play an important role in their functions.
Computational modeling of the flexible nature of proteins is of
great interest and various ensemble-based methods in structure-
based drug discovery have emerged [178]. Molecular dynamics
simulations are widely used in generating target ensembles that
can be subsequently used in molecular docking [178]. Docking
tools have been developed with different scoring functions and
search algorithms. Comparative studies have been performed to
evaluate these scoring functions and docking algorithms in
docking pose selection and virtual screening [112,144,283].
There is no one superior tool that works for all target-ligand
systems. The quality of docking results is highly
dependent on the ligand and the binding site of interest [148-
150].

VHTS methods are useful to screen large small molecule repos-
itories fast and pick a smaller number of possible drug-like mol-
ecules for testing. By reducing the number of possible mole-
cules that need to be tested experimentally, these methods can
help to greatly cut the cost associated with drug discovery
process. Studies have shown that with VHTS it is possible to
identify molecules that are not observed with conventional
high-throughput screening (HTS) experiments [284]. Thus
VHTS methods are frequently used to complement HTS
methods. The molecules selected by both of these methods are
more likely to be possible drug candidates and should be

considered when selecting hits.

Absorption, distribution, metabolism and elimination/excretion
properties, commonly abbreviated ADME, as well as toxicity
are important for the ultimate success or failure of a possible
drug candidate. Adverse effects in animal models or even clini-
cal trials can be reduced by filtering drug candidates by their
ADME properties in early stages. Another important fact to
consider in drug safety studies is how one drug can affect the
metabolic stability of another drug [285]. Some drug—drug
interactions (DDI) could lead to serious health effects; there-
fore, predicting these effects is important but challenging. The
prescription antihistamine terfenadine and antifungal
drug ketoconazole are two examples of drugs that should not be
co-administered [286]. Terfenadine—ketoconazole drug—drug
interactions results in cardiotoxicity. Computational
methods such as pharmacokinetic modeling and predicting
drug—drug interactions using large DDI interaction databases
are successful and are both cost and time saving as well
[287,288].
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Currently hybrid structure-based and ligand-based methods are
also gaining popularity. These combined (ligand-based and
structure-based) drug discovery methods are of interest because
they can amplify the advantages of both methods and improve
the protocols [289-291]. One example is the hybrid docking
protocol HybridDock, which incorporates both structure-based
and ligand-based methods [291]. This hybrid method shows sig-
nificantly improved performance in both binding pose and

binding affinity prediction.

CADD has had a significant impact on the discovery of various
therapeutics that are currently helping treat patients. Despite the
successes, CADD also faces challenges such as accurate identi-
fication and prediction of ligand binding modes and affinities
[8]. One of the challenging areas in drug discovery is the phe-
nomenon of drug polymorphism [292]. Drug polymorphism
occurs when a drug has different forms which are identical
chemically but differ structurally. This can have a great impact
on the success of a drug. Different polymorphic forms of a
drug, which have different solid-state structures, can differ in
solubility, stability and dissolution rates. Drug polymorphism
can affect the bioavailability, efficacy and toxicity of a drug.
One polymorphic form that is responsible for a particular drug
effect may differ if a different polymorphic form of the same
drug is administered. Using techniques such as spectroscopy it
is possible to characterize drugs having different polymorphic

forms.

Protein—protein interactions (PPIs) pose another challenge in
drug discovery. PPIs are involved in many cellular processes
and biological functions that are linked to diseases. Therefore,
small molecule drugs that aim at PPIs are important in drug
discovery [293]. It is of interest to develop therapeutics that can
either disrupt or stabilize these interactions. However, it is chal-
lenging to design inhibitors that can directly interrupt PPIs.
Common drug design usually targets a specific binding site on a
protein of interest. However, protein—protein interacting sur-
faces have larger interfaces and are more exposed. Therefore
their binding sites are often not well defined. Finding the sites
that can be aimed at in PPI inhibition is therefore challenging
and of great importance.

Through collaboration with the Drug Design Data Resource
(D3R), which is a project funded by the National Institutes for
Health, pharmaceutical companies are able to release their pre-
viously unreleased drug discovery data to the scientific commu-
nity. This project allows the scientists all over the world to use
new high-quality data in improving computer-aided drug
discovery and design, and also to speed up the progress. The
field of CADD is continuously evolving with improvements

being made in each and every area. Some of the focus areas are
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scoring functions, search algorithms for molecular docking and
virtual screening, optimization of hits, and assessment of
ADME properties of possible drug candidates. With the current
successes there is a promising future for computational methods
to aid in the discovery of many more therapeutics in the future.
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