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Abstract

Recently it has become popular to learn
sparse Gaussian graphical models (GGMs)
by imposing ¢; or group ¢; » penalties on
the elements of the precision matrix. This
penalized likelihood approach results in a
tractable convex optimization problem. In
this paper, we reinterpret these results as per-
forming MAP estimation under a novel prior
which we call the group ¢; and ¢; o positive-
definite matrix distributions. This enables
us to build a hierarchical model in which
the ¢; regularization terms vary depending
on which group the entries are assigned to,
which in turn allows us to learn block struc-
tured sparse GGMs with unknown group as-
signments. Exact inference in this hierarchi-
cal model is intractable, due to the need to
compute the normalization constant of these
matrix distributions. However, we derive up-
per bounds on the partition functions, which
lets us use fast variational inference (optimiz-
ing a lower bound on the joint posterior). We
show that on two real world data sets (mo-
tion capture and financial data), our method
which infers the block structure outperforms
a method that uses a fixed block structure,
which in turn outperforms baseline methods
that ignore block structure.

1 Introduction

Reliably estimating a covariance matrix ¥ is a funda-
mental problem in statistics and machine learning that
arises in many application domains. Covariance esti-
mation is well known to be a statistically challenging
problem when the dimensionality of the data D is high
relative to the sample size N. In the D > N regime,
the standard maximum likelihood estimate (the sam-

ple covariance matrix S) is not positive-definite. Even
when N > D the eigenstructure of the sample covari-
ance matrix can be significantly distorted unless D/N
is very small (Dempster, 1972).

One particularly promising regularization approach to
covariance estimation is to penalize the ¢;-norm of the
precision matrix, Q@ = Y7, to encourage sparsity in
the precision matrix (Banerjee et al., 2008; Friedman
et al., 2007; Yuan and Lin, 2007; Duchi et al., 2008;
Schmidt et al., 2009). Zeros in the precision matrix
result in absent edges in the corresponding Gaussian
graphical model (GGM), so the ¢;-norm can be in-
terpreted as preferring graphs that have few edges.
The resulting penalized negative log-likelihood objec-
tive function is convex and can be optimized by a va-
riety of methods.

For some kinds of data, it is reasonable to assume
that the variables can be clustered (or grouped) into
types, which share similar connectivity or correlation
patterns. For example, genes can be grouped into
pathways, and connections within a pathway might be
more likely than connections between pathways. Re-
cent work has extended the above £; penalized likeli-
hood framework to the case of block sparsity by penal-
izing the {o.-norm (Duchi et al., 2008) or the ¢-norm
(Schmidt et al., 2009) of each block separately; the
analogous results for linear regression are known as the
simultaneous lasso (Turlach et al., 2005) and the group
lasso (Yuan and Lin, 2006) respectively. The resulting
objective function is still convex, and encourages block
sparsity in the underlying graphs.

For many problems the group structure may not be
known a priori, so methods that can simultaneously
infer the group structure and estimate the covariance
matrix are of great interest. In this paper we convert
the ¢; and group ¢ » regularization functions into dis-
tributions on the space of positive-definite matrices.
This enables us to use them as components in larger
hierarchical probabilistic models. The key contribu-
tion is the derivation of a novel upper bound on the



intractable normalizing term that arises in each dis-
tribution, which involves an integral over the positive-
definite cone. This allows us to lower bound the log-
likelihood and derive iterative model fitting procedures
that simultaneously estimate the structure and the co-
variance matrix by optimizing the lower bound. We
present analysis and simulation studies investigating
properties of the two distributions and their bounds.
We apply the bounding framework to the problem of
covariance estimation with unknown block structure.

2 Related work

The prior distributions we derive and the subse-
quent covariance estimation algorithms we propose are
closely related to the work of Yuan and Lin (2007);
Banerjee et al. (2008), which impose sparsity on the
elements of the precision matrix {2 using an ¢;-norm
subject to the constraint that Q be symmetric and
positive-definite. The penalized log-likelihood objec-
tive function used to fit the precision matrix is given
by
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where S is the sample covariance matrix and A;; > 0
are the penalty parameters. This objective function
is concave for fixed penalty parameters, and various
efficient algorithms (typically O(D3) or O(D*) time
complexity per iteration) have been proposed to solve
it (Friedman et al., 2007; Duchi et al., 2008; Schmidt
et al., 2009).

In the case where we have known groups of variables,
denoted by Gy, we can use the following alternative
penalization function:

=D A {0 € i € Gl
kl

(2.2)

where py; specifies which norm to apply to the ele-
ments from each pair of groups. (Duchi et al., 2008)
consider the case pxr = 1 within groups and py; = oo
between groups. (Schmidt et al., 2009) consider the
case pgr = 1 within groups and py; = 2 between
groups, which we refer to as group ¢; » penalization.

In the limit where each edge is its own group, both
penalization functions reduce to the independent /¢4
penalization function. If all diagonal penalty parame-
ters are all equal to some A > 0 and the off-diagonal
penalty parameters are zero, the optimal precision ma-
trix can be found in closed form by differentiating the
penalized log-likelihood objective function. We obtain
Q= (S + AI)~1, or equivalently 3= S+ M. We refer
to this method as Tikhonov regularization, following

(Duchi et al., 2008). Tikhonov regularization provides
a useful baseline estimator for covariance estimation
when N/D is small.

The case of group penalization of GGMs with unknown
groups has only been studied very recently. In our
previous paper (Marlin and Murphy, 2009), we used a
technique that is somewhat similar to the one to be
presented in this paper, in that each variable is as-
signed to a latent cluster, and variables in the same
cluster are “allowed” to connect to each other more
easily than to variables in other clusters. However,
the mechanism by which we inferred the grouping was
quite different. Due to the intractability of evaluat-
ing the global normalization constant (discussed be-
low), we used directed graphical models (specifically,
dependency networks), which allowed us to infer the
cluster assignment of each variable independently (us-
ing EM). Having inferred a (hard) clustering, we then
used the penalty in Equation 2.2. In this paper, we
instead bound the global normalization constant, and
jointly optimize for the group assignments and for the
precision matrix parameters at the same time.

We recently came across some independent work (Am-
broise et al., 2009) which presents a technique that
is very similar to our group ¢; method (Section 3.2).
However, their method has two flaws: First, they ig-
nore the fact that the normalization constant changes
when the clustering of the variables changes; and sec-
ond, they only use local updates to the clustering,
which tends to get stuck in local optima very easily (as
they themselves remarked). In our paper, we present
a mathematically sound derivation of the method, an
extension to the group ¢; 2 case, and a much better
optimization algorithm.

3 The Group /; and Group /-
Distributions

It is well known that /; regularized linear regression
(i.e., the lasso problem) is equivalent to MAP estima-
tion using a Laplace prior. In this section, we derive
the priors that correspond to various ¢; regularized
GGM likelihoods, assuming a known assignment of
variables into groups. In later sections, we will use
these results to jointly optimize over the precision ma-
trix and the groupings.

3.1 The Independent /; Distribution

The penalized log-likelihood in Equation 2.1 (or rather
a slight variant in which we only penalize the upper
triangle of X, since the matrix is constrained to be
symmetric) is equivalent to MAP estimation with the
following prior, which we call the ¢; positive-definite



matrixz distribution:

D D
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We represent the positive-definiteness constraint using
the indicator function pd(X), which takes the value
one if X is positive-definite, and zero otherwise. The
normalization term Zj; is obtained by integrating the
unnormalized density over the positive-definite cone.
This integral is intractable, but as long as the A;; terms
are held fixed, the term is not needed for MAP esti-
mation.

3.2 The Group /; Distribution

Our focus in this paper is developing algorithms that
infer Q under a block structured prior while simultane-
ously estimating the blocks. The ¢; distribution does
not have a block structure by default, so we augment
it with an additional layer of discrete group indica-
tor variables. We assume that the data variables are
partitioned into K groups, and we let z; indicate the
group membership of variable 7. We encourage group
sparsity by constraining the \;; such that A\;; = Ag if
i and j are in different blocks, and A;; = A; if 4 and
j are in the same block, where A\g > A;. In addition,
we introduce a separate parameter for the diagonal of
the precision matrix A;; = Ap. The full distribution is
given below (where we use the Kronecker delta nota-
tion ¢; ; = 1 if i = j and d;; = 0 otherwise).
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We refer to this as the group {1 positive-definite matriz
distribution. Note that, despite the name, this distri-
bution does not enforce group sparsity as such, since
each element is independently penalized. However, el-
ements in the same group share the same regularizer,
which will encourage them to “behave” similarly in
term of their sparsity pattern. (This is equivalent to
the model considered in Ambroise et al. (2009).)

3.3 The Group /; 5 Distribution

We now derive a prior which yields behavior equivalent
to the penalty term in Equation 2.2 for the case py; = 2
(again, we only penalize the upper triangle of the ma-
trix). Unlike the previous group ¢; prior, this group
{2 prior has the property that elements within the
same group are penalized together as a group. More
precisely, under the group /; o regularization function

the precision entry between a pair of variables {4, j}
within the same group is penalized using an ¢;-norm
with penalty parameter \;, except for diagonal entries
which are penalized with \;; = Ap. For each pair of
distinct groups k,l, the between group precision en-
tries are penalized jointly under an ¢s-norm with a
penalty parameter equal to Ay = CiAg where Cy; is
the product of the size of group k and the size of group
I (Schmidt et al., 2009). Scaling by the group size (or
any power of the group size greater than 1/2) ensures
that the between-group penalties are always greater
than the within-group penalties when Ao > A;. The
corresponding prior is shown below; we refer to it as
the group 01 o positive-definite matriz distribution.
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3.4 Group Sparsity Property

The main property of the group ¢; and group ¢; o dis-
tributions that we are interested in is the supression
of matrix entries between groups of variables. To in-
vestigate this property we develop Gibbs samplers for
both the group ¢; and group ¢, o distributions (see Ap-
pendix A for details of the samplers). We consider the
illustrative case D = 4 yielding five distinct partitions
(groupings) of the variables. We run each Gibbs sam-
pler on each grouping with the settings A\p = Ay = 0.1
and \g = 1. We record a sample after each complete
update of the matrix X. We collect a total of 1000
samples for each grouping.

In Figure 1 we show estimates of the expected absolute
values of X;; (E[|X;[]) for the group ¢; distribution
(the figure is nearly identical in the group ¢; o case).
Studying the expected absolute value of X;; is nec-
essary to reveal the structure in X that results from
the underlying partition of the data variables, since
off-diagonal terms can be positive or negative. As can
clearly be seen in Figure 1, the off-diagonal terms be-
tween groups are suppressed while off diagonal terms
within groups are not. This is exactly what we would
expect based on the group structure of the distribu-
tion.

An interesting and unanticipated result is that larger
groups appear to have larger diagonal entries under
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Figure 1: This figure shows an estimate of the mean of the absolute value of X (E[|X]|]) under the group ¢,
distribution in four dimensions. The parameters used are A\p = A\; = 0.1 and \y = 1. Estimates under the group
¢y o distribution are nearly identical to the group ¢; case shown here.

both distributions. Based on the mean of an indepen-
dent exponential distribution, a reasonable hypothesis
for the current parameters would be average diago-
nal entries of 1/0.1 = 10 units, which is the case for
the partition where every variable is in its own group.
However, the partition with all variables in the same
group [1, 1,1, 1] shows a significantly higher diagonal of
approximately 15 units. This result clearly illustrates
coupling between entries in the matrix X induced by
the positive-definite constraint.

4 Lower Bounds

We recall that for fixed structure and penalty param-
eters, the estimation of the precision matrix £ under
either the group ¢; or group ¢; 2 prior distribution is
easy since the normalizing term in each distribution
is independent of 2. The difficulty lies in updating
the group structure since the intractable normaliza-
tion term is not constant with respect to changes in the
assignment of variables to groups. In this section we
derive upper bounds on the intractable normalization
terms that allow us to lower bound the log posterior.

4.1 Group ¢; Bound

We first note that the unnormalized densities are al-
ways non-negative. As a result, increasing the vol-
ume of the domain of integration when computing the
normalization term will provide an upper bound on
the intractable integral. Instead of integrating over
the positive-definite cone SE |, we integrate over the
strictly larger space of symmetric matrices with a posi-
tive diagonal. We denote this space of matrices by SB.
In the case of the group ¢; distribution, the integrand
completely decouples into independent parts corre-
sponding to standard univariate Laplace and exponen-
tial integrals, yielding the following analytic soution
for the bound.
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4.2 Group /; > Bound

We now derive an upper bound on the normalization
term for the group /¢; o distribution. We again apply
the strategy of increasing the volume of the domain of
integration from the set of positive-definite matrices to
the set of symmetric matrices with positive diagonal.
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Unlike the group ¢; case, the between-block precision
entries are coupled together by the /;-norm so the in-
tegrand does not completely decouple across the upper
triangular portion of the matrix X. However, a con-
venient expression for the bound can still be obtained
by breaking up the integral into a product of diagonal,
within-group, and between-group terms. We introduce
the auxiliary variables Cp = 37, >, 6., ., to repre-
sent the total number of within-group entries across all
blocks, and C}; to represent the number of precision
entries between variables in group k and group .

D foe) Cr 00
Z15 < H/ exp(—Ap|z|)dx - H/ exp(—Aq|x|)dz
i=1"0 =177

K Ch 1/2
. exp | —A\oC 22 dx
H /RCM p 0Cri (:—21 1)

k,l£k
(4.9)



The solution to the first two integrals in the bound
are standard univariate exponential and Laplace nor-
malization constants. The integral resulting from the
between block entries is the normalization constant
for the multivariate Laplace distribution in C}; dimen-
sions (Gdémez et al., 1998). This allows us to complete

the bound as follows.
« ﬂ_cké—lr (Ckl + 1) 2Ckl
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4.3 Evaluation of the Bounds

In the case where D = 2 it is possible to obtain the
exact normalizing constant for the group ¢; distribu-
tion for arbitrary values of Ap = Ay and Ay and the
two possible clusterings z; = 29 and 21 # zo. We
note that in two dimensions the group ¢; and group
ly o distributions are equivalent, Zi3 = Z; = Z. To
obtain the normalizing term we evaluate the following
integral where A1 = Ay if 21 = 29 and A\jg = Ao is
z21 # 2o.

zZ= / exp(— A1 (1X1] + | Xa21)) exp(—Asz| X12])dX

824
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In the case z; = 25 the integral evaluates to (871'[ —
18)/(27A3). We note that the value of the bound
in this case is 2/A7. The bound thus overestimates
the true normalizing term by a constant multiplica-
tive factor approximately equal to 2.115, correspond-
ing to an overestimation of the log normalization term
by a constant additive factor equal to 0.7491. In the
case z1 # zo we have obtained an explicit formula for
the normalizing term that is defined everywhere except
2M\1 = Ag. The solution is significantly more complex
as seen in Equation 4.12. We have verified empirically
that the function is positive and real valued except at
the noted singularity.

arctan (2 M)
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In Figure 2(a) we show a plot of the error under the
bound and under a Monte-Carlo approximation as a

function of A\; and \g in the two dimensional case. We
show results for the two unique partitions [1,1] and
[1,2]. We use a simple importance sampling method
for the Monte-Carlo estimate where the proposal dis-
tribution is Wishart with a fixed scale matrix equal
to the identity matrix and 2 degrees of freedom. We
draw 100,000 samples. The primary trend in the er-
ror of the bound is revealed by plotting the error as
a function of A\g/A;. The error rapidly and smoothly
decreases as a function of A\g/\;. The reason for this
is that as Ag/A\; increases, the support of the group
£1 distribution collapses onto the sub-space of diago-
nal matrices where the bound is exact. Finally, the
Monte-Carlo estimate of the log normalization term
has approximately zero error over the whole range of
Ao/ A1 values for both partitions.

We extend our analysis to the four dimensional case
in Figure 3 where we plot the estimated error between
the log bound and log normalizing term for each of
the five partitions as a function of A\; and A\g. We use
the Wishart importance sampler to estimate the nor-
malization terms with scale matrix equal to the iden-
tity matrix and 4 degrees of freedom. We draw 107
samples. Similar to the exact analysis in the two di-
mensional case, we see that the minimum discrepancy
between the bound and the true normalizing term oc-
curs for the case where all data dimensions are in their
own groups and A\g/A; is large. The largest discrepan-
cies occur in the case where all data dimensions are in
the same group and Ao = A;.

In Figure 2(b) we show a plot of the bound and the
Monte-Carlo estimate of the normalizing term as a
function of the matrix dimension D. We use A\; = 0.1
and A\g = 0.5. We consider the partition where every
dimension is in the same group (1 grp), and the par-
tition where every dimension is in its own group (D
grps). Initial investigations suggested that the bound
is tightest for the D groups case and weakest for the
one group case, so we only consider these two par-
titions. We also note again that the group ¢; and
group ¢, o distributions are equivalent for these two
partitions. The results show that bound in the one
group case diverges more rapidly from the correspond-
ing Monte-Carlo estimate of the true log normalizing
term compared to the bound on the D groups case.
The fact that the discrepancy in the bound changes as
a function of the grouping is somewhat troubling as it
may bias model selection towards models with more
groups.
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Figure 2: Figure (a) shows the approximation error for the log normalization term under the bound and the
Monte-Carlo estimate as a function of A\g/A; in two dimensions. Figure (b) shows both the bound and Monte-
Carlo estimate of the log normalization term as the number of dimensions D is varied for \yj = 0.5 and A\; = 0.1.
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Figure 3: This figure shows the approximation error for the log normalization term under the group ¢; bound
as a function of A\; and A\g for each of the five partitions in four dimensions. This figure is best viewed in color.

5 Block Sparse Precision Estimation
With Unknown Blocks

In this section we describe a hierarchical block-
structured model for precision estimation using the
group ¢ and group /; o prior distributions, and dis-
cuss strategies for fitting the models. The hierarchi-
cal model includes a Gaussian likelihood term, a dis-
crete distribution over the group indicators z; with
parameter 6, and a symmetric Dirichlet prior distri-
bution on # with parameter «p/K where K is the
number of groups. The prior distribution on the pre-
cision matrix Pg(Q|A, z) can be either the group ¢;
distribution Pgr1(Q2|A, 2) or the group ¢ o distribu-
tion PGng(Q‘/\, Z).

P(6]ao) = D(0; ap) (5.14)
P(z; = k|0) = 6y (5.15)

PN, 2) = Po(QIA, 2) (5.16)
P(xn|p, Q) :N(mn;ﬂwﬂ_l) (5.17)

Plugging the upper bound for the normalization term
of the group ¢; or group ¢; » distribution into the com-

plete data log posterior yields an initial lower bound.
In addition we employ a variational Bayes approxi-
mation ¢(f]«) for the posterior on the mixing propor-
tions 0, where ¢(f|«) is a Dirichlet distribution. This
is necessary since the size of 6 varies according to the
number of groups, so such parameters need to be in-
tegrated out to perform proper model comparison. In
the group ¢; case we employ a fully factorized vari-
ational distribution on the group indicator variables
q(z; = k|¢i), where ¢; is a discrete distribution over
the K groups. The variational Bayes approximations
further lower bound the log posterior. In the group ¢; 2
case, the mixture indicators are coupled through the
bound on the normalization term, so we work directly
with the discrete group indicator variables. We show
the bound on the log posterior for the group ¢; case,
using the variational Bayes approximation, in Equa-
tion 5.14. (The notation p(€|z) refers to the unnor-
malized distribution, and Z, is our approximate bound
from Equation 4.7. The last line corresponds to the en-
tropy of the variational distribution.) The derivation
of the bound for the group /; 5 case is very similar.
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In the group ¢; case, model estimation consists of op-
timizing €2, and the variational parameters a and ¢.
In the group /2 case, model estimation consists of
optimizing €2, the variational parameters «, and the
partition z. The strategy we use for both prior distri-
butions is to start with all the data dimensions in the
same group. On each iteration we propose splitting
one group into two sub-groups. Given the updated
partition z (or updated variational parameters ¢) we
employ the convex optimization procedure developed
by (Duchi et al., 2008) to update the precision matrix
under the group ¢; prior, and the convex optimiza-
tion procedure developed by (Schmidt et al., 2009)
to update the precision matrix under the group /i o
prior. The computational cost of model estimation
is dominated by the precision matrix updates, which
are themselves iterative with an O(D?) cost per iter-
ation. Finally, we evaluate the lower bound on the
log likelihood for the new grouping and parameter set-
tings. We accept the split if it results in an increase
in the lower bound. We then update the variational
« parameters, which have the simple closed-form up-
date a, = ag + Z£1 @i, in the group f; case and
ar = ag + Z?Zl 0.,k in the group /5 case. In the
group ¢, case we update the variational ¢;; parame-
ters, which also have a simple closed-form solution. In
the group ¢, 2 case we perform a local update for each
group indicator z; by reassigning it to the group that
gives the maximum value of the bound on the poste-
rior. Each of these steps is guaranteed to increase the
value of the bound, and we continue splitting clusters
until no split is found that increases the bound.

The key to making the algorithm efficient is the choice

of split proposals. We propose a split for a given group
by running a graph cut algorithm on a weighted graph
derived from the current precision matrix. More pre-
cisely, let U = {i : z; = k} be the set of variables
belonging to group k, and U be the other variables. In
the group ¢; case we use the MAP assignments under
the variational posterior z; = maxy ¢;5. We propose a
split by computing a normalized cut of the weighted
graph W = |Q(U,U)| + 0.5|Q(U, U)||QU, U)T|, which
measures the similarity of variables within group & to
each other, as well as the similarity in their relation-
ships to other variables.

We consider two different methods for choosing which
groups to split. In the first method, we compute the
optimal split for each group. We sort the groups in
ascending order according to the weight of the cut di-
vided by the number of variables in the group. We
evaluate the split for each group by updating all the
model parameters given the new group structure. We
accept the first split that results in an increase in the
bound on the log posterior. If none of the splits are
accepted, we terminate the model estimation proce-
dure. We refer to this as the greedy method. In the
second method, we exhaustively evaluate the split for
all groups. To save on computation time we perform
an approximate update for the precision matrix where
we only update precision entries between each variable
in the group we are splitting and all of the other vari-
ables. This is a substantial savings when the groups
become small. We select the split giving the high-
est value of the bound, perform a full update on the
precision matrix, and re-compute the bound on the
log posterior. If the selected split fails to increase the



bound on the log posterior, we terminate the model es-
timation procedure. We refer to this as the exhaustive
method.

6 Covariance Estimation Experiments

In this section we apply the group ¢; and group ¢ o
distributions to the regularized covariance estimation
problem. We consider the group ¢; greedy method
for unknown groups (GL1-ug), the group ¢; exhaus-
tive method for unknown groups (GL1-ue), the group
01,2 greedy method for unknown groups (L12-ug), and
the group ¢; o exhaustive method for unknown groups
(GL12-ue). We compare against three other methods:
Tikhonov regularization (T), independent ¢; regular-
ization (IL1), and group ¢; » regularization with known
groups (GL12-k). We compute test set log likelihood
estimates using five-fold cross validation. We hold out
an additional one fifth of the training set to use as a
validation set for selecting the penalization parameters
AD,A1,Ag. For each penalty parameter we consider 10
values from 10* to 1 equally spaced on a log scale. We
consider all combinations of values subject to the con-
straint that A\g > A1 > 0.5Ap. We set ag = 1. We
center and scale all of the data before estimating the
models. We report test set log likelihood results us-
ing the parameters that achieve the maximum average
validation log likelihood.

6.1 CMU Motion Capture Data Set

In this section, we consider the motion-capture data
set used in our previous work (Marlin and Murphy,
2009). This consists of 100 data cases, each of which is
60 dimensional, corresponding to the (z,y, z) locations
of 20 body markers. These were manually partitioned
into five parts (head and neck, left arm, right arm,
left leg, and right leg), which we refer to as the known
structure.

We give test log likelihood results for the CMU data
set in Figure 6a. All of the methods that estimate
the group structure from the data (GL1-ug, GLI1-ue,
GL12-ug, GL12-ue) significantly out perform the un-
structured Tikhonov (T) and independent ¢; meth-
ods (IL1), and give an improvement over the group
¢1,2 method with known groups based on body parts
(GL12-k). The best method on the CMU data set
is the group ¢; exhaustive search method (GL1-ue).
Figure 6b gives the total training time (based on a
Matlab implementation) over all crossvalidation folds
and parameter settings. Note that the vertical axis is
on a log scale. We can see that all of the methods
that estimate the group structure require significantly
more computation time relative to the unstructured
Tikhonov and independent ¢; methods, as well as the

group {1 2 method with known groups (GL12-k). How-
ever, the computation times among the methods that
estimate the group structure are all quite similar.

We show the known or inferred group structure for
each of the group methods in Figures ba-e. We
show results for the fold with the highest test log
likelihood. All of the methods that estimate group
structure appear to over-partition the data vari-
ables relative to the known structure. However,
the over-partitioning is quite systematic and mostly
corresponds to breaking up the given groups into
sub-groups corresponding to their x-coordinates, y-
coordinates, and z-coordinates (note that the ordering
of the variables is x1,y1, 21, T2, Y2, 22, ...). The appar-
ent over-partitioning also results in improved test set
log likelihood relative to the known groups, indicating
that it is well supported by the data, and not simply
an artifact of the bounds.

6.2 Mutual-Fund Data Set

The second data set we consider consists of monthly
returns for 59 mutual-funds in four different sectors
including 13 US bond funds, 30 US stock funds, 7 bal-
anced funds investing in both US stocks and bonds
and 9 international stock funds. There are 86 data
cases each corresponding to the returns of all 59 funds
for a different month. While the funds are naturally
split into groups based on their content, the groups
are clearly not independent since the balanced funds
group contains both stocks and bonds. This data set
has been used previously by Scott and Carvalho (2008)
in the context of local search for decomposable GGM
graph structure.

We give test log likelihood results for the mutual-funds
data set in Figure 6¢c. We first note that there is much
less variation in median test log likelihood across the
methods compared to the CMU data set, which likely
results from the mutual fund data set having a less ob-
vious block structure. Indeed, the group ¢; o method
(GL12-k) based on the fund-type grouping yields a me-
dian test set log likelihood that is only slightly better
than the independent ¢; method. All of the meth-
ods that estimate the group structure from the data
(GL1-ug, GL1-ue, GL12-ug, GL12-ue) result in me-
dian test log likelihood performance that is no worse
than the independent ¢; method. The best method
overall is again the group L1 method with exhaustive
search (GL1-ue). This method in fact yields better
performance than the independent ¢; method across
all test folds. The trend in the computation time re-
sults is very similar to the CMU data set and is not
shown.

We present the known or inferred structure for each
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Figure 5: Inferred clusterings on the CMU motion capture data (top row) and mutual funds data (bottom row).

of the group methods in Figures 5f-j. We show re-
sults for the fold with the highest test log-likelihood.
Unlike the CMU case, some of the unknown group
methods select many more groups than the known
grouping, while others select less. The group ¢; ex-
haustive search method (GL1-ue), which obtains the
best test log likelihood, selects 12 groups. Interest-
ingly, it recovers the bonds group with only one error,
splits the international stock funds into two groups,
but mixes the balanced funds with the US stock funds
in several small groups. The group ¢; 2 exhaustive
search method (GL12-ue) apparently terminates after
correctly splitting the variables into one group of bond
funds and one group of all other funds. The group ¢; o
greedy search method (GL12-ug) recovers the bonds
and international stock groups with only one error
while mixing the US stocks and balanced funds into
two groups.

A Gibbs Sampler Outline

Suppose that P(X) is an arbitrary density function
defined over the space of positive-definite matrices.
To implement a Gibbs sampler we require the condi-
tional distribution P(X;;|X_;;) where X_;; denotes
all the entries in X except for X;; and Xj. In-
dependent of the form of the density, the positive-
definiteness constraint implies that the conditional dis-
tribution for X;; will only have support on an interval
bo(X_ij) < Xij < b1(X_;j). Due to the fact that
the positive-definite cone is a convex set, this interval,
which is the intersection of a line with the positive-
definite cone, will also be convex.

The exact end points by and by can be obtained in
closed form for any ¢, 7 and matrix X. We omit the full
derivation due to space limitations, but sketch a brief
outline. First, we note that by and b; are the maximum
and minimum values for X;; that render X indefinite.
Finding them reduces to the problem of solving the
equation det(X) = 0 in terms of X;;. Assuming X is



otherwise positive-definite, the determinant is a linear
function of a diagonal entry X;;, leading to a finite pos-
itive lower bound by and an upper bound b; = co. The
determinant is a non-degenerate quadratic function of
an off diagonal entry X;; leading to finite values for
bo and by. These results are intuitive since increasing
a diagonal entry of a matrix that is already positive-
definite will keep it positive-definite, while sufficiently
increasing or decreasing an off diagonal entry will make
it violate positive-definiteness.

Assuming we have derived the allowable range for X;
given X_;; we consider particular cases for the den-
sity function P(X). In the case of the group matrix ¢
distribution we obtain the following conditional distri-
bution, which is easily seen to be a truncated Laplace
distribution for off diagonal entries, and a truncated
exponential distribution for on diagonal entries given
the results for by and b; that we have just derived.
Sampling from these truncated distribution is simple
using inversion of the corresponding cumulative distri-
bution functions.

(Xij € [bo, b1]) exp(—Ni;j| Xy;1)

by
/b exp(—Aij | Xi5])dX;
0

P(Xij| X—ij) =

The group matrix ¢ o distribution has identical con-
ditional distributions for diagonal and off-diagonal-
within-block entries. The off diagonal between block
entries have the form of a truncated hyperbolic distri-
bution due to the application of the 5-norm. We give
the result below assuming that dimension ¢ belongs to
group k and dimension j belongs to group {. Sampling
from the truncated hyperbolic distribution can also be
done efficiently by exploiting the fact that this form
of the hyperbolic distribution is a generalized inverse
gaussian (GIG) scale mixture with zero mean. We can
sample the scale parameter from the correct GIG dis-
tribution, and then use inversion of the CDF to sample
from a truncated univariate normal distribution with
the sampled scale parameter.

(Xis € [bo, b)) exp (a5 + X7

P(Xi;|X—ij) = B
A exp <_)‘kl\/’71'2j + X%) dXij
0
D 1/2
Yij = (Zs;éi Zt;éj,t>s ‘5z57k5zt,lezt)

The complexity of the sampler is dominated by the
calculation of the the truncation range [bg, b1]. Solving
for by and by requires inverting a matrix of size D—1, at
a cost of O((D —1)3). The complete cost of T updates
to all the unique matrix parameters is O(37D(D +
1)(D—1)3), or approximately O(T D?), which is clearly
intractable unless D is small.
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