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Abstract

Many efficient deployments of large-scale wireless sensor networks based on the tree-based community
rise into view recently. Sensor nodes are severely resource constrained, and lack sophisticated defense
mechanisms to fight virus attacks. Cyber viruses spread through node populations over the networks, and
a number of results about the prevalence have been derived in recent years by exploiting epidemic behav-
iors and the percolation processes on networks. A network model based on the Cayley tree is proposed
to depict the underlying tree-based architectures of the network and the community. The percolation
thresholds are calculated and analyzed in two cases. Due to random links in the communities, the sensor
virus extends drastically on the network. The analysis and evaluation shows that the percolation threshold
keeps decreasing with the increase of the shortcut probability. There is the smallest percolation threshold
in a random network, where the virus easily attacks the network from one side to another. The conclu-
sions can further our understanding of epidemic dynamics on tree-based communities of wireless sensor
networks.
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1. Introduction

Recent years have seen the deployments of large-
scale wireless sensor networks in a variety of
applications including habitat and environmen-
tal monitoring,1 precision agriculture,2 security
surveillance,3 etc. New features and design trends
have emerged in large-scale wireless sensor net-
works, making those networks appeal not only to
the scientific community but also to the industry.
One such trend is the running of different appli-
cations on heterogeneous sensor nodes deployed in
multiple networks in order to better exploit the ex-
pensive physical network infrastructure. It is cru-
cial to design mechanisms which effectively coordi-
nate available resources to optimize the resource uti-
lization while meeting different application require-
ments. Many efficient deployments based on the
community rise into view recently.4,5,6

The community is one of the common properties
(Other properties include the small world effect,7 the
right-skewed degree distribution,8 the clustering,9 et
al.) of the network. Qualitatively, the community is
defined as a subset of nodes within the graph such
that connections between the nodes are denser than
connections with the rest of the network. ZIGBEE
and IEEE Std. 802.15.4 can construct tree-based
communities in a broad deployment area if every
node is the Full Function Device (FFD).10 F. Wei
et al. proposed an autonomous community con-
struction technology to achieve real-time transmis-
sion in the multiple emergencies’ situation.11 Emer-
gency information can be transmitted in the com-
munity and protected from the interference of other
information’s transmission. J. Y. Wu et al. pro-
posed a routing protocol called community struc-
ture clustering routing protocol (CSCR).12 CSCR di-
vides the network into densely connected subgroups
through the algorithm of detecting community struc-
ture. It balances the energy consumption and ex-
tends the lifetime of wireless sensor networks. T. Y.
Chuang and K. C. Chen developed an information-
centric processing methodology based on the com-
munity structure to achieve self-organizing sensor
networks.13 Combining the community structure
with the data recovery algorithms, a self-organizing
management scheme was proposed to mitigate the

sensor maintenance costs.

Compared with regular computer systems, the
large-scale wireless sensor network is even easier for
sensors to be compromised by virus attacks.14,15,16

The sensor node does not have complicated hard-
ware architecture or operating system to protect its
safety due to cost and resource constraints. The cy-
ber attack by the worm presents one of the most
dangerous threats to the security and integrity of the
wireless sensor network. In according to the per-
colation theory, there exists a percolation threshold
in the network.17 B. Wang et al. proposed a ran-
dom clique network model which was composed
of different orders of cliques to study two interact-
ing diseases spreading in networks with community
structures.18 Y. Feng et al. considered a pair of ho-
mogeneous diseases spreading concurrently on uni-
form networks based on the Susceptible-Infectious-
Susceptible (SIS) model.19 A new model describ-
ing the transmission process of the interacting dis-
eases was established. C. H. Li et al. studied
the spreading of infections in complex heteroge-
neous networks based on a Susceptible-Infectious-
Recovered-Susceptible (SIRS) epidemic model with
birth and death rates.20 They found that the dynam-
ics of the network-based SIRS model were com-
pletely determined by a threshold value. X. L. Peng
et al. analyzed the influence of the effective vaccina-
tion intervention on the threshold and prevalence in
the hybrid network.21 They found that the vaccina-
tion could linearly decrease the epidemic prevalence
in hybrid networks. The immunization is one of the
most common and successful strategies for combat-
ing the outbreak of infectious diseases.22

The network is represented by a graph in which
vertices are individuals and undirected edges are
contacts. The epidemic begins with a single indi-
vidual and spreads along the contacts. We assume a
generalized Susceptible-Infectious (SI) dynamic for
the cyber virus in which the virus spreads on the net-
work with a infection probability h. This dynamic
can be mapped onto a site percolation process on
the wireless sensor network. The connected clusters
of nodes in the percolation process correspond to the
groups of individuals who would be infected by the
epidemic starting with any node within that cluster.
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Typically, there are only a small number of infected
nodes in the network for the small value of h, and
the virus will die naturally in the prevalence. But
above some critical hc an extensive spanning clus-
ter or giant component appears. Once such a giant
component is present, the cyber virus attacks the net-
work from one side to another and thereby reaches
an extensive fraction of the network. The value of
hc at which the giant component first forms is called
the percolation threshold. We focus on tree-based
communities of large-scale wireless sensor networks
and analyze the spatial-temporal dynamics of the
virus prevalence in this paper. The contributions in-
clude the following aspects. A network model based
on the Cayley tree23 is proposed to depict the un-
derlying tree-based architectures of the network and
the community. The percolation thresholds are cal-
culated in two cases. The analysis and evaluation
shows that the percolation threshold keeps decreas-
ing with the increase of the shortcut probability in
the tree-based communities of wireless sensor net-
works. There is the smallest percolation threshold
in a random network, where the virus easily attacks
the network from one side to another.

The rest of the paper is organized as follows. The
network model and preliminaries are proposed in
Section 2. Percolation thresholds are calculated in
Section 3. The evaluation and analysis is presented
in Section 4. The paper concludes in Section 5.

2. Network Model and Preliminaries

We consider the following two problems which mo-
tivate our study:

• Problem 1. The efficient deployments result in
variable network architectures. How should we
abstract the main structure characteristics to de-
scribe the hierarchical architectures.

• Problem 2. How should we describe the cyber
virus propagations24 on the hierarchical architec-
tures and calculate the percolation thresholds.

A community is generally thought as a part of a
network where internal connections are denser than
external ones. Many possible definitions of commu-
nities exist in the literature. The basic quantity to

consider is ki, the degree of a generic node i, which
in terms of the adjacency matrix Ai, j of the network
G is ki = ∑ j Ai, j. If we consider a subgraph V ⊂ G,
to which node i belongs, we can split the total de-
gree in two contributions: ki(V ) = kin

i (V )+kout
i (V ).5

kin
i (V ) = ∑ j∈V Ai, j is the number of edges connect-

ing node i to other nodes belonging to V. kout
i (V ) =

∑ j/∈V Ai, j is the number of connections toward nodes
in the rest of the network.

Definition of community in a strong sense
The subgraph V is a community in a strong sense

if
kin

i (V ) > kout
i (V ), ∀i ∈V. (1)

In a strong community each node has more connec-
tions within the community V than with the rest of
the graph.

Definition of community in a weak sense
The subgraph V is a community in a weak sense

if
∑
i∈V

kin
i (V ) > ∑

i∈V
kout

i (V ). (2)

In a weak community the sum of all degrees within
the community V is larger than the sum of all de-
grees toward the rest of the network.

Clearly a community in a strong sense is also a
community in a weak sense, while the converse is
not true. Community structures can be defined and
identified. The investigation of community struc-
tures in networks is an important issue in many do-
mains and disciplines. Several algorithms which are
self-contained exist for revealing community struc-
tures in networks.25,26

In our research, the underlying architecture of
the tree-based community network is abstracted as
the Cayley tree, and the underlying deployment of
sensors within the community is also the Cayley
tree. Random links are added to the two under-
lying architectures, and the community model has
a hybrid structure with regular bonds and random
bonds. Fig. 1(a) shows our network model de-
scribing the network architecture and the deploy-
ment of sensors within the community. The Cay-
ley tree, where every node i has the same degree
ki = z + 1 (except for leaf nodes on the boundary
which possess k = 1), is a regular graph with no
loops. It can be constructed by first starting from
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(a) (b)

Fig.1. (a) The abstract of the community network based on the Cayley tree. Communities (denoted by dashed
circles) with dense internal connections are linked together with external connections. Curves denote random
links between two nodes (in the community) or two communities. (b) The virus attacking behaviors on the
community network. The virus spreads from the infected nodes (the grey ones) to susceptible neighbors (the
white ones) in the community and susceptible ones in other communities along external connections.

a root node at generation g = 0, giving that node
z + 1 child nodes, and then repeatedly giving each
new child z children of its own. This process contin-
ues for a fixed number of generations g. The Cay-
ley tree can grow either in width (via z) or in depth
(via g). The number of nodes in generation g > 0 is
n(g) = (z+1)zg−1, and the total number of nodes is
N(g) = 1 + ∑g

g′=1
n(g

′
). The total number of links

is M(g) = N(g)−1 = (z+1)(zg−1)/(z−1) in the
Cayley tree. Since the bulk of the graph is regu-
lar, the Cayley tree has no density fluctuations (all
connected subgraphs of the same size have the same
number of links). The parameter p is defined as the
average number of shortcuts per bond on the under-
lying structure, and the shortcuts has two sources:
the first comes from the random links within the
community, and the second comes from the random
links outside of the community. Considering that a
community is defined as a subset of nodes within the
graph that connections between the nodes are denser
than connections with the rest of the network, the pa-

rameter p is defined as

p =
{

pin ∀i, j ∈V
pout ∀i ∈V, j /∈V ,

(3)

where pin > pout . Our community model conforms
to the definition of community in a weak sense
above.

Traditionally, the hierarchical network architec-
ture is abstracted as the random graph or the reg-
ular graph in the analysis of the prevalence. In a
hypothetical scene that all nodes move randomly or
flood messages under no rule, the random graph is
suitable for depicting the network architecture. On
the base of the mean-field theory, the virus prop-
agation is analyzed as the random process.24 On
the other way, the epidemic on the regular graph
is a standard percolation problem.17 The proposed
network model in this paper depicts the hierarchi-
cal tree-based communities, and indicates complex
structure characteristics of wireless sensor networks.
Our research focuses on the spatial-temporal dy-
namics of the virus prevalence and calculates perco-
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lation thresholds of tree-based communities of wire-
less sensor networks. Fig. 1(b) shows the virus at-
tacking behaviors on the community network. S1,
S2 and S3 are three communities of the network.
The virus spreads from the infected nodes (the grey
ones) to susceptible neighbors (the white ones) in
the community and susceptible ones in other com-
munities along external connections. The epidemic
propagation is a SI process if there is no immune
mechanism.27

3. Percolation Thresholds

The wireless sensor network is vulnerable to sensor
worms.28,29 The high-density deployment of wire-
less sensor nodes implies that any virus can be
highly contagious. Sensor nodes are severely re-
source constrained, and lack sophisticated defense
mechanisms to fight virus attacks. Due to short-
cuts in tree-based communities, the epidemic prop-
agation becomes much drastic. In our network
model, shortcuts are added uniformly to the under-
lying structure with pin > pout .

A certain fraction h of nodes in the community
network is assumed to be susceptible to the virus,
and the bonds represent the physical contacts by
which the virus can spread. The epidemic prop-
agation begins with a single infected node. The
nodes will be infected (occupied) or not depending
on whether they are susceptible to the virus. If the
distribution of infected nodes is random, the prob-
lem when an epidemic occurs becomes equivalent
to a standard percolation problem.17 The node is de-
noted by a site in the graph. The percolation proba-
bility hc, at which the outbreak of the epidemic oc-
curs, can be calculated. If h is above the threshold
with h > hc, the epidemic spreads. Below it with
h < hc, the epidemic dies out naturally. The epi-
demic threshold is actually equivalent to a critical
point in a nonequilibrium phase transition. The in-
vestigation of the percolation threshold is nontrivial
in the study of epidemics on tree-based communi-
ties of wireless sensor networks. In this paper, the
site percolation is only considered.

The network G is split into subgraphs
G0,G1,G2 · · ·Gm in terms of the deployment of

the communities. N0,N1,N2 · · ·Nm is the num-
ber of nodes belonging to each subgraph with
N = N0 + N1 + N2 + · · ·+ Nm. Given the network
G is split into Nc subgraphs with the same size, each
subgraph includes N0 = N/Nc nodes. The probabil-
ity that two sites chosen randomly within the com-
munity V have a shortcut between them is calculated
as

ψ in = 1− (1− 2
N2

0
)p(N0−1)

≈ 2p(N0−1)
N2

0

≈ 2p
N0

,

(4)

where N0 = (z + 1)(zg0 − 1)/(z− 1) + 1 (g0 is the
number of generations of the nodes within the com-
munity) is the number of nodes of the community,
and p = pin is the shortcut probability within the
community V.

The probability that one site is connected to an-
other one chosen randomly outside of its community
by an additional shortcut is calculated as

ψout = 1− (1− 2
N(N−N0)

)p(Nc−1)

≈ 2p(Nc−1)
N(N−N0)

=
2p

NN0
,

(5)

where Nc = (z + 1)(zgc − 1)/(z− 1) + 1 (gc is the
number of generations of the communities) is the
number of the communities, N = NcN0 is the total
number of nodes of the network, and p = pout is the
external shortcut probability.

So, the probability that two sites (node i and node
j) chosen randomly in the network have a shortcut
between them is presented as

ψ =
{

ψ in ∀i, j ∈V
ψout ∀i ∈V, j /∈V .

(6)

Under the attack of the sensor virus, occupied
sites will be connected together by the near-neighbor
bonds to construct the local clusters on the commu-
nity network. The average number of local clusters
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of size i on the underlying architecture can be calcu-
lated by

Xi = hi(1−h)2+(z−1)iN0. (7)

The spreading of the epidemic is analyzed start-
ing from a localized virus source. In order to con-
struct a so-called giant component as in the random
graph,27 we start with one particular local cluster
in some community and add all other clusters to it,
which can be reached by traveling along a single
shortcut. Two sources contribute to the giant com-
ponent, one is the occupied clusters within the com-
munity, and the other is the occupied clusters reach-
able via shortcuts outside of the community. Then
all other clusters, which can be reached by traveling
along a single shortcut, are added to the new ones.
This process continues until the connected cluster,
the giant component, is constructed.

In order to calculate the percolation threshold hc,
a vector V is defined at each step in this process,
whose component vi is the probability that a local
cluster of size i is added to the overall connected
cluster. Another vector V

′
, whose component v

′
i can

be gotten in terms of the value of V at the previous
step, is defined. At or below the percolation thresh-
old the component vi is small and we can calculate
the vector V

′
using a transition matrix M. The fol-

lowing formula reflects the relationship between V
and V

′

v
′
i =

N

∑
j=1

Mi jv j, (8)

where
Mi j = Xi[1− (1−ψ)i j]. (9)

Xi is the number of local clusters of size i as before.
[1− (1−ψ)i j] is the probability of a shortcut from
one local cluster of size i to another of size j, and
there are i j possible pairs of sites by which these
can be connected.

The largest eigenvalue λ of the transition matrix
M is considered. For λ < 1, the vector V tends to
0 according to Eq. (8). The rate at which new lo-
cal clusters are added falls off exponentially, and the
connected clusters are finite with an exponential size
distribution. Conversely, for λ > 1, V keeps grow-
ing until the size of the connected cluster becomes

limited by the size of the whole network. The per-
colation threshold occurs at the point λ = 1.

It is difficult to find the largest eigenvalue of the
transition matrix M for finite N. If p is a constant, ψ
tends to 0 with N0 → ∞ (N → ∞). Eq. (9) can be
simplified through the relation

Mi j = i jψXi. (10)

If we set v
′
i = λvi, Eq. (8) is rewritten as

λvi = iψXi

∞

∑
j=1

jv j. (11)

Then,
vi = Cλ−1iψXi, (12)

where C = ∑∞
j=1 jv j is a constant. And
∞

∑
i=1

vi = Cλ−1ψ
∞

∑
i=1

iXi,

∞

∑
i=1

ivi = Cλ−1ψ
∞

∑
i=1

i2Xi,

C = Cλ−1ψ
∞

∑
i=1

i2Xi,

λ = ψ
∞

∑
i=1

i2Xi.

(13)

For general z, the average number of local clus-
ters of size i in the network Xi can be rewritten as

Xi = hi(1−h)2+(z−1)iN0 = (1−h)2[h(1−h)z−1]iN0.
(14)

From Eqs. (13) and (14), λ is calculated by

λ =
ψN0h(1−h)z+1[1+h(1−h)z−1]

[1−h(1−h)z−1]3
. (15)

The percolation threshold can be analyzed in two
cases.

a) Percolation threshold of case 1
If we ignore the difference between the shortcut

probability within the community and that outside
of the community, the network is transformed into
a small world network with p = pin = pout . The
network is not homogeneous in this status unless
the range of the community expands to the whole
network with N = N0. On the latter assumption, it
generates a homogeneous network. Since all nodes
have approximately the same number of links, they
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all contribute equally to the network’s diameter, thus
the infection of each node causes the same amount
of damage to the network. There is no substantial
difference whether the nodes are infected randomly
or in decreasing order of the connectivity. When a
fraction of nodes are infected by the virus, it is like
that the fraction of nodes are removed from the net-
work. The network displays unusual behavior at the
percolation threshold hc, where it falls apart and the
main cluster breaks into small pieces.

From Eqs. (4) and (15), λ is rewritten as

λ =
2ph(1−h)z+1[1+h(1−h)z−1]

[1−h(1−h)z−1]3
. (16)

We set λ = 1 to get the value of p at the percola-
tion threshold hc with

p =
[1−hc(1−hc)z−1]3

2hc(1−hc)z+1[1+hc(1−hc)z−1]
, (17)

where p is a constant. The percolation threshold hc
for general z can be calculated on the basis of Eq.
(17). From the result we can see that the percolation
threshold hc is not related to the size of the network
or the community. But it is closely related to the
shortcut probability and the underlying structure (z
reveals the characteristic).

If the epidemic only occurs in the community
with the shortcut probability p = pin and it dose not
extends to other communities, the giant component
will not arise in the whole network considering the
limit of the size of the community. In this case the
percolation threshold hc can not be analyzed on the
basis of Eq. (17) unless the range of the community
expands to the whole network.

b) Percolation threshold of case 2
If it is assumed that the local clusters are linked

together to construct the giant component only by
external shortcuts between the communities, from
Eqs. (5) and (15) λ is rewritten as

λ =
2ph(1−h)z+1[1+h(1−h)z−1]

N[1−h(1−h)z−1]3
. (18)

We set λ = 1 to get the value of p at the percola-
tion threshold hc with

p =
N[1−hc(1−hc)z−1]3

2hc(1−hc)z+1[1+hc(1−hc)z−1]
, (19)

where p = pout is the external shortcut probabil-
ity. From Eq. (19) we can see that the percolation
threshold hc is closely related to the shortcut prob-
ability, the underlying structure and the size of the
network.

The percolation threshold of the network de-
pends on the deployment and structure, and it be-
comes more complex in reality. it is difficult to
calculate the accurate percolation threshold of a
real network with complex hierarchical structure al-
though it exists certainly.

4. Evaluation and Analysis

4.1. Percolation thresholds

The evaluation of the percolation threshold at which
the outbreak of the epidemic occurs is presented.
The percolation threshold in Case 1 can be calcu-

lated as hc =
√

(2p+1)2+8p−(2p+1)
4p with z = 1. As

shown in Fig. 2(a), the percolation threshold hc
keeps decreasing with the increase of the shortcut
probability p in Case 1 and Case 2 (N = 1000). De-
spite the relation of the percolation threshold hc with
the size of the network N, hc decreases with the in-
crease of the shortcut probability p in Case 2. As
shown in Fig. 2(b), the larger the size of the network
N is, the larger the percolation threshold hc is.

For z > 1, it is difficult to solve Eqs. (17) and
(19), but the variety of hc is similar with that with
z = 1. When the shortcut probability p increases, the
percolation threshold hc keeps decreasing. At p = 1,
there exists the smallest percolation threshold in the
complex network.

The results coincide with the reality. Due to
shortcuts in the community, the epidemic propaga-
tion becomes drastic when the shortcut probability
p increases. The percolation threshold decreases si-
multaneously. There is a small percolation thresh-
old in the random network, where the virus easily
attacks the network from one side to another.
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Fig.2. The variety of the percolation threshold hc. Here the lines depict the variety of the percolation threshold
hc with the increase of the shortcut probability p in (a) Case 1 and Case 2 (N = 1000), (b) Case 2 with N = 50,
N = 100, and N = 1000.

4.2. Real architecture evaluation of virus
propagations

Evaluations of epidemic propagations on the com-
munities of Zigbee are presented in this section. Zig-
bee can construct tree-based communities in a broad
deployment area if every node is the FFD. The pa-
rameters and specifications from Ref. 10 are used in
the real architecture evaluation. The time evolution
of infected numbers in the network is observed by
using a large number of experiments assuming that
there is a small section of infectious nodes in the
initial stage. We assume that node i is susceptible,
it is infected with the infection probability h if there
are infectious neighbors. It will be infected eventu-
ally as the infection spreads in the experiments. The
spatial-temporal dynamics of the epidemic preva-
lence on the hierarchical architecture are analyzed.

Fig. 3(a) and (b) show the time evolution of in-
fected numbers on the communities of Zigbee. The
effect of the infection probability h on the epidemio-
logical process is tested in the experiment. There is
only one infected community in the initial stage. In
the experiment, 1000 nodes are randomly deployed
in a 1000m× 1000m surveillance area. In the con-
struction of the network architecture, the inner con-
nection probability of the community δin is 0.9, and
the external connection probability of the commu-

nity δout is 0.3. There are maximum 15 individuals
in one community of the network. Other parame-
ters from Ref. 10 are used in the evaluations. The
infection probability h is 0.3 in Fig. 3(a). The fig-
ure shows that the epidemic spreads slowly with the
small infection probability in most time on the hier-
archical architecture of the wireless sensor network.
At 100s, about 500 nodes are infected in Fig. 3(a).
Fig. 3(b) shows the time evolution of the infected
number with the infection probability h1 = 0.3, h2 =
0.7 and h3 = 0.9. The epidemic expands at different
speeds when the infection probability h varies. The
figure shows that the epidemic spreads rapidly with
a large infection probability in most time on the hi-
erarchical network. In the late phase of the prop-
agation, the prevalence experiences a decline due
to the reduction of remaining susceptible nodes in
the network. At 120s, all nodes are infected with
h2 = 0.7 and h3 = 0.9, about 500 nodes are infected
with h1 = 0.3. h2 and h3 are above the percolation
threshold hc, the infected number keeps increasing
rapidly in the network until the whole network is in-
fected. h1 is below the percolation threshold hc, the
epidemic expands more slowly on the network. The
experiments reveal the impressive influence of per-
colation thresholds on the virus prevalence.
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Fig.3. Epidemiological propagations on the communities of Zigbee in the case of N = 1000, δin = 0.9, and
δout = 0.3. Here the lines represent the time evolution of the infected number on communities with (a) h = 0.3,
(b) h1 = 0.3, h2 = 0.7 and h3 = 0.9.

5. Conclusions

The tree-based community is frequently used in
the deployments of large-scale wireless sensor net-
works. The epidemic dynamics on tree-based com-
munities of large-scale wireless sensor networks are
studied in this paper, and they becomes more dras-
tic due to random links in communities. The under-
lying architecture of the network or the community
is abstracted as the Cayley tree, and random links
are added to it to construct the tree-based commu-
nities. Percolation thresholds of two cases are cal-
culated based on the network model. The analysis
and evaluation shows that the percolation threshold
keeps decreasing with the increase of the shortcut
probability in the tree-based community network.
There exists the smallest percolation threshold in a
random network, where the virus will easily extend
to the whole network. The existence of random links
is equivalent to the addition of neighbors to the rele-
vant population. The sensor virus infects the neigh-
bor nodes on the underlying architecture and attacks
neighbors in other communities along external links,
which accelerate the virus propagation. The conclu-
sions can further our understanding of epidemic dy-
namics on tree-based communities of wireless sen-
sor networks.
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