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Abstract

The self-organization of Cg fullerene and cisplatin in aqueous solution was investigated using the computer simulation, dynamic
light scattering and atomic force microscopy techniques. The results evidence the complexation between the two compounds. The
genotoxicity of Cg fullerene, Cis and their complex was evaluated in vitro with the comet assay using human resting lymphocytes
and lymphocytes after blast transformation. The cytotoxicity of the mentioned compounds was estimated by Annexin V/PI double
staining followed by flow cytometry. The results clearly demonstrate that water-soluble Cg fullerene nanoparticles (0.1 mg/mL) do
not induce DNA strand breaks in normal and transformed cells. Cg fullerene in the mixture with Cis does not influence genotoxic

Cis activity in vitro, affects the cell-death mode in treated resting human lymphocytes and reduces the fraction of necrotic cells.

Introduction
The water-soluble inorganic bi-valent platinum derivative, in particular, ovarian cancer, bladder cancer, esophagus cancer,
cisplatin (cis-[Pt(I1)(NH3),Cl,], Cis), is currently one of the lung cancer, and cancer of head and neck [1]. As an antitumor

most effective therapeutic agents used against cancer deceases, metal-containing agent Cis exerts an alkylating action and binds
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covalently to DNA. In tumor cells Cis induces the selective
inhibition of DNA synthesis and replication [2]. However, the
action of Cis is accompanied by side effects that limit the use of
Cis in anticancer chemotherapy. Cis-induced nephro-, hepato-
and cardiotoxicity, as well as disorders of the central nervous
system and sensory organs were reported [1]. Hence, there is a
search for new drugs including nanodimensional compounds
that could lower the side effects of Cis action, deliver Cis to the
region of pathological process in a targeted manner, manage the
curing at cell level, increase solubility in bioavailable form and
protect Cis from degradation [3-9]. The carbon allotrope
Cgo fullerene could act as such a potent agent.

Pristine Cgq fullerenes have no acute or sub-acute toxicity in
vitro [10-12] and in vivo [13] (at least at low physiological con-
centrations), exerting strong antioxidant properties due to their
high activity as free radical acceptors [14,15]. Water-soluble
pristine Cgq fullerenes penetrate through plasma membranes
and are located in the central part of tumor cells [16]. Thereby,
Cgo fullerenes can be used for treatment of cancer [17,18], in-
cluding combination chemotherapy [19] and photodynamic
therapy [20-22]. They are also applied for the targeted delivery
of drugs into tumor cells [23-25].

However, there are several conflicting reports in the literature
regarding the genotoxicity of Cg( fullerene [26]. Thus, a strong
correlation between the genotoxic response and the concentra-
tion of an aqueous suspension of nCg( (178 nm in size) was ob-
served at 2.2 ug/L in human lymphocytes using a single-cell gel
electrophoresis assay [27]. In contrast, with stable Cg fullerene
suspensions in 0.1% carboxymethylcellulose sodium or 0.1%
Tween 80 aqueous solution no positive mutagenic response was
observed up to the dose of 1 mg/plate with any tester strain in
the bacterial genotoxicity tests in vitro and in vivo [28].

The aqueous suspension of Cgq fullerenes caused positive
responses in two bacterial genotoxicity tests, namely the
Bacillus subtilis Rec-assay and umu test, up to concentrations of
0.048 mg/L and 0.43 mg/L, respectively. In [29], bulky DNA
adducts could not be found by 32P-postlabeling/polyacrylamide
gel electrophoresis assay, suggesting that an aqueous suspen-
sion of Cg fullerenes has the potential to damage DNA. By use
of a comet assay it was also demonstrated that an aqueous
suspension of Cg( fullerenes (0.1-1 mg/L) causes a concentra-
tion-dependent increase in DNA strand breaks in haemocytes
[30].

The in vivo genotoxicity of Cg( fullerene was estimated with a
comet assay in lung cells of rats. After a single and repeated
instillation inflammatory responses were observed in the lungs,

suggesting that Cg( fullerene has no potential for DNA damage
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even at inflammation causing doses [31]. Thus, it may be con-
cluded that the genotoxicity of Cg fullerene in vitro and in vivo
systems may strongly depend on its concentration in
biomedium, dose administration, type of cells and time of expo-

sure.

Since the biological action of Cg( fullerene significantly differs
from the action of traditional drugs by the mechanism of pene-
tration inside cells and biodistribution [23-25,32-35], the conju-
gation of Cgp molecules with drugs is currently considered a
perspective biomedical strategy. The formation of a stable non-
covalent nanocomplex of Cg( fullerene with doxorubicin
(CgptDox) in aqueous solution was confirmed theoretically and
experimentally [23,34,36]. The antitumor action of the
CgotDox nanocomplex was reported to be stronger than the
sole action of Dox or Cg fullerene in vivo [23,24]. Moreover,
recently it was found that Cg( fullerene in Cgo+Dox nanocom-
plex prevents cyto- and genotoxic effects of Dox on lympho-
cytes in vitro [37,38]. Based on these results it was suggested
that the mechanism of complexation could induce biological
synergy for other drugs administered together with
Cgo fullerene as well [19,23]. Taking into account the impor-
tance of Cis in chemotherapy of cancer, this drug could be a
candidate molecule for study. A recent extended physico-chem-
ical study has confirmed the formation of non-covalent entropi-
cally driven nanocomplexes between Cis and Cg fullerene in
physiological solution (i.e., the adsorption of Cis in
Cgo fullerene clusters) [25,39]. Hence, it is reasonable to expect
the biological interaction of these drugs. In order to testify this
hypothesis in the present study we evaluated and compared in
vitro cytotoxic action of Cg fullerene, Cis and their complex on
lymphocytes from healthy persons, as well as their genotoxic
effects towards resting lymphocytes and lymphocytes after blast

transformation.

Experimental

Materials preparation

A highly stable reproducible aqueous colloid solution of pris-
tine Cg fullerene (CgoFAS) with a maximum concentration of
0.15 mg/mL was prepared according to the protocol [40,41].
The initial stock solution of Cis (“Cisplatin-TEVA”, Pharma-
chemie B.V.) was prepared with a concentration of 0.5 mg/mL
and was further diluted to the required concentrations used in

particular experiments.

Immobilization of Cis on Cg( fullerene was accomplished ac-
cording to the following protocol: C49FAS and Cis solution
were mixed in a molar ratio of 1:2.4 (typically 0.1 mM
Cgo fullerene and 0.24 mM Cis). The obtained mixture was sub-
jected to ultrasonic treatment in dispersant for 20 min, followed

by magnetic stirring over 12 h at room temperature.
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Computer simulation
The spatial structure of the Cg fullerene was built according to

[http://www-jmg.ch.cam.ac.uk/data/molecules/misc/c60.html].

The spatial structure of Cis was built with the aid of Hyper-
Chem 8.0 according to Wysokinski et al. [42] and then opti-
mizated in Gaussian 09W at the mPW1PW hybrid level of
theory [43] in LanL2DZ basis set [44]. This level of theory and
basis set is considered to be optimal for quantum-mechanical
calculations of the molecules containing platinum atoms, in par-
ticular for Cis [42]. The spatial structure of the Cgo+Cis
nanocomplex was built according to Kostjukov et al. [45] with
the aid of the XPLOR software (version 3.851 [46] with
CHARMM27 force field). The plane of the Cis molecule was
located parallel to the surface of the Cgq fullereneat a distance
of ca. 3.4 A. Geometry optimization of the Cgy+Cis nanocom-
plex was accomplished by means of molecular mechanics in
X-PLOR. The modeling of the aqueous environment was
carried out by water molecules in the form of TIP3P placed in a
cubic box with a side length of 35 A (1423 molecules).

DLS study

Measurement of the hydrodynamic size distribution was per-
formed by dynamic light scattering (DLS) on a Zetasizer Nano
ZS (Malvern Ins. Ltd) with upload of multiple narrow modes
(high resolution) at room temperature. The instrument is
equipped with a He—Ne gas laser (max. output power 5 mW)
operating at a wavelength of 633 nm. The measurements were
performed at a 173° scattering angle (NIBS technology). The
autocorrelation function of the scattered light intensity was
analyzed by the Malvern Zetasizer software.

The zeta potential was measured with a Zetasizer Nano ZS
(Malvern Ins. Ltd) using a universal dip cell in disposable
cuvettes. The Smoluchowski approximation was used to convert
the electrophoretic mobility to the zeta potential.

AFM study

The surface morphology of the particles was examined using
atomic force microscopy (AFM). AFM images were collected
using an Integra Spectra microscope (NTMDT, Russia) in the
“light” tapping mode according to the well-established proce-
dure. For the sample preparation, a drop of solution was placed
onto a pre-cleaned microscope glass slide and dried in air prior
to AFM imaging.

Cell isolation and cultivation

Human peripheral blood from healthy donors was collected into
a heparinized medical syringe. Lymphocytes were separated by
centrifugation in a density gradient (Histopaque 1077, Sigma,
USA) according to instructions of the manufacturer and washed

twice: control lymphocytes in 0.15 M NaCl, lymphocytes that
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were intended for blast transformation reaction in RPMI 1640
medium. To induce the blast transformation the lymphocyte
suspension was cultivated in RPMI 1640 medium with 10%
FBS and 1000 units/mL IL-2a at 37 °C for 20 h. After cultiva-
tion the cells were washed in 0.15 M NaCl. Aliquots of the
suspension were used for cytological analysis to evaluate the
level of blast transformation (the fraction of lymphoblasts).

Incubation of lymphocytes and lymphoblasts

The cell suspension in RPMI 1640 medium (cell concentration
in the range of 1 x 10° to 5 x 10° cells per mL) was incubated
in the presence of either Cgq fullerene (0.1 mg/mL), anticancer
drug Cis (0.01, 0.1 or 0.15 mg/mL) or the complex of
Cgo fullerene with Cis (Cis concentration was 0.1 or 0.15 mg/L,
the Cg fullerene to Cis molar ratio was equal to 1:2.4) for 1.5 h
at 37 °C, washed once in 0.15 M NaCl, and then used for the
comet assay. Five to seven independent repeats of the experi-
ments were performed. As shown before [25], the molar ratio of
1:2.4 yields the highest anticancer activity of the Cgp+Cis com-

plex and was therefore used in the experiments.

Comet assay

To obtain lysed cells (nucleoids) 20 pL of the cell suspension
was mixed with 40 pL of 1% low-melting agarose (Sigma,
USA) at ca. 37 °C. 20 pL of the mixture were used to prepare a
microscope slide previously covered with 1% high-melting
agarose. After agarose polymerization, the slides were placed in
the lysis solution consisting of 2.5 M NaCl, 100 mM EDTA,
10 mM Tris-HCI (pH 7.5), and 1% Triton X-100 (Ferak,
Germany), which was added before use. Cells were exposed to
lysis solution for 2 h at 4 °C. After the lysis, slides were washed
with TBE buffer (89 mM Tris-borate, 2 mM EDTA, pH 7.5)
and electrophoresed in the same buffer for 20 min at 4 °C
(1 V/ecm, 300 mA).

After electrophoresis, the slides were stained with 1.3 pg/mL of
DAPI (Sigma, USA) and immediately analyzed under a fluores-
cence microscope (LOMO, Russia) connected with Canon
AS570 camera (a total 200 to 300 cells on each slide were
analyzed). The relative amount of DNA in the comet tail, the
parameter that reflects the level of DNA damages, was deter-
mined using the image analysis software programs Comet
Assay IV (Perspective Instruments, UK) and CometScore
(TriTec Corp., USA).

Cell-death assay

Apoptosis was assessed by staining cells with Annexin V—fluo-
rescein isothiocyanate (FITC) and counterstaining with
propidium iodide (PI) with the use Annexin V-FITC Apoptosis
Detection Kit (Dojindo EU GmbH, Munich, Germany) accord-
ing to the instructions of the manufacturer. Briefly, 2 x 103 cells
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were placed into wells of a 96-well flat-bottom plate and were
treated with Cg( fullerene (sample 1), Cis (sample 2) and
CgoTCis nanocomplex (sample 3) for 24 h. All additives were
used at the concentration of 0.15 mg/mL. Untreated cells were
used as a control (sample 4). Afterwards cells were washed
twice with PBS and incubated in the Annexin V binding buffer
containing 1/50 volume of FITC-conjugated Annexin V solu-
tion and PI (50 pg/mL) for 10 min at room temperature in the
dark. Cells from each sample were then analyzed by FacsCal-
ibur flow cytometer (BD Biosciences). The data were analyzed
using CELLQuest software (BD). PI detects cells that have lost
CPM integrity (i.e., necrotic and secondary necrotic cells),
whereas Annexin V detects early apoptotic cells.

Statistics

Statistical analysis was performed by conventional methods of
variation statistics. Significance of the differences between the
control and experimental measurements was estimated within
the framework of the Student’s t-test using Origin 8.0 software
(OriginLab Corporation, USA). The difference between the
compared values was considered to be significant at p < 0.05.

Results and Discussion

Characterization of the Cgo+Cis mixture

The freshly prepared mixture of Cgg fullerene with Cis was
characterized by conventional physico-chemical methods,
namely DLS and AFM. The monitoring of the morphology of
nanoparticles in solution is important not only for checking the
quality of solution for study, but also to control the degree of
aggregation which may influence their biodistribution and
toxicity [47].

Figure 1 shows DLS data of C40FAS and Cgp+Cis mixture at
room temperature. It is seen that CqgFAS contains Cg fullerene
nanoparticles with hydrodynamic sizes ranging from 65 to
105 nm. The Cgo+Cis nanocomplex exhibits hydrodynamic
sizes from 91 to 164 nm. The Z-average size of the Cgy+Cis
nanocomplex is about 122 nm. These results are in accordance
with AFM data (Figure 2), as well as with previous study of
CgotCis complexation [39].

The zeta potential of the Cgo+Cis mixture measured in this
work equals to —16.8 mV at room temperature. It is known from
previous studies that Cg( fullerene clusters not containing any
guest molecules have a zeta potential equal to —23 mV in water
solution [41]. Addition of neutral Cis molecules into CgoFAS
results in their adsorption into the Cg fullerene clusters and
causes a lowering of the absolute value of the zeta potential.
The stability of such negatively charged clusters in water is de-
termined by two opposite forces, viz., electrostatic repulsion of
negatively charged Cgo molecules and attraction of the
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Figure 1: DLS (hydrodynamic size) results of CgoFAS (grey; concen-
tration 0.15 mg/mL) and Cgp+Cis mixture (red; molar ratio of 1:2.4).
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Figure 2: AFM images of a) nanoparticles in CgoFAS (concentration
0.15 mg/mL) and b) Cgo+Cis mixture (molar ratio as 1:2.4).

Cgo fullerenes due to hydrophobic and van der Waals forces.
Thereby, the negative potential of Cg+Cis clusters is an impor-
tant factor responsible for the stabilization of this aqueous
system.

The structural and energetic peculiarities of Cgp+Cis complex-

ation were investigated by calculating the energy-minimized
spatial structure of their complex, shown in Figure 3.
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Figure 3: The calculated energy-optimized structure of the Cgp+Cis
nanocomplex in aqueous solution.

The initial location coordinates of Cis above the Cg fullerene
surface were taken from the ab initio structure [39]. Then we
performed the molecular dynamics simulation of this nanocom-
plex in aqueous environment and calculated the time-averaged
energies of interaction. The net van der Waals, electrostatic
and hydrophobic energies were obtained as follows, AGyqw ~
—0.6 kJ/mol, AGej = 0.9 kJ/mol and AGyy4 = —9.0 kJ/mol, re-
spectively. The near-zero magnitudes of the net ‘vdw’ and ‘el’
terms are quite expected and originate from compensatory
nature of the enthalpic interaction with water environment and
between the interacting molecules (discussed in more detail in
[36,39]). The ‘hyd’ term outweighs any other interactions indi-
cating the predominantly entropic character of Cgo+Cis com-
plexation. The obtained results fully agree with previous calori-
metric measurements of the same system [39] reporting the
purely hydrophobic nature of interaction between these mole-
cules. Moreover, the same conclusion was made regarding the
aggregation of Cg fullerene in solution [48], Cgg fullerene
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complexation with Dox [36] and landomycin A [49], and seems
to reveal a general pattern of complexation of small molecules

in water [45].

Estimation of genotoxic effects

Figure 4 shows typical images of the comet assay obtained after
20 min of electrophoresis of lysed cells. For both lymphocytes
and lymphoblasts, either the control cells or cells treated with
the agents studied, we did not observe any differences in the

comet appearance.

Figure 4: The representative comet-assay images obtained after

20 min of electrophoresis of a) control cells, b) cells incubated with
Cgo fullerene at concentration of 0.1 mg/mL, and c) cells treated with
Cis at 0.15 mg/mL. The bars correspond to 10 pm.

The average amount of DNA in the comet tails in control exper-
iments, when the isolated lymphocytes or lymphoblasts were in-
cubated in RPMI 1640 medium without any agents, was ca.
0.11 for both cell types (Figure 5). This value, which appears to

|:| Cis concentration 0.1 mg/ml
i i Cis concentration 0.15 mg/ml
5 ®
®
®
®
Control Ceo cis CootCis

Figure 5: The relative amount of DNA in the comet tails (P) after 20 min of electrophoresis of a) lymphocytes and b) lymphoblasts treated with Cis,
Cgo fullerene or Cgg+Cis nanocomplex. Control: cells were incubated in RPMI 1640 medium without any additional agents. The average values of 5-7
independent experiments are presented. The error bars represent the standard deviations. *Statistically significant (p < 0.05) with respect to control

cells.

1498



be slightly higher than that usually observed for intact cells (the
typical value is 0.06-0.07) [50], may indicate that a small
amount of DNA strand breaks occurred in the cells. We did not
observe any significant changes in the average amount of DNA
in the comet tails after cell treatment with Cg( fullerene
(Figure 5). Thus, Cg fullerene nanoparticles do not induce the
DNA breaks in the cells.

At a low Cis concentration (0.01 mg/mL) the Cis-treated
lymphocytes and lymphoblasts showed a DNA amount in the
tails comparable to that of control cells. The same picture was
observed for lymphocytes treated with Cis at 0.1 mg/mL
(Figure 5a), but a significant decrease in the DNA fraction in
the comet tails was detected for lymphoblasts incubated with
Cis at this concentration. To explain this result it is worth
remembering the mechanism of Cis action. After penetration
into cell nuclei Cis may induce coordinate bonds between Pt
and guanine bases in DNA that leads to intra- and inter-strand
crosslinking. In addition, Cis interaction with nuclear proteins
induces DNA—protein crosslinking. After cell lysis these
crosslinks remain in nucleoids, which hamper DNA migration
in the comet tail under electrophoretic conditions, i.e., the lower
the fraction of DNA in the tail, the stronger the mutagenic
action of Cis. Thus, lymphoblasts appear to be more sensitive to
Cis action than lymphocytes. During cultivation with IL-2a
(when lymphocytes are transformed into lymphoblast) a large
set of genes are activated to allow the entry of cells in the G1
phase of the cell cycle [S51]. Probably, such transformation that
never occurs in vivo in lymphocytes under normal conditions,
leads to an increase in the cells' sensitivity to the anticancer
drug Cis.

The increase of the Cis concentration up to 0.15 mg/mL causes
significant decrease in the DNA fraction in the comet tails for
both cell types, viz., the average amount of DNA in the tail was
0.08 £ 0.01 for lymphocytes and 0.05 + 0.01 for lymphoblasts.
At the same time, we did not observe any differences in DNA
fraction in the comet tail between cells treated with Cis only or
with its nanocomplex with Cgq fullerene. Hence, Cg( fullerene
in the nanocomplex does not influence the Cis activity.

Comparative evaluation of the cytotoxic
effects

Genotoxic effect of Cis is mostly associated with apoptotic cell
death. However, mechanism of Cis cytotoxic action involves
multiple signaling pathways inducing not only apoptosis but
also necrotic cell death [52-55]. Nephrotoxicity is considered to
be the most important side effect of Cis and is mainly caused by
tubular epithelial cell necrosis induced by extensive reactive
oxygen species (ROS) generation [56,57]. According to Kaeidi
et al. [58], preconditioning with mild oxidative stress may en-
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hance some endogenous defense mechanisms and stimulate cel-
lular adaptation to subsequent severe oxidative stress after the
treatment with Cis. Cg fullerene can either consume ROS or in-
duce their generation [59]. Taking into account this fact we
have hypothesized that Cg( fullerene in the nanocomplex with
Cis can affect mode of cell death induced by Cis. In order to
testify this hypothesis, Annexin V/PI double staining of human
healthy lymphocytes treated with either Cg( fullerene, Cis or
their nanocomplex was conducted. As shown in Figure 6, the
total number of dead lymphocytes from healthy persons after
the treatment with Cgg fullerene was 13.8% vs 32.4% and
36.7% in samples of cells treated with Cis and Cgo+Cis
nanocomplex, respectively.

100%
90% x !
80%

70%

60%
50%
40%
30%
20%
10%

0%

C60 fullerene Cis
OAn-Pl- EAn+PL BAN+PH BAN-PH

control C60+Cis complex

Figure 6: Cgq fullerene, Cis and their nanocomplex induce apoptosis
as well as necrosis of lymphocytes from healthy persons. Cells were
treated with mentioned compounds at the concentration of 0.15 mg/mL
for 24 h. After culturing, cells were stained with annexin V (AnnV)/
propidium iodide (Pl) and analyzed by flow cytometry. Control: cells
were incubated without any additional agents. The average values for
four independent experiments are presented. *p < 0.05 compared with
untreated cells; #p < 0.05 compared with cells treated with CgotCis
nanocomplex.

Analysis of cell death using an Annexin V-FITC/PI assay
allows one to differentiate the stages of apoptosis and to reveal
necrotic cells. The treatment of human healthy resting lympho-
cytes with Cg( fullerene resulted in significant increase of early
apoptotic cells (An+PI-) to 11.8%, and raise of late apoptotic
(An+PI+) to 1.7% on average, as well as necrotic cells
(An—PI+) to 0.3%. Apoptosis to necrosis ratio in these samples
was 6:1 (on average). In cell samples treated with Cis we
noticed significantly more necrotic cells (9.2%), wherein apo-
ptosis to necrosis ratio was 2:1. Cgp+Cis nanocomplex induced
mainly apoptosis in resting lymphocytes, and apoptosis to
necrosis ratio was 7:1.

Conclusion
1. The computer simulation, DLS and AFM data confirmed the
ability of Cg( fullerene to form non-covalent nanocomplex with

Cis in aqueous solution.
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2. Cgp fullerene nanoparticles do not induce DNA strand breaks

in the normal (lymphocytes) and transformed (lymphoblasts)

cells as revealed by the comet assay.

3. Cgp fullerene in the Cgpt+Cis nanocomplex does not influ-

ence the genotoxic activity of Cis in vitro.

4. Cg fullerene in the Cgp+Cis nanocomplex affects the cell

death mode in treated resting lymphocytes from healthy persons

and reduces the fraction of necrotic cells.
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