BFC21103 Hydraulics
Chapter 4. Non‐Uniform Flow
in Open Channel
Tan Lai Wai, Wan Afnizan & Zarina Md Ali
[email protected]
February 2015
Learning Outcomes
At the end of this chapter, students should be able to:
i.
Analyse the characteristics of hydraulic jump
(rapidly‐varied flow) based on momentum
equation
ii. Analyse the characteristics of gradually‐varied
flow
BFC21103 Hydraulics
Tan et al. (
[email protected])
4.1 Rapidly‐Varied Flow
Occurs when the depth of flow change rapidly within short distance,
e.g. hydraulic jump.
Hydraulic jump occurs when supercritical flow changes suddenly to
subcritical flow within a short distance.
hydraulic jump
y2
subcritical
yc
supercritical
y1
1
2
BFC21103 Hydraulics
Tan et al. (
[email protected])
Datum
4.2 Hydraulic Jump
Hydraulic jump only occurs if the upstream flow is supercritical,
i.e. y1 < yc, and the downstream flow becomes subcritical flow, i.e.
y2 > yc > y1
where,
y1 = depth of flow just before the jump
y2 = depth of flow just after the jump
y1 and y2 are known as conjugate depths
BFC21103 Hydraulics
Tan et al. (
[email protected])
Hydraulic jump in the laboratory flume
BFC21103 Hydraulics
Tan et al. (
[email protected])
Hydraulic jump at the toe of spillway ‐ Itaipu dam, Brazil
BFC21103 Hydraulics
Tan et al. (
[email protected])
Hydraulic jump downstream of sluice gate ‐ Harran canal, Turkey
BFC21103 Hydraulics
Tan et al. (
[email protected])
Waves hitting sea wall in Depoe bay, Oregon U.S.
BFC21103 Hydraulics
Tan et al. (
[email protected])
Surge waves due to fast flowing flood in Tangjiasan, China
BFC21103 Hydraulics
Tan et al. (
[email protected])
Applications of Hydraulic Jump
i.
Energy dissipator i.e. reduce velocity and prevent erosion
ii. Raise the water level for irrigation or water distribution purposes
iii. Increase weight on apron by raising the depth of water to
prevent uplift pressure
iv. Mix chemical substance e.g. in water treatment process
v. Aeration of flow, i.e. increase DO
BFC21103 Hydraulics
Tan et al. (
[email protected])
Types of Jump
Based on the Froude number before the jump Fr1
Fr1 = 1.0 − 1.7
→ undular jump
Fr1 = 1.7 − 2.5
→ weak jump
Fr1 = 4.5 − 9.0
→ steady jump
Fr1 = 2.5 − 4.5
Fr1 > 9.0
→ oscillating jump
→ strong jump
BFC21103 Hydraulics
Tan et al. (
[email protected])
Fr1 = 1.6
Energy dissipation = 45% to 70%
BFC21103 Hydraulics
Energy
Tan et al. (
[email protected])
dissipation up to 85%
Momentum Equation
Consider a hydraulic jump on a frictionless flat bed within a
rectangular channel,
F4
F1
y1
1
F1
y2
W
F3
∑ F = M2 − M1
2
F1 − F2 − F3 + F4 = ρQV2 − ρQV1
Since friction = 0 → F3 = 0 and flat bed F4 = Wsinθ = 0
BFC21103 Hydraulics
Tan et al. (
[email protected])
F1 − F2 = ρQV2 − ρQV1
y1
y2
ρgA1 − ρgA2 = ρQV2 − ρQV1
2
2
Dividing by ρgB,
Since V1 =
1 2 1 2 qV2 qV1
y1 − y 2 =
−
g
g
2
2
q
q
,
and V2 =
y2
y1
1 2 1 2 q2 q2
y1 − y 2 =
−
2
2
gy2 gy1
q2 1 2 q2 1 2
+ y1 =
+ y2
gy2 2
gy1 2
BFC21103 Hydraulics
Tan et al. (
[email protected])
Activity 4.1
Using the momentum force equation, draw the specific force curve
if a hydraulic jump occurs within a rectangular channel with the
discharge per unit width is 25 ft3/s.
Given q = 25 ft3/s flows in a rectangular channel
q2 1 2
+ y
Specific force is given as F =
gy 2
Momentum Hydrostatic
pressure
flux
BFC21103 Hydraulics
Tan et al. (
[email protected])
y (ft)
F (ft2)
1.0
19.910
1.2
16.895
1.4
14.844
1.6
13.411
1.8
12.403
2.0
11.705
2.2
11.243
2.4
10.967
2.6
10.845
2.8
10.852
3.0
10.970
3.2
11.186
3.4
11.489
3.6
11.872
3.8
12.328
4.0
12.852
4.2
13.441
4.4
14.091
4.6
14.800
4.8
15.564
5.0
16.382
5.2
17.253
5.4
18.174
5.6
19.146
5.8
20.167
y (ft)
6
5
Subcritical flow Fr < 1
4
yc
3
2
1
Supercritical flow Fr > 1
0
0
5
10
Fmin
F (ft2)
15
20
y1 and y2 with the same F are conjugate depths
BFC21103 Hydraulics
Tan et al. (
[email protected])
Conjugate Depths Equation
From the momentum equation of flow in a rectangular channel,
q2 1 2 q2 1 2
+ y1 =
+ y2
gy2 2
gy1 2
Rearranging,
2
2
2
q
2
q
y22 − y12 =
−
gy1 gy2
2q 2 ⎛ y2 − y1 ⎞
(y2 − y1 )(y1 + y2 ) = ⎜⎜
⎟⎟
g ⎝ y1 y 2 ⎠
2q 2
(y1 + y2 )y1y2 =
g
2
q
It can be seen that Fr can be introduced since Fr2 = 3
gy
BFC21103 Hydraulics
Tan et al. (
[email protected])
y2 2q 2
( y1 + y 2 ) 2 = 3
y1 gy1
Division by y13 ,
y22 y2
2
+
=
2
Fr
1
y12 y1
Note that solving
y y2
+ − 2Fr12 = 0
y y1
ax 2 + bx + c = 0
2
2
2
1
Solving for
y2
gives
y1
− b ± b2 − 4ac
gives x =
2a
1 + 12 − 4(1)(− 2Fr12 )
y2
=−
y1
2(1)
(
y2 1
= − 1 + 1 + 8Fr12
y1 2
)
since y1 and y2 are positive values
BFC21103 Hydraulics
Tan et al. (
[email protected])
Else if division is made by y23 ,
1 + 1 + 8Fr22
y1
=−
y2
2
y2
y1
> 1 or
Note that for hydraulic jump to occur,
<1
y1
y2
BFC21103 Hydraulics
Tan et al. (
[email protected])
Energy Loss
There will be considerable loss of energy in hydraulic jump between
sections 1 and 2
V12
2g
EL V22
2g
hydraulic
jump
y2
subcritical
yc
supercritical
y1
1
2
BFC21103 Hydraulics
Tan et al. (
[email protected])
Datum
Eo
EGL
Energy loss is calculated as
E L = E1 − E 2
V12 ⎞ ⎛
V22 ⎞
⎛
E L = ⎜ y1 + ⎟ − ⎜ y 2 + ⎟
2g ⎠ ⎝
2g ⎠
⎝
For rectangular channel, it can be simplified as
⎛
q2 ⎞ ⎛
q2 ⎞
EL = ⎜⎜ y1 +
⎟ − ⎜⎜ y2 +
⎟
2 ⎟
2 ⎟
2gy1 ⎠ ⎝
2gy2 ⎠
⎝
1 q2 ⎛ 1 1 ⎞
⎜⎜ 2 − 2 ⎟⎟
E L = ( y1 − y 2 ) +
2 g ⎝ y1 y 2 ⎠
1 q 2 ⎛ y22 − y12 ⎞
E L = ( y1 − y 2 ) +
⎜⎜ 2 2 ⎟⎟
2 g ⎝ y1 y 2 ⎠
BFC21103 Hydraulics
Tan et al. (
[email protected])
q2 1
Substituting
= (y1 + y2 )y1 y2
g 2
⎛ y22 − y12 ⎞
1 ⎡1
⎤
E L = ( y1 − y 2 ) +
y1 y2 (y1 + y2 ) ⎜⎜ 2 2 ⎟⎟
⎥⎦⎝ y y ⎠
⎢
2 ⎣2
1 2
4 y1 y2 (y1 − y2 ) + y1 y22 − y13 + y23 − y12 y2
EL =
4 y1 y 2
y23 + 3y12 y2 − 3y1 y22 − y13
EL =
4 y1 y 2
EL =
(y2 − y1 )3
4 y1 y 2
which is expressed in meter
BFC21103 Hydraulics
Tan et al. (
[email protected])
Power due to Energy Loss
Power due to energy loss in unit Watt is given as
PL = ρgQE L
Height of Jump
The height of jump is given as
H j = y 2 − y1
BFC21103 Hydraulics
Tan et al. (
[email protected])
Length of Jump
Based on Froude number upstream of the jump Fr1,
Lj = 6.9(y2 − y1 )
for Fr1 ≤ 5.0
Lj = 6.1y2
for Fr1 > 5.0
BFC21103 Hydraulics
Tan et al. (
[email protected])
Activity 4.2
A spillway discharges flow at a rate of 7.75 m3/s/m. At the
downstream horizontal apron, the depth of flow was found to be
0.5 m. What tailwater depth is needed to form a hydraulic jump? If
a jump is formed, find its
(i)
type;
(ii) length;
(iii) head loss; and
(iv) energy loss as a percentage of the initial energy.
BFC21103 Hydraulics
Tan et al. (
[email protected])
Given q = 7.75 m3/s/m, y1 = 0.5 m
q
7.75
=
= 6.999
Fr1 =
3
3
gy1
9.81 × 0.5
(
Utilizing the conjugate depths equation,
y2 1
= − 1 + 1 + 8Fr12
y1 2
(
)
0.5
y2 =
− 1 + 1 + 8 × 6.9992
2
y2 = 4.705 m
(i)
)
Based on the Fr1 = 6.999, the jump is a steady jump (4.5 < Fr1 < 9.0)
BFC21103 Hydraulics
Tan et al. (
[email protected])
(ii) Since Fr1 = 6.999 > 5.0
Length of jump
Lj = 6.1y2
Lj = 6.1 × 4.705
Lj = 28.70 m
(iii) Head loss is given as EL =
EL =
(y2 − y1 )3
4 y1 y 2
(4.705 − 0.5)3
4 × 0.5 × 4.705
EL = 7.901 m
BFC21103 Hydraulics
Tan et al. (
[email protected])
q2
(iv) Initial total energy is Eo = y1 +
2gy12
7.752
Eo = 0.5 +
2 × 9.81 × 0.52
Eo = 12.745 m
EL 7.901
Percentage of energy loss
=
× 100% = 61.99%
Eo 12.745
BFC21103 Hydraulics
Tan et al. (
[email protected])
Activity 4.3
A 25‐m wide spillway is discharging flow with velocity of 30 m/s at a
depth of 1 m. Hydraulic jump occurs immediately downstream. Find
the height of the jump and power loss due to the jump.
Given B = 25 m, y1 = 1 m, V1 = 30 m/s
30
V1
=
= 9.578
Fr1 =
9.81 × 1
gy1
Conjugate depths equation,
(
y2 1
= − 1 + 1 + 8Fr12
y1 2
(
)
1
y2 = − 1 + 1 + 8 × 9.5782
2
y2 = 13.055 m
BFC21103 Hydraulics
Tan et al. (
[email protected])
)
(i)
Height of jump H j = y2 − y1
H j = 13.055 − 1
H j = 12.055 m
(ii) Energy loss
EL =
EL =
(y2 − y1 )3
(12.055 − 1)3
4 y1 y 2
4 × 1 × 12.055
EL = 28.019 m
Power due to energy loss PL = ρgQE L
PL = 9810 × (25 × 1 × 30 ) × 28.019
PL = 206.15 MW
BFC21103 Hydraulics
Tan et al. (
[email protected])
4.3 Gradually‐Varied Flow
A steady non‐uniform flow in a prismatic channel with gradual changes
in its flow surface elevation.
Examples:
(i) Drawdown produced by sudden change in channel bed slope
M2
control section
S2
yo
yc
Mild slope
Stee
p sl
ope
Computations C
omp
u ta
tion
s
BFC21103 Hydraulics
Tan et al. (
[email protected])
yo
(ii) Backwater produced by increased in bed elevation
M1
control section 1
control section 2
yo1
yo2
Mi l d s l o
pe
yc
Computations
Milder slope
Computations
BFC21103 Hydraulics
Tan et al. (
[email protected])
Lake
Types of Slope
yo
So
So < Sc
yo > yc
yo < yc
yo = yc
yo = ∞
yo = ∞
So > Sc
or
So = Sc
So = 0
So < 0
→
Type of slope
Symbol
Mild
M
→
Steep
S
Critical
C
Horizontal
H
Adverse
A
→
→
→
BFC21103 Hydraulics
Tan et al. (
[email protected])
Classification of GVF Profile
Channel
Mild slope
Steep slope
Critical slope
Horizontal bed
Adverse slope
Region
Condition
Type
1
y > yo > yc
M1
2
yo > y > yc
M2
3
yo > yc > y
M3
1
y > yc > yo
S1
2
yc > y > yo
S2
3
yc > yo > y
S3
1
y > yo = yc
C1
3
y < yo = yc
C3
2
y > yc
H2
3
y < yc
H3
2
y > yc
A2
3
y < yc
A3
Classification of GVF Profile
Slope
Region 1
Region 2
M1
Mild M
M2
yo
yo
yc
yc
y > yo > yc
Region 3
yo
yc
yo > y > yc
M3
yo > yc > y
S1
yc
yc
Steep S
S2
yo
yo
y > yc > yo
Critical C
yc
yo = y
yc > y > yo
C1
c
y > yo = yc
−
BFC21103 Hydraulics
Tan et al. (
[email protected])
yo S3
yc > yo > y
yo = y
C3
c
yo = yc > y
Slope
Horizontal
H
Region 1
−
Region 2
Region 3
H2
yc
yc
y > yc
H2
yc > y
A2
Adverse A
−
yc
y > yc
yc
All curves in region 1 have positive slopes (backwater curves)
All curves in region 2 have negative slopes (drawdown curves)
BFC21103 Hydraulics
Tan et al. (
[email protected])
yc > y
BFC21103 Hydraulics
Tan et al. (
[email protected])
Occurrence of Flow Profile
(a) i. M1 profile
Occurs due to obstruction to subcritical flow, e.g. weir, dam or
other control structures. The profile extends to several kilometres
upstream before approaching the normal depth.
y > yo > yc
M1
yo
yc
Mild slope
BFC21103 Hydraulics
Tan et al. (
[email protected])
(a) ii. M2 profile
Occurs when there is a sudden drop in the bottom of the channel,
constriction of channel or channel outlet into reservoir.
yo > y > yc
M2
yo
yc
Mild slope
BFC21103 Hydraulics
Tan et al. (
[email protected])
(a) iii. M3 profile
Occurs when supercritical flow enters a mild slope channel, e.g.
flow from a spillway or a sluice gate to a mild channel.
yo > yc > y
yo
M3
yc
Mild slope
BFC21103 Hydraulics
Tan et al. (
[email protected])
(b) i. S1 profile
Occurs when supercritical flow changes to pool of water
(subcritical flow) due to obstruction such as weir or dam.
y > yc > yo
S1
yc
yo
Steep slope
BFC21103 Hydraulics
Tan et al. (
[email protected])
(b) ii. S2 profile
Occurs when flow from reservoir enter a steep slope or when
there is a change from mild slope to steep slope. This profile is of
shorter length.
yc > y > yo
yc
yo
S2
Steep slope
BFC21103 Hydraulics
Tan et al. (
[email protected])
(b) iii. S3 profile
Occurs when flow from reservoir enter a steep slope or when
there is a change from mild slope to steep slope. This profile is of
shorter length.
yc > yo > y
Ste
S3
Steep slope
yo
yc
ep
e
rs
S3
lop
e
BFC21103 Hydraulics
Tan et al. (
[email protected])
Steep slope
yo
yc
(c) C1 and C3 profiles
Highly unstable and rarely occur, y > yo = yc and yo = yc > y
(d) H2 and H3 profiles
Occurs when the bed of mild slope becomes flatter. There is no
region 1 since yo = ∞.
y > yc
H2
yc > y
H3
yc
Horizontal bed
BFC21103 Hydraulics
Tan et al. (
[email protected])
Drop
(e) A2 and A3 profiles
Occurs when flow is on adverse slope, which is rare. These profiles
occurs within a short length.
yc > y
A3
y > yc
A2
yc
Pool
Drop
Adverse slope
BFC21103 Hydraulics
Tan et al. (
[email protected])
Activity 4.4
Determine the type of profile for the following flow.
Sluice gate
Sluice gate
yc
yo
yo
(a)
yc
(b)
BFC21103 Hydraulics
Tan et al. (
[email protected])
yc > yo → S
yo > yc → M
Zone 3 → S3
Zone 3 → M3
Zone 1 → M1
Zone 1 → S1
S1
Sluice gate
M1
S3
Sluice gate
yc
M3
yo
(a)
(b)
BFC21103 Hydraulics
Tan et al. (
[email protected])
yo
yc
Activity 4.5
A rectangular channel with bottom width 4 m and bottom slope
0.0008 has discharge of 1.5 m3/s. Along the gradually‐varied flow in
the channel, the depth at a section is found to be 0.3 m. Assuming
Manning n = 0.016, determine the type of GVF profile.
BFC21103 Hydraulics
Tan et al. (
[email protected])
Rectangular section, B = 4 m, So = 0.0008, n = 0.016, Q = 1.5 m3/s, y = 0.3 m.
AR =
2
3
Qn
S
1
2
o
⎛ Byo ⎞ 1.5 × 0.016
⎟⎟ =
(Byo )⎜⎜
1
B
+
y
2
⎝
o ⎠
0.00082
2
3
⎞
⎛
(4 yo )⎜⎜ 4 yo ⎟⎟ = 0.8485
⎝ 4 + 2y o ⎠
⎛Q ⎞
y c = ⎜⎜ 2 ⎟⎟
⎝B g⎠
2
2
3
yo = 0.4261 m
Since yo > y > y c → M2
BFC21103 Hydraulics
Tan et al. (
[email protected])
1
3
⎛ 1.5 ⎞
y c = ⎜⎜ 2
⎟⎟
⎝ 4 × 9.81 ⎠
2
y c = 0.2429 m
1
3
Activity 4.6
A triangular channel has side slope 1(H):1(V), bed slope 0.001, and
Manning roughness n = 0.015. If rate of flow is 0.2 m3/s
(a) Determine the type of slope, and
(b) Give the limit of depths of flow in regions 1, 2, and 3.
BFC21103 Hydraulics
Tan et al. (
[email protected])
Triangular section, z = 1, So = 0.001, n = 0.015, Q = 0.2 m3/s
AR =
2
3
Ac3 Q2
=
Tc
g
Qn
S
(zy )
1
2
o
2
⎛
⎞ 0.2 × 0.015
zy
2
o
⎜
⎟ =
(zyo )⎜
1
2 ⎟
y
+
z
2
1
⎝ o
⎠
0.0012
0.22
=
2zy c 9.81
2 3
c
2
3
y c5 = 0.008155
⎛ y
⎞
⎟⎟ = 0.09487
(y )⎜⎜
⎝ 2 2 yo ⎠
2
o
2
o
2
3
y c = 0.3822 m
y = 0.1897
8
3
o
yo = 0.5361 m
Since yo > y c → mild slope M
BFC21103 Hydraulics
Tan et al. (
[email protected])
For M1 : y > 0.5361 m
For M2 : 0.5361 m > y > 0.3822 m
For M3 : y < 0.3822 m
BFC21103 Hydraulics
Tan et al. (
[email protected])
Analysis of GVF Profile
Two basic assumptions are involved in the analysis of GVF:
1. The pressure distribution at any section is hydrostatic.
2. The resistance to flow at any depth can be assumed using
uniform‐flow equation, such as the Manning's equation, with the
condition that the slope term to be used in the equation is the
energy slope and not the bed slope. Thus, if in a GVF the depth of
flow at any section is y, the energy slope Sf is:
Sf =
n2V 2
R
4
3
where R is the hydraulic radius of the section at depth y.
BFC21103 Hydraulics
Tan et al. (
[email protected])
Differential Equation of GVF
The total energy H of a gradually‐varied flow in a channel of small
slope is:
V2
H =z+y+
2g
V2
where the specific energy E = y +
2g
V2
2g
E
line S
f
Wate
y
z
Datum
Energy
So
Schematic sketch of GVF
BFC21103 Hydraulics
Tan et al. (
[email protected])
r su r
face
x
Since the water surface varies in the longitudinal x‐direction, the depth
of the flow and the total energy are functions of x.
Differentiating total energy with respect to x,
dH dz dy d ⎛ V 2 ⎞
= + + ⎜⎜ ⎟⎟
dx dx dx dx ⎝ 2g ⎠
Energy slope
dH
= −S f
dx
Bottom slope
dZ
= − So
dx
water‐surface slope
relative to the channel
bottom
d ⎛ V 2 ⎞ d ⎛ Q 2 ⎞ dy
⎟
⎜⎜ ⎟⎟ = ⎜⎜
Velocity term
2⎟
dx ⎝ 2g ⎠ dx ⎝ 2gA ⎠ dx
Q 2 dA dy
=− 3
gA dy dx
BFC21103 Hydraulics
Tan et al. (
[email protected])
Since
dA
=T
dy
d ⎛ V 2 ⎞ Q2T dy
⎜⎜ ⎟⎟ = 3
dx ⎝ 2g ⎠ gA dx
Differentiated energy equation can now be rewritten as
dy ⎛ Q2T ⎞ dy
− S f = − So + − ⎜⎜ 3 ⎟⎟
dx ⎝ gA ⎠ dx
dy S o − S f
=
Rearranging,
Q2T
dx
1− 3
gA
Dynamic equation of GVF
BFC21103 Hydraulics
Tan et al. (
[email protected])
Other forms of dynamic equation of GVF
(a) If K = conveyance at any depth y and Ko = conveyance corresponding to
the normal depth yo, then
Q
for GVF
K=
Sf
Q
Ko =
for uniform flow
So
S f K o2
= 2
So K
If Z = section factor at depth y and Zc = section factor at the critical depth yc,
3
A
Z2 =
T
Ac3 Q2
2
=
and Z c =
Tc
g
Q2T Z c2
Hence
= 2
3
gA Z
BFC21103 Hydraulics
Tan et al. (
[email protected])
Substituting into the GVF dynamic equation
Sf ⎞
⎛
⎟
⎜ 1−
So ⎟
dy
= So ⎜
⎜ Q2T ⎟
dx
⎜1− 3 ⎟
⎝ gA ⎠
⎡ ⎛ K o ⎞2 ⎤
1−⎜ ⎟ ⎥
⎢
dy
= So ⎢ ⎝ K ⎠2 ⎥
dx
⎢1 − ⎛ Z c ⎞ ⎥
⎢⎣ ⎜⎝ Z ⎟⎠ ⎥⎦
This equation is useful in developing direct integration techniques.
BFC21103 Hydraulics
Tan et al. (
[email protected])
(b) If Qo represents the normal discharge at a depth yo and Qc denotes the
critical discharge at the same depth y,
Qo = K So
and
Qc = Z g
Using these definitions, the GVF dynamic equation in (a) can be rewritten as
⎛Q⎞
1 − ⎜⎜ ⎟⎟
Qn ⎠
dy
⎝
= So
2
dx
⎛Q⎞
1 − ⎜⎜ ⎟⎟
⎝ Qc ⎠
2
BFC21103 Hydraulics
Tan et al. (
[email protected])
(c) Another form of the GVF dynamic equation is
dE
= So − S f
dx
This equation is called the differential‐energy equation of GVF to distinguish
it from the other GVF differential equations. This energy equation is very
useful in developing numerical techniques for the GVF profile computation.
BFC21103 Hydraulics
Tan et al. (
[email protected])
Analysis of GVF Profile
Among the importance are:
(a) determination of the effect of hydraulic structure to the flow;
(b) inundation due to dam or weir construction; and
(c) estimation of flood area.
This course only considers the following methods:
(a) Direct integration;
(b) Numerical integration; and
(c) Direct step.
BFC21103 Hydraulics
Tan et al. (
[email protected])
Calculation of GVF Profile
Gradually‐varied
flow surface
y1
Δx1
Changes in depth of flow
y1+Δy1 y1+Δy2
Δx2
L
yN+1
ΔxN
dy
can be calculated if:
dx
(a) y1 and yN+1 are known, or
(b) L is known
BFC21103 Hydraulics
Tan et al. (
[email protected])
A. Direct Integration
Between two sections (x1, y1) and (x2, y2),
M
⎫⎪
⎧
⎛ yc ⎞ J
yo ⎪
[F (v2 , J ) − F (v1 , J )]⎬
x2 − x1 = ⎨(u2 − u1 ) − [F (u2 , N ) − F (u1 , N )] + ⎜⎜ ⎟⎟
So ⎪⎩
⎪⎭
⎝ yo ⎠ M
where,
y
u=
yo
v =u
N
J
N
J=
(N − M + 1)
M, N = hydraulic exponents
F(u, N) = varied‐flow function
F(v, J) = same function as F(u, N)
BFC21103 Hydraulics
Tan et al. (
[email protected])
y⎛
A dT ⎞
M = ⎜ 3T −
⎟
A⎝
T dy ⎠
2y ⎛
dP ⎞
N = ⎜ 5T − 2R ⎟
3A ⎝
dy ⎠
Section
M
N
Rectangular
3
2 to 3.333
Trapezoidal
3 to 5
2 to 5.333
5
5.333
Triangular
For trapezoidal channels,
y⎞
y
⎛
3⎜ 1 + 2z ⎟
2z
B⎠ −
B
M= ⎝
⎛ 1 + z y ⎞ ⎛ 1 + 2z y ⎞
⎜
⎟
⎟ ⎜
B⎠ ⎝
B⎠
⎝
⎛ y ⎞ 1 + z2
⎛ 1 + 2z y ⎞
⎟ 8 ⎜ ⎟
10 ⎜⎝
B⎠ −
⎝B⎠
N=
3 ⎛1 + z y ⎞ 3 ⎡
⎛ y ⎞ 1 + z2 ⎤
1
2
+
⎜
⎟
⎜ ⎟
⎥⎦
⎢
B⎠
⎝
⎝B⎠
⎣
BFC21103 Hydraulics
Tan et al. (
[email protected])
y
1
B
y
y
and
Do
B
0.
5
z=
z=
1.0
0.8
0.6
0.5
0.4
0.3
z = 0 (rectangular)
2.0
1
z
z = 2.5
z=3
z=4
Circular
z=
z = 1.5
2
6.0
5.0
4.0
3.0
0.2
Do
y
0.1
0.08
0.06
0.05
0.04
0.03
0.02
2.5
3.0
3.5
4.0
M
4.5
BFC21103 Hydraulics
Tan et al. (
[email protected])
5.0
5.5
1.0
0.8
0.6
y
y 0.5
0.4
and
Do 0.3
B
y
5
1.
5
z
.
0
=
1
B
z=
z
z=
1
)
ular
tang
(rec
2.0
z=0
6.0
5.0
4.0
3.0
Circula
r
z=2
z = 2.5
z=3
z=4
0.2
Do
y
0.1
0.08
0.06
0.05
0.04
0.03
0.02
2.0
2.5
3.0
3.5
N
4.0
4.5
BFC21103 Hydraulics
Tan et al. (
[email protected])
5.0
5.5
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.201
0.221
0.241
0.262
0.282
0.200
0.221
0.241
0.261
0.282
0.200
0.220
0.241
0.261
0.281
0.200
0.220
0.240
0.261
0.281
0.200
0.220
0.240
0.260
0.281
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.303
0.324
0.344
0.366
0.387
0.302
0.323
0.343
0.364
0.385
0.302
0.322
0.343
0.363
0.384
0.301
0.322
0.342
0.363
0.383
0.301
0.321
0.342
0.362
0.383
0.301
0.321
0.341
0.362
0.382
0.300
0.321
0.341
0.361
0.382
u
0.00
0.02
0.04
0.06
0.08
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.10
0.12
0.14
0.16
0.18
0.100
0.120
0.141
0.161
0.181
0.100
0.120
0.140
0.161
0.181
0.100
0.120
0.140
0.160
0.181
0.100
0.120
0.140
0.160
0.180
0.20
0.22
0.24
0.26
0.28
0.202
0.223
0.243
0.264
0.286
0.201
0.222
0.242
0.263
0.284
0.201
0.221
0.242
0.262
0.283
0.30
0.32
0.34
0.36
0.38
0.307
0.329
0.350
0.373
0.395
0.305
0.326
0.348
0.370
0.392
0.304
0.325
0.346
0.367
0.389
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.405
0.426
0.448
0.470
0.492
0.404
0.425
0.446
0.468
0.489
0.403
0.424
0.445
0.466
0.488
0.403
0.423
0.444
0.465
0.486
0.402
0.423
0.443
0.464
0.485
0.517
0.540
0.563
0.587
0.612
0.514
0.536
0.559
0.583
0.607
0.511
0.534
0.556
0.579
0.603
0.509
0.531
0.554
0.576
0.599
0.508
0.529
0.551
0.574
0.596
0.506
0.528
0.550
0.572
0.594
0.644
0.657
0.671
0.684
0.698
0.637
0.650
0.663
0.676
0.690
0.631
0.644
0.657
0.669
0.683
0.627
0.639
0.651
0.664
0.677
0.623
0.635
0.647
0.659
0.672
0.620
0.631
0.643
0.655
0.667
0.617
0.628
0.640
0.652
0.664
0.712
0.727
0.742
0.757
0.772
0.703
0.717
0.731
0.746
0.761
0.696
0.709
0.723
0.737
0.751
0.689
0.703
0.716
0.729
0.743
0.684
0.697
0.710
0.723
0.737
0.680
0.692
0.705
0.718
0.731
0.676
0.688
0.701
0.713
0.726
u
0.40
0.42
0.44
0.46
0.48
0.418
0.441
0.465
0.489
0.514
0.414
0.437
0.460
0.483
0.507
0.411
0.433
0.456
0.478
0.502
0.408
0.430
0.452
0.475
0.497
0.407
0.428
0.450
0.472
0.494
0.50
0.52
0.54
0.56
0.58
0.539
0.565
0.592
0.619
0.647
0.531
0.556
0.582
0.608
0.635
0.525
0.550
0.574
0.600
0.626
0.521
0.544
0.568
0.593
0.618
0.60
0.61
0.62
0.63
0.64
0.676
0.691
0.707
0.722
0.738
0.663
0.677
0.692
0.707
0.722
0.653
0.666
0.680
0.694
0.709
0.65
0.66
0.67
0.68
0.69
0.754
0.771
0.787
0.805
0.822
0.737
0.753
0.769
0.785
0.802
0.724
0.739
0.754
0.769
0.785
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.766
0.781
0.796
0.811
0.827
0.757
0.772
0.786
0.802
0.817
0.750
0.764
0.779
0.793
0.808
0.744
0.758
0.772
0.786
0.800
0.739
0.752
0.766
0.780
0.794
0.857
0.874
0.892
0.911
0.930
0.844
0.861
0.878
0.896
0.914
0.833
0.849
0.866
0.883
0.901
0.823
0.839
0.855
0.872
0.889
0.815
0.830
0.846
0.862
0.879
0.808
0.823
0.838
0.854
0.870
0.970
0.992
1.015
1.039
1.064
0.950
0.971
0.993
1.016
1.040
0.934
0.954
0.974
0.996
1.019
0.919
0.938
0.958
0.979
1.001
0.907
0.925
0.945
0.965
0.985
0.896
0.914
0.932
0.952
0.972
0.887
0.904
0.922
0.940
0.960
1.091
1.119
1.149
1.181
1.216
1.065
1.092
1.120
1.151
1.183
1.043
1.068
1.095
1.124
1.155
1.024
1.048
1.074
1.101
1.131
1.007
1.031
1.055
1.081
1.110
0.993
1.015
1.039
1.064
1.091
0.980
1.002
1.025
1.049
1.075
u
0.70
0.71
0.72
0.73
0.74
0.841
0.859
0.878
0.898
0.918
0.819
0.837
0.855
0.874
0.893
0.802
0.819
0.836
0.853
0.871
0.787
0.804
0.820
0.837
0.854
0.776
0.791
0.807
0.823
0.840
0.75
0.76
0.77
0.78
0.79
0.939
0.961
0.984
1.007
1.031
0.912
0.933
0.954
0.976
0.998
0.890
0.909
0.929
0.950
0.971
0.872
0.890
0.909
0.929
0.949
0.80
0.81
0.82
0.83
0.84
1.056
1.083
1.110
1.139
1.170
1.022
1.047
1.072
1.099
1.128
0.994
1.017
1.041
1.067
1.093
0.85
0.86
0.87
0.88
0.89
1.202
1.236
1.273
1.312
1.355
1.158
1.190
1.224
1.260
1.300
1.122
1.151
1.183
1.217
1.254
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
1.189
1.225
1.266
1.311
1.363
1.163
1.197
1.236
1.279
1.328
1.140
1.173
1.210
1.251
1.297
1.120
1.152
1.187
1.226
1.270
1.103
1.133
1.166
1.204
1.246
1.467
1.545
1.644
1.707
1.783
1.423
1.497
1.590
1.649
1.720
1.385
1.454
1.543
1.598
1.666
1.352
1.417
1.501
1.553
1.617
1.322
1.385
1.464
1.514
1.575
1.296
1.355
1.431
1.479
1.536
1.959
2.106
2.355
2.931
∞
1.880
2.017
2.250
2.788
∞
1.812
1.940
2.159
2.663
∞
1.752
1.873
2.079
2.554
∞
1.699
1.814
2.008
2.457
∞
1.652
1.761
1.945
2.370
∞
1.610
1.714
1.889
2.293
∞
2.399
1.818
1.572
1.428
1.327
2.184
1.649
1.419
1.286
1.191
2.008
1.506
1.291
1.166
1.078
1.856
1.384
1.182
1.065
0.982
1.725
1.279
1.089
0.978
0.900
1.610
1.188
1.007
0.902
0.828
1.508
1.107
0.936
0.836
0.766
u
0.90
0.91
0.92
0.93
0.94
1.401
1.452
1.508
1.572
1.645
1.343
1.390
1.442
1.500
1.568
1.294
1.338
1.386
1.441
1.503
1.253
1.294
1.340
1.391
1.449
1.218
1.257
1.300
1.348
1.403
0.950
0.960
0.970
0.975
0.980
1.730
1.834
1.968
2.052
2.155
1.647
1.743
1.865
1.943
2.040
1.577
1.666
1.780
1.851
1.936
1.518
1.601
1.707
1.773
1.855
0.985
0.990
0.995
0.999
1.000
2.294
2.477
2.792
3.523
∞
2.165
2.333
2.621
3.292
∞
2.056
2.212
2.478
3.097
∞
1.001
1.005
1.010
1.015
1.020
3.317
2.587
2.273
2.090
1.961
2.931
2.272
1.984
1.817
1.698
2.640
2.021
1.756
1.602
1.493
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.955
0.868
0.802
0.748
0.703
0.866
0.785
0.723
0.672
0.630
0.790
0.714
0.656
0.608
0.569
0.725
0.653
0.598
0.553
0.516
0.668
0.600
0.548
0.506
0.471
0.749
0.713
0.681
0.652
0.626
0.665
0.631
0.601
0.575
0.551
0.595
0.563
0.536
0.511
0.488
0.535
0.506
0.480
0.457
0.436
0.485
0.457
0.433
0.411
0.392
0.441
0.415
0.392
0.372
0.354
0.693
0.669
0.647
0.627
0.608
0.602
0.581
0.561
0.542
0.525
0.529
0.509
0.490
0.473
0.458
0.468
0.450
0.432
0.417
0.402
0.417
0.400
0.384
0.369
0.355
0.374
0.358
0.343
0.329
0.316
0.337
0.322
0.308
0.295
0.283
0.591
0.574
0.559
0.531
0.505
0.509
0.494
0.480
0.454
0.431
0.443
0.429
0.416
0.392
0.371
0.388
0.375
0.363
0.341
0.322
0.343
0.331
0.320
0.299
0.281
0.305
0.294
0.283
0.264
0.248
0.272
0.262
0.252
0.235
0.219
u
1.03
1.04
1.05
1.06
1.07
1.779
1.651
1.552
1.472
1.405
1.532
1.415
1.325
1.252
1.191
1.340
1.232
1.149
1.082
1.026
1.186
1.086
1.010
0.947
0.895
1.060
0.967
0.896
0.838
0.790
1.08
1.09
1.10
1.11
1.12
1.346
1.296
1.250
1.210
1.173
1.138
1.091
1.050
1.013
0.980
0.977
0.935
0.897
0.864
0.833
0.851
0.812
0.777
0.746
0.718
1.13
1.14
1.15
1.16
1.17
1.139
1.108
1.079
1.052
1.027
0.949
0.921
0.895
0.871
0.848
0.805
0.780
0.756
0.734
0.713
1.18
1.19
1.20
1.22
1.24
1.003
0.981
0.960
0.922
0.887
0.827
0.807
0.788
0.754
0.723
0.694
0.676
0.659
0.628
0.600
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.351
0.334
0.318
0.304
0.290
0.304
0.288
0.274
0.260
0.248
0.265
0.250
0.237
0.225
0.214
0.233
0.219
0.207
0.196
0.185
0.205
0.193
0.181
0.171
0.162
0.329
0.316
0.304
0.293
0.282
0.278
0.266
0.256
0.246
0.236
0.237
0.226
0.217
0.208
0.199
0.204
0.194
0.185
0.177
0.169
0.176
0.167
0.159
0.152
0.145
0.153
0.145
0.138
0.131
0.125
0.330
0.320
0.310
0.288
0.269
0.273
0.263
0.255
0.235
0.218
0.227
0.219
0.211
0.194
0.179
0.191
0.184
0.177
0.161
0.148
0.162
0.156
0.149
0.135
0.123
0.139
0.133
0.127
0.114
0.103
0.119
0.113
0.108
0.097
0.087
0.251
0.236
0.222
0.209
0.198
0.203
0.189
0.177
0.166
0.156
0.165
0.153
0.143
0.133
0.125
0.136
0.125
0.116
0.108
0.100
0.113
0.103
0.095
0.088
0.082
0.094
0.086
0.079
0.072
0.067
0.079
0.072
0.065
0.060
0.055
u
1.26
1.28
1.30
1.32
1.34
0.856
0.827
0.800
0.776
0.753
0.694
0.669
0.645
0.623
0.603
0.574
0.551
0.530
0.510
0.492
0.482
0.461
0.442
0.424
0.408
0.410
0.391
0.373
0.357
0.342
1.36
1.38
1.40
1.42
1.44
0.731
0.711
0.692
0.675
0.658
0.584
0.566
0.549
0.534
0.519
0.475
0.459
0.444
0.431
0.418
0.393
0.378
0.365
0.353
0.341
1.46
1.48
1.50
1.55
1.60
0.642
0.627
0.613
0.580
0.551
0.505
0.492
0.479
0.451
0.425
0.405
0.394
0.383
0.358
0.335
1.65
1.70
1.75
1.80
1.85
0.525
0.501
0.480
0.460
0.442
0.403
0.382
0.364
0.347
0.332
0.316
0.298
0.282
0.267
0.254
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0
0.117
0.110
0.104
0.092
0.083
0.094
0.088
0.082
0.073
0.065
0.076
0.070
0.066
0.058
0.051
0.062
0.057
0.053
0.046
0.040
0.050
0.046
0.043
0.037
0.032
0.098
0.089
0.082
0.076
0.070
0.075
0.068
0.062
0.057
0.052
0.058
0.052
0.047
0.043
0.039
0.045
0.040
0.036
0.033
0.029
0.035
0.031
0.028
0.025
0.022
0.028
0.024
0.022
0.019
0.017
0.089
0.083
0.078
0.059
0.046
0.065
0.060
0.056
0.041
0.031
0.048
0.044
0.041
0.029
0.022
0.036
0.033
0.030
0.021
0.015
0.027
0.024
0.022
0.015
0.010
0.020
0.018
0.017
0.011
0.007
0.015
0.014
0.012
0.008
0.005
0.037
0.031
0.022
0.017
0.013
0.025
0.020
0.014
0.010
0.008
0.017
0.013
0.009
0.006
0.005
0.011
0.009
0.006
0.004
0.003
0.008
0.006
0.004
0.002
0.002
0.005
0.004
0.002
0.002
0.001
0.004
0.003
0.002
0.001
0.001
u
1.90
1.95
2.00
2.10
2.20
0.425
0.409
0.395
0.369
0.346
0.317
0.304
0.292
0.273
0.251
0.242
0.231
0.221
0.202
0.186
0.188
0.178
0.169
0.154
0.141
0.147
0.139
0.132
0.119
0.107
2.3
2.4
2.5
2.6
2.7
0.326
0.308
0.292
0.277
0.264
0.235
0.220
0.207
0.195
0.184
0.173
0.160
0.150
0.140
0.131
0.129
0.119
0.110
0.102
0.095
2.8
2.9
3.0
3.5
4.0
0.252
0.241
0.230
0.190
0.161
0.175
0.166
0.158
0.126
0.104
0.124
0.117
0.110
0.085
0.069
4.5
5.0
6.0
7.0
8.0
0.139
0.122
0.098
0.081
0.069
0.088
0.076
0.058
0.047
0.040
0.057
0.048
0.036
0.028
0.022
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
2.2
2.4
2.6
2.8
3.0
3.2
u
9.0
10.0
20.0
0.060
0.053
0.023
0.033
0.028
0.011
0.019
0.016
0.005
0.011
0.009
0.003
0.006
0.005
0.001
0.004
0.003
0.001
BFC21103 Hydraulics
Tan et al. (
[email protected])
3.4
3.6
3.8
4.0
0.002
0.002
0.000
0.001
0.001
0.000
0.001
0.001
0.000
0.000
0.000
0.000
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
u
0.00
0.02
0.04
0.06
0.08
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.10
0.12
0.14
0.16
0.18
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.20
0.22
0.24
0.26
0.28
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.30
0.32
0.34
0.36
0.38
0.300
0.321
0.341
0.361
0.381
0.300
0.320
0.340
0.361
0.381
0.300
0.320
0.340
0.360
0.381
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
0.400
0.420
0.441
0.461
0.481
0.400
0.420
0.440
0.460
0.480
0.400
0.420
0.440
0.460
0.480
0.400
0.420
0.440
0.460
0.480
0.400
0.420
0.440
0.460
0.480
0.501
0.522
0.542
0.563
0.584
0.501
0.521
0.542
0.562
0.583
0.501
0.521
0.541
0.562
0.582
0.500
0.521
0.541
0.561
0.582
0.500
0.520
0.541
0.561
0.581
0.500
0.520
0.541
0.561
0.581
0.606
0.617
0.628
0.638
0.649
0.605
0.615
0.626
0.636
0.647
0.604
0.614
0.625
0.635
0.646
0.603
0.613
0.624
0.634
0.645
0.602
0.612
0.623
0.633
0.644
0.602
0.611
0.622
0.632
0.643
0.601
0.611
0.622
0.632
0.642
0.660
0.672
0.683
0.694
0.706
0.658
0.669
0.680
0.691
0.703
0.656
0.667
0.678
0.689
0.700
0.655
0.666
0.676
0.687
0.698
0.654
0.665
0.675
0.686
0.696
0.653
0.664
0.674
0.685
0.695
0.653
0.663
0.673
0.684
0.694
u
0.40
0.42
0.44
0.46
0.48
0.402
0.422
0.443
0.463
0.484
0.401
0.421
0.442
0.462
0.483
0.401
0.421
0.441
0.462
0.482
0.400
0.421
0.441
0.461
0.481
0.400
0.420
0.441
0.461
0.481
0.50
0.52
0.54
0.56
0.58
0.505
0.527
0.548
0.570
0.592
0.504
0.525
0.546
0.567
0.589
0.503
0.523
0.544
0.565
0.587
0.502
0.522
0.543
0.564
0.585
0.60
0.61
0.62
0.63
0.64
0.614
0.626
0.637
0.649
0.661
0.611
0.622
0.633
0.644
0.656
0.608
0.619
0.630
0.641
0.652
0.65
0.66
0.67
0.68
0.69
0.673
0.685
0.697
0.709
0.722
0.667
0.679
0.691
0.703
0.715
0.663
0.675
0.686
0.698
0.710
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
0.711
0.723
0.734
0.746
0.757
0.709
0.720
0.732
0.743
0.754
0.708
0.719
0.730
0.741
0.752
0.706
0.717
0.728
0.739
0.750
0.705
0.716
0.727
0.737
0.748
0.773
0.786
0.798
0.811
0.824
0.769
0.781
0.794
0.806
0.819
0.766
0.778
0.790
0.802
0.815
0.763
0.775
0.787
0.799
0.811
0.761
0.773
0.784
0.796
0.808
0.760
0.771
0.782
0.794
0.805
0.845
0.860
0.875
0.890
0.906
0.838
0.852
0.867
0.881
0.897
0.832
0.846
0.860
0.874
0.889
0.828
0.841
0.854
0.868
0.883
0.824
0.837
0.850
0.863
0.877
0.820
0.833
0.846
0.859
0.873
0.818
0.830
0.842
0.855
0.869
0.923
0.940
0.959
0.978
0.999
0.913
0.930
0.947
0.966
0.986
0.904
0.921
0.937
0.955
0.974
0.897
0.913
0.929
0.946
0.964
0.892
0.907
0.922
0.939
0.956
0.887
0.901
0.916
0.932
0.949
0.882
0.896
0.911
0.927
0.943
u
0.70
0.71
0.72
0.73
0.74
0.735
0.748
0.761
0.774
0.788
0.727
0.740
0.752
0.765
0.779
0.722
0.734
0.746
0.759
0.771
0.717
0.729
0.741
0.753
0.766
0.714
0.725
0.737
0.749
0.761
0.75
0.76
0.77
0.78
0.79
0.802
0.817
0.831
0.847
0.862
0.792
0.806
0.820
0.834
0.849
0.784
0.798
0.811
0.825
0.839
0.778
0.791
0.804
0.817
0.831
0.80
0.81
0.82
0.83
0.84
0.878
0.895
0.912
0.931
0.949
0.865
0.881
0.897
0.914
0.932
0.854
0.869
0.885
0.901
0.918
0.85
0.86
0.87
0.88
0.89
0.969
0.990
1.012
1.035
1.060
0.950
0.970
0.990
1.012
1.035
0.935
0.954
0.973
0.994
1.015
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
0.994
1.016
1.040
1.066
1.095
0.984
1.004
1.027
1.052
1.080
0.975
0.995
1.016
1.040
1.067
0.967
0.986
1.007
1.030
1.055
0.960
0.979
0.999
1.021
1.045
1.149
1.191
1.245
1.279
1.319
1.129
1.169
1.220
1.252
1.290
1.112
1.150
1.198
1.228
1.264
1.097
1.134
1.179
1.208
1.242
1.085
1.119
1.163
1.190
1.222
1.073
1.107
1.148
1.174
1.205
1.409
1.487
1.617
1.917
∞
1.371
1.443
1.565
1.845
∞
1.338
1.406
1.520
1.780
∞
1.310
1.373
1.481
1.725
∞
1.285
1.345
1.446
1.678
∞
1.263
1.320
1.416
1.635
∞
1.244
1.298
1.389
1.596
∞
1.033
0.736
0.610
0.537
0.486
0.951
0.669
0.551
0.483
0.436
0.870
0.611
0.501
0.438
0.394
0.803
0.562
0.459
0.399
0.358
0.746
0.519
0.422
0.366
0.327
0.697
0.481
0.390
0.337
0.300
0.651
0.448
0.361
0.311
0.277
u
0.90
0.91
0.92
0.93
0.94
1.087
1.116
1.148
1.184
1.225
1.060
1.088
1.117
1.151
1.188
1.039
1.064
1.092
1.123
1.158
1.021
1.045
1.072
1.101
1.134
1.007
1.029
1.054
1.081
1.113
0.950
0.960
0.970
0.975
0.980
1.272
1.329
1.402
1.447
1.502
1.232
1.285
1.351
1.393
1.443
1.199
1.248
1.310
1.348
1.395
1.172
1.217
1.275
1.311
1.354
0.985
0.990
0.995
0.999
1.000
1.573
1.671
1.838
2.223
∞
1.508
1.598
1.751
2.102
∞
1.454
1.537
1.678
2.002
∞
1.001
1.005
1.010
1.015
1.020
1.417
1.036
0.873
0.778
0.711
1.264
0.915
0.766
0.680
0.620
1.138
0.817
0.681
0.602
0.546
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
0.332
0.290
0.258
0.232
0.211
0.300
0.261
0.231
0.207
0.188
0.273
0.236
0.208
0.186
0.168
0.250
0.215
0.189
0.168
0.151
0.229
0.196
0.172
0.152
0.136
0.220
0.204
0.189
0.176
0.165
0.194
0.179
0.165
0.154
0.143
0.172
0.158
0.145
0.135
0.125
0.153
0.140
0.129
0.119
0.110
0.137
0.125
0.114
0.105
0.097
0.123
0.112
0.102
0.094
0.086
0.181
0.170
0.161
0.153
0.145
0.155
0.146
0.137
0.130
0.123
0.134
0.126
0.118
0.111
0.105
0.117
0.109
0.102
0.096
0.090
0.102
0.095
0.089
0.083
0.078
0.090
0.084
0.078
0.072
0.068
0.080
0.074
0.068
0.064
0.059
0.138
0.131
0.125
0.114
0.104
0.116
0.110
0.105
0.095
0.086
0.099
0.093
0.089
0.080
0.072
0.085
0.080
0.076
0.067
0.061
0.073
0.069
0.065
0.057
0.051
0.063
0.059
0.056
0.049
0.044
0.055
0.052
0.048
0.042
0.037
u
1.03
1.04
1.05
1.06
1.07
0.618
0.554
0.504
0.464
0.431
0.535
0.477
0.432
0.396
0.366
0.469
0.415
0.374
0.342
0.315
0.415
0.365
0.328
0.298
0.273
0.370
0.324
0.290
0.262
0.239
1.08
1.09
1.10
1.11
1.12
0.403
0.379
0.357
0.338
0.321
0.341
0.319
0.299
0.282
0.267
0.292
0.272
0.254
0.239
0.225
0.252
0.234
0.218
0.204
0.192
1.13
1.14
1.15
1.16
1.17
0.305
0.291
0.278
0.266
0.254
0.253
0.240
0.229
0.218
0.208
0.212
0.201
0.191
0.181
0.173
1.18
1.19
1.20
1.22
1.24
0.244
0.235
0.226
0.209
0.195
0.199
0.191
0.183
0.168
0.156
0.165
0.157
0.150
0.138
0.127
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
0.065
0.059
0.054
0.050
0.045
0.055
0.049
0.045
0.041
0.037
0.046
0.041
0.037
0.034
0.031
0.039
0.035
0.031
0.028
0.025
0.033
0.030
0.026
0.024
0.021
0.052
0.048
0.044
0.041
0.038
0.042
0.038
0.035
0.033
0.030
0.034
0.031
0.029
0.026
0.024
0.028
0.025
0.023
0.021
0.019
0.023
0.021
0.019
0.017
0.016
0.019
0.017
0.015
0.014
0.013
0.046
0.043
0.040
0.035
0.030
0.036
0.033
0.031
0.026
0.023
0.028
0.026
0.024
0.020
0.017
0.022
0.021
0.019
0.016
0.013
0.018
0.016
0.015
0.012
0.010
0.014
0.013
0.012
0.010
0.008
0.011
0.010
0.010
0.008
0.006
0.026
0.023
0.020
0.017
0.015
0.019
0.017
0.014
0.013
0.011
0.014
0.012
0.010
0.009
0.008
0.011
0.009
0.008
0.007
0.006
0.008
0.007
0.006
0.005
0.004
0.006
0.005
0.004
0.004
0.003
0.005
0.004
0.003
0.003
0.002
u
1.26
1.28
1.30
1.32
1.34
0.182
0.170
0.160
0.150
0.142
0.145
0.135
0.126
0.118
0.110
0.117
0.108
0.100
0.093
0.087
0.095
0.088
0.081
0.075
0.069
0.079
0.072
0.066
0.061
0.056
1.36
1.38
1.40
1.42
1.44
0.134
0.127
0.120
0.114
0.108
0.103
0.097
0.092
0.087
0.082
0.081
0.076
0.071
0.067
0.063
0.064
0.060
0.056
0.052
0.049
1.46
1.48
1.50
1.55
1.60
0.103
0.098
0.093
0.083
0.074
0.077
0.073
0.069
0.061
0.054
0.059
0.056
0.053
0.046
0.040
1.65
1.70
1.75
1.80
1.85
0.067
0.060
0.054
0.049
0.045
0.048
0.043
0.038
0.035
0.031
0.035
0.031
0.027
0.024
0.022
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
4.2
4.6
5.0
5.4
5.8
6.2
6.6
7.0
7.4
7.8
0.007
0.006
0.005
0.004
0.003
0.005
0.004
0.004
0.003
0.002
0.004
0.003
0.003
0.002
0.001
0.003
0.002
0.002
0.001
0.001
0.002
0.002
0.001
0.001
0.001
0.004
0.003
0.003
0.002
0.002
0.003
0.002
0.002
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.002
0.002
0.002
0.001
0.000
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
u
1.90
1.95
2.00
2.10
2.20
0.041
0.038
0.035
0.030
0.025
0.028
0.026
0.023
0.020
0.016
0.020
0.018
0.016
0.013
0.011
0.014
0.012
0.011
0.009
0.007
0.010
0.009
0.008
0.006
0.005
2.3
2.4
2.5
2.6
2.7
0.022
0.019
0.017
0.015
0.013
0.014
0.012
0.010
0.009
0.008
0.009
0.008
0.006
0.005
0.005
0.006
0.005
0.004
0.003
0.003
2.8
2.9
3.0
3.5
4.0
0.012
0.010
0.009
0.006
0.004
0.007
0.006
0.005
0.003
0.002
0.004
0.004
0.003
0.002
0.001
4.5
5.0
6.0
7.0
8.0
0.003
0.002
0.001
0.001
0.000
0.001
0.001
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
4.2
4.6
5.0
5.4
5.8
6.2
u
9.0
10.0
20.0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
BFC21103 Hydraulics
Tan et al. (
[email protected])
6.6
7.0
7.4
7.8
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
8.2
8.6
9.0
9.4
9.8
u
0.00
0.02
0.04
0.06
0.08
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.000
0.020
0.040
0.060
0.080
0.10
0.12
0.14
0.16
0.18
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.100
0.120
0.140
0.160
0.180
0.20
0.22
0.24
0.26
0.28
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.200
0.220
0.240
0.260
0.280
0.30
0.32
0.34
0.36
0.38
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
0.300
0.320
0.340
0.360
0.380
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
8.2
8.6
9.0
9.4
9.8
u
0.40
0.42
0.44
0.46
0.48
0.400
0.420
0.440
0.460
0.480
0.400
0.420
0.440
0.460
0.480
0.400
0.420
0.440
0.460
0.480
0.400
0.420
0.440
0.460
0.480
0.400
0.420
0.440
0.460
0.480
0.50
0.52
0.54
0.56
0.58
0.500
0.520
0.540
0.561
0.581
0.500
0.520
0.540
0.560
0.581
0.500
0.520
0.540
0.560
0.580
0.500
0.520
0.540
0.560
0.580
0.500
0.520
0.540
0.560
0.580
0.60
0.61
0.62
0.63
0.64
0.601
0.611
0.621
0.632
0.642
0.601
0.611
0.621
0.631
0.641
0.601
0.611
0.621
0.631
0.641
0.600
0.611
0.621
0.631
0.641
0.600
0.610
0.621
0.631
0.641
0.65
0.66
0.67
0.68
0.69
0.652
0.662
0.673
0.683
0.694
0.652
0.662
0.672
0.683
0.693
0.651
0.662
0.672
0.682
0.692
0.651
0.661
0.672
0.682
0.692
0.651
0.661
0.671
0.681
0.692
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
8.2
8.6
9.0
9.4
9.8
u
0.70
0.71
0.72
0.73
0.74
0.704
0.715
0.726
0.736
0.747
0.704
0.714
0.725
0.735
0.746
0.703
0.713
0.724
0.734
0.745
0.702
0.713
0.723
0.734
0.744
0.702
0.712
0.723
0.733
0.744
0.75
0.76
0.77
0.78
0.79
0.758
0.769
0.780
0.792
0.804
0.757
0.768
0.779
0.790
0.802
0.756
0.767
0.778
0.789
0.800
0.755
0.766
0.777
0.788
0.799
0.754
0.765
0.776
0.787
0.798
0.80
0.81
0.82
0.83
0.84
0.815
0.827
0.839
0.852
0.865
0.813
0.825
0.837
0.849
0.862
0.811
0.823
0.835
0.847
0.860
0.810
0.822
0.833
0.845
0.858
0.809
0.820
0.831
0.844
0.856
0.85
0.86
0.87
0.88
0.89
0.878
0.892
0.907
0.921
0.937
0.875
0.889
0.903
0.918
0.933
0.873
0.886
0.900
0.914
0.929
0.870
0.883
0.897
0.911
0.925
0.868
0.881
0.894
0.908
0.922
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
8.2
8.6
9.0
9.4
9.8
u
0.90
0.91
0.92
0.93
0.94
0.954
0.972
0.991
1.012
1.036
0.949
0.967
0.986
1.006
1.029
0.944
0.961
0.980
0.999
1.022
0.940
0.957
0.975
0.994
1.016
0.937
0.953
0.970
0.989
1.010
0.950
0.960
0.970
0.975
0.980
1.062
1.097
1.136
1.157
1.187
1.055
1.085
1.124
1.147
1.175
1.047
1.074
1.112
1.134
1.160
1.040
1.063
1.100
1.122
1.150
1.033
1.053
1.087
1.108
1.132
0.985
0.990
0.995
0.999
1.000
1.224
1.275
1.363
1.560
∞
1.210
1.260
1.342
1.530
∞
1.196
1.243
1.320
1.500
∞
1.183
1.228
1.302
1.476
∞
1.165
1.208
1.280
1.447
∞
1.001
1.005
1.010
1.015
1.020
0.614
0.420
0.337
0.289
0.257
0.577
0.391
0.313
0.269
0.237
0.546
0.368
0.294
0.255
0.221
0.519
0.350
0.278
0.237
0.209
0.494
0.331
0.262
0.223
0.196
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
8.2
8.6
9.0
9.4
9.8
u
1.03
1.04
1.05
1.06
1.07
0.212
0.173
0.158
0.140
0.123
0.195
0.165
0.143
0.127
0.112
0.181
0.152
0.132
0.116
0.102
0.170
0.143
0.124
0.106
0.094
0.159
0.134
0.115
0.098
0.086
1.08
1.09
1.10
1.11
1.12
0.111
0.101
0.092
0.084
0.077
0.101
0.091
0.083
0.075
0.069
0.092
0.082
0.074
0.067
0.062
0.084
0.075
0.067
0.060
0.055
0.077
0.069
0.062
0.055
0.050
1.13
1.14
1.15
1.16
1.17
0.071
0.065
0.061
0.056
0.052
0.063
0.058
0.054
0.050
0.046
0.056
0.052
0.048
0.045
0.041
0.050
0.046
0.043
0.040
0.036
0.045
0.041
0.038
0.035
0.032
1.18
1.19
1.20
1.22
1.24
0.048
0.045
0.043
0.037
0.032
0.042
0.039
0.037
0.032
0.028
0.037
0.034
0.032
0.028
0.024
0.033
0.030
0.028
0.024
0.021
0.029
0.027
0.025
0.021
0.018
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
8.2
8.6
9.0
9.4
9.8
u
1.26
1.28
1.30
1.32
1.34
0.028
0.025
0.022
0.020
0.018
0.024
0.021
0.019
0.017
0.015
0.021
0.018
0.016
0.014
0.012
0.018
0.016
0.014
0.012
0.010
0.016
0.014
0.012
0.010
0.009
1.36
1.38
1.40
1.42
1.44
0.016
0.014
0.013
0.011
0.010
0.013
0.012
0.011
0.009
0.008
0.011
0.010
0.009
0.008
0.007
0.009
0.008
0.007
0.006
0.006
0.008
0.007
0.006
0.005
0.005
1.46
1.48
1.50
1.55
1.60
0.009
0.009
0.008
0.006
0.005
0.008
0.007
0.006
0.005
0.004
0.006
0.005
0.005
0.004
0.003
0.005
0.004
0.004
0.003
0.002
0.004
0.004
0.003
0.003
0.002
1.65
1.70
1.75
1.80
1.85
0.004
0.003
0.002
0.002
0.002
0.003
0.002
0.002
0.001
0.001
0.002
0.002
0.002
0.001
0.001
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
0.001
BFC21103 Hydraulics
Tan et al. (
[email protected])
Varied‐flow function for positive slopes F(u, N) (Chow, 1959)
N
8.2
8.6
9.0
9.4
9.8
u
1.90
1.95
2.00
2.10
2.20
0.001
0.001
0.001
0.001
0.000
0.001
0.001
0.001
0.000
0.000
0.001
0.001
0.000
0.000
0.000
0.001
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2.3
2.4
2.5
2.6
2.7
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
2.8
3.0
4.0
5.0
6.0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
7.0
8.0
9.0
10.0
20.0
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
BFC21103 Hydraulics
Tan et al. (
[email protected])
Steps in direct integration method:
1. Calculate yo and yc
2. Determine N and M
3. Calculate J
4. Calculate u and v
5. Find F(u, N) and F(v, J)
6. Calculate length of the reach
BFC21103 Hydraulics
Tan et al. (
[email protected])
Activity 4.7
A very wide river with Manning roughness n = 0.035 has uniform depth of
3.0 m and longitudinal slope of 0.0005. Based on direct integration method,
estimate the length of nonuniform flow produced by a weir that caused the
water surface to increase as much as 1.5 m upstream of weir.
yo = 3 m
4.5 m
So = 0.0005; n = 0.035
BFC21103 Hydraulics
Tan et al. (
[email protected])
Step 1. Calculate yo and yc
yo = 3.0 m
1
1
q = yoR 3 So2
n
2
1 3 12
q = y o So
n
(For very wide channel, R ≈ y)
5
1
1
q=
× 3 3 × 0.00052
0.035
5
q = 3.987 m2 /s
⎛ q 2 ⎞ ⎛ 3.9872 ⎞
y c = ⎜⎜ ⎟⎟ = ⎜⎜
⎟⎟
⎝ g ⎠ ⎝ 9.81 ⎠
1
3
1
3
y c = 1.175 m
y = 3 m to 4.5 m > yo = 3 m > y c = 1.175 m → M1 profile
BFC21103 Hydraulics
Tan et al. (
[email protected])
Step 2. Determine M and N
10
M = 3 and N =
3
Step 3. Calculate J
N
3.333
=
= 2.500
J=
(N − M + 1) (3.333 − 3 + 1)
Step 4. Calculate u1, u2, v1, and v2
u1 =
y1 3.003
=
= 1.001
yo
3
v1 = u = 1.001
N
J
1
3.333
2.5
= 1.001
u2 =
y2 4.5
=
= 1.5
yo 3
v2 = u = 1.5
N
J
2
BFC21103 Hydraulics
Tan et al. (
[email protected])
3.333
2.5
= 1.717
Step 5. Find F(u1, N), F(u2, N), F(v1, J), and F(v2, J)
F (u1 , N ) = F (1.001, 3.333) = 1.907
F (u2 , N ) = F (1.5, 3.333) = 0.1884
F (v1 , J ) = F (1.001, 2.5) = 2.786
F (v2 , J ) = F (1.717, 2.5) = 0.3342
Step 6. Calculate length of channel reach
M
⎫⎪
⎧
⎛ yc ⎞ J
yo ⎪
[F (v2 , J ) − F (v1 , J )]⎬
x2 − x1 = ⎨(u2 − u1 ) − [F (u2 , N ) − F (u1 , N )] + ⎜⎜ ⎟⎟
So ⎪⎩
⎪⎭
⎝ yo ⎠ M
3
⎫
3 ⎧
1
.
175
2.5
⎛
⎞
L=
⎟ × [0.3342 − 2.786]⎬
⎨(1.5 − 1.001) − [0.1884 − 1.907] + ⎜
0.0005 ⎩
3
⎝ 3 ⎠
⎭
L = 12569.05 m
BFC21103 Hydraulics
Tan et al. (
[email protected])
yo = 3 m y = 3.003 m
4.5 m
So = 0.0005; n = 0.035
L = 12569.05 m
BFC21103 Hydraulics
Tan et al. (
[email protected])
B. Numerical Integration
Section
All sections
Rectangular
Very wide channel
(Chezy)
Equations used
⎡ ⎛ K
So ⎢1 − ⎜⎜ o
dy
⎢⎣ ⎝ K ave
=
Q 2T
dx
1− 3
gA
⎞
⎟⎟
⎠
⎛ ⎛ y
⎜1−⎜ o
⎜ ⎜⎝ y ave
dy
= So ⎜
dx
⎜ 1 − ⎛⎜ y c
⎜ ⎜y
⎝ ⎝ ave
3
⎞ ⎞⎟
⎟⎟
⎠ ⎟
3 ⎟
⎞ ⎟
⎟⎟ ⎟
⎠ ⎠
2
⎤
⎥
⎥⎦
⎡ ⎛ K ⎞2 ⎤
So ⎢1 − ⎜⎜ o ⎟⎟ ⎥
dy
⎢⎣ ⎝ Kave ⎠ ⎥⎦
=
3
dx
⎛ y ⎞
1 − ⎜⎜ c ⎟⎟
⎝ yave ⎠
BFC21103 Hydraulics
Tan et al. (
[email protected])
⎡
Q 2T ⎤
⎢ 1− 3 ⎥
dy ⎢
gA ⎥
dx =
So ⎢ ⎛ K o ⎞2 ⎥
⎢ 1 − ⎜⎜
⎟⎟ ⎥
⎢⎣ ⎝ K ave ⎠ ⎥⎦
⎡ ⎛ y ⎞3 ⎤
⎢ 1 − ⎜⎜ c ⎟⎟ ⎥
dy ⎢ ⎝ yave ⎠ ⎥
dx =
So ⎢ ⎛ K o ⎞ 2 ⎥
⎢1 − ⎜⎜
⎟⎟ ⎥
⎢⎣ ⎝ K ave ⎠ ⎥⎦
⎡ ⎛ y ⎞3 ⎤
⎢1 − ⎜⎜ c ⎟⎟ ⎥
dy ⎢ ⎝ yave ⎠ ⎥
dx =
So ⎢ ⎛ y o ⎞ 3 ⎥
⎢1 − ⎜⎜
⎟⎟ ⎥
⎣⎢ ⎝ yave ⎠ ⎥⎦
Section
Very wide channel
(Manning)
Equations used
10
⎞
⎛
⎜ ⎛ yo ⎞ 3 ⎟
⎟⎟ ⎟
1 − ⎜⎜
⎜
y
dy
= So ⎜ ⎝ ave ⎠ 3 ⎟
dx
⎜
⎛ yc ⎞ ⎟
⎟⎟ ⎟
⎜ 1 − ⎜⎜
yave ⎠ ⎟
⎜
⎝
⎠
⎝
BFC21103 Hydraulics
Tan et al. (
[email protected])
3 ⎤
⎡
⎢ 1 − ⎛⎜ y c ⎞⎟ ⎥
dy ⎢ ⎜⎝ yave ⎟⎠ ⎥
dx = ⎢
10 ⎥
So ⎢
⎛ yo ⎞ 3 ⎥
⎟⎟ ⎥
⎢1 − ⎜⎜
⎣ ⎝ yave ⎠ ⎦
Activity 4.8
A very wide river with Manning roughness n = 0.035 has uniform depth of
3.0 m and longitudinal slope of 0.0005. Based on numerical integration,
estimate the length of nonuniform flow produced by a weir that caused the
water surface to increase as much as 1.5 m upstream of weir. Use N = 4
steps.
yo = 3 m
4.5 m
So = 0.0005; n = 0.035
BFC21103 Hydraulics
Tan et al. (
[email protected])
Calculate yo and yc
yo = 3.0 m
1
1
q = yoR 3 So2
n
2
1 3 12
q = y o So
n
(For very wide channel, R ≈ y)
5
1
1
q=
× 3 3 × 0.00052
0.035
5
q = 3.987 m2 /s
⎛ q 2 ⎞ ⎛ 3.9872 ⎞
y c = ⎜⎜ ⎟⎟ = ⎜⎜
⎟⎟
⎝ g ⎠ ⎝ 9.81 ⎠
1
3
1
3
y c = 1.175 m
y = 3 m to 4.5 m > yo = 3 m > y c = 1.175 m → M1 profile
BFC21103 Hydraulics
Tan et al. (
[email protected])
3 ⎤
⎡
⎢ 1 − ⎛⎜ y c ⎞⎟ ⎥
dy ⎢ ⎜⎝ yave ⎟⎠ ⎥
So = 0.0005, yo = 3.0 m, yc = 1.175 m and dx = ⎢
10 ⎥
So ⎢
⎛ yo ⎞ 3 ⎥
⎟⎟ ⎥
⎢1 − ⎜⎜
⎣ ⎝ yave ⎠ ⎦
Δy (4.5 − 3)
dy =
=
= 0.375 m
N
4
y (m)
yave (m)
4.5 ‐ 4.125
4.3125
⎛ yc ⎞
⎟⎟
1 − ⎜⎜
⎝ yave ⎠
0.9798
4.125 ‐ 3.750
3.9375
0.9734
0.5960
1224.9
3.750 ‐ 3.375
3.5625
0.9641
0.4361
1658.2
3.375 ‐ 3.0
3.1875
0.9499
0.1830
3893.7
3
⎛ yo ⎞
⎟⎟
1 − ⎜⎜
⎝ yave ⎠
0.7017
BFC21103 Hydraulics
Tan et al. (
[email protected])
10
3
L = Σdx
dx (m)
1047.2
7824.0
5
4
y (m)
3
2
3.75 m
3.375 m
3m
4.125 m
4.5 m
1
0
0
1000
2000
3893.7
3000
4000
5000
1658.2
x (m)
6000
7000
1224.9 1047.2
L = 7824.0 m
BFC21103 Hydraulics
Tan et al. (
[email protected])
8000
9000
C. Direct Step Method
dE
= So − S f
dx
Rearranging
Between two sections
dx =
dE
So − S f
E 2 − E1
dx =
1
⎡
So − (S f 1 + S f 2 )⎤
⎥⎦
⎣⎢2
⎛
V12 ⎞
V22 ⎞ ⎛
⎜ y 2 + ⎟ − ⎜ y1 + ⎟
2g ⎠ ⎝
2g ⎠
dx = ⎝
⎡ ⎛ 2 2
2 2 ⎞⎤
1 ⎜ n V1 n V2 ⎟⎥
⎢
So − ⎜ 4 + 4 ⎟
⎢2 ⎜
⎥
⎟
3
3
R2 ⎠⎥⎦
⎢⎣ ⎝ R1
BFC21103 Hydraulics
Tan et al. (
[email protected])
Activity 4.9
A 200 m wide channel conveys flow at uniform depth of 3 m on a 0.0005
slope and Manning n = 0.035. Based on direct step method, determine the
type and length of GVF flow produced by a weir which has caused the
upstream flow to be elevated as much as 1.5 m. Use N = 4 steps.
yo = 3 m
4.5 m
So = 0.0005; n = 0.035
BFC21103 Hydraulics
Tan et al. (
[email protected])
Calculate yo and yc
yo = 3.0 m
1
1
q = yoR 3 So2
n
2
1 3 12
q = y o So
n
(For very wide channel, R ≈ y)
5
1
1
q=
× 3 3 × 0.00052
0.035
5
q = 3.987 m2 /s
⎛ q 2 ⎞ ⎛ 3.9872 ⎞
y c = ⎜⎜ ⎟⎟ = ⎜⎜
⎟⎟
⎝ g ⎠ ⎝ 9.81 ⎠
1
3
1
3
y c = 1.175 m
y = 3 m to 4.5 m > yo = 3 m > y c = 1.175 m → M1 profile
BFC21103 Hydraulics
Tan et al. (
[email protected])
So = 0.0005, yo = 3.0 m, yc = 1.175 m and dx =
dy =
Δy (4.5 − 3)
=
= 0.375 m
N
4
1
2
3
y (m)
R (m)
V
(m/s)
4
dE
So − S f
5
6
7
V2
(m)
2g
E (m)
dE
(m)
Sf
×10−4
8
Sf
×10−4
9
So − S f
×10−4
10
dx (m)
4.5
4.5
0.8860
0.04001
4.540
1.294
4.125
4.125
0.9665
0.04761
4.173
0.367
1.730
1.512
3.488
1052.2
3.75
3.75
1.0632
0.05761
3.808
0.365
2.377
2.054
2.946
1239.0
3.375
3.375
1.1813
0.07112
3.446
0.362
3.377
2.877
2.123
1705.1
3.0
3.0
1.3290
0.09002
3.090
0.356
5.001
4.189
0.811
4389.6
BFC21103 Hydraulics
Tan et al. (
[email protected])
L = Σdx 8385.9
5
4
y (m)
3
2
3.75 m
3.375 m
3m
4.125 m
4.5 m
1
0
0
1000
2000
4389.6
3000
4000
5000
1705.1
x (m)
6000
7000
1239.0 1052.2
L = 8385.9 m
BFC21103 Hydraulics
Tan et al. (
[email protected])
8000
9000
Activity 4.10
A 10 m wide channel conveys flow at uniform depth of 3 m on a 0.0005 slope
and Manning n = 0.035. Based on direct step method, determine the type
and length of GVF flow produced by a weir which has caused the upstream
flow to be elevated as much as 1.5 m. Use N = 4 steps.
yo = 3 m
4.5 m
So = 0.0005; n = 0.035
BFC21103 Hydraulics
Tan et al. (
[email protected])
Calculate yo and yc
yo = 3.0 m
1
1
q = yoR 3 So2
n
2
1
1
30 ⎞ 3
⎛
q=
× 3 × ⎜ ⎟ × 0.00052
0.035
⎝ 16 ⎠
2
q = 2.914 m2 /s
⎛ q 2 ⎞ ⎛ 2.9142 ⎞
y c = ⎜⎜ ⎟⎟ = ⎜⎜
⎟⎟
⎝ g ⎠ ⎝ 9.81 ⎠
1
3
1
3
y c = 0.9530 m
y = 3 m to 4.5 m > yo = 3 m > y c = 0.953 m → M1 profile
BFC21103 Hydraulics
Tan et al. (
[email protected])
So = 0.0005, B = 10 m, yo = 3.0 m, yc = 1.175 m and dx =
q = 2.914 m2 /s
dE
So − S f
Δy (4.5 − 3)
dy =
=
= 0.375 m
N
4
1
2
3
y (m)
R (m)
V
(m/s)
4.5
4
5
6
7
8
Sf
×10−4
9
So − S f
×10−4
V2
(m)
2g
E (m)
dE
(m)
Sf
×10−4
2.368 0.6476
0.02138
4.521
4.125
2.260 0.7064
0.02543
4.150
0.371
3.75
2.143 0.7771
0.03078
3.781
3.375
2.015 0.8634
0.03799
3.0
1.875 0.9713
0.04808
10
dx (m)
2.061
1.845
3.155
1175.9
0.369
2.677
2.369
2.631
1402.5
3.413
0.368
3.588
3.133
1.867
1971.1
3.048
0.365
4.999
4.294
0.706
5170.0
1.628
BFC21103 Hydraulics
Tan et al. (
[email protected])
L = Σdx 9719.5
5
4
y (m)
3
2
3.75 m
3.375 m
3m
4.125 m
4.5 m
1
0
0
1000
2000
5170.0
3000
4000
5000
1971.1
x (m)
6000
7000
1402.5 1175.9
L = 9719.5 m
BFC21103 Hydraulics
Tan et al. (
[email protected])
8000
9000
Assignment #4
Q1.
A river 6 m wide conveys flow at a normal depth 2.0 m along a slope
of 0.0002 and n = 0.035, upstream of a water fall. The flow reduces to
a depth of 1.9 m just before the fall. Taking N = 3 steps, determine:
(i) type of flow profile;
(ii) length of gradually‐varied flow profile produced based on the
method of numerical integration; and
(iii) sketch of the flow profile.
BFC21103 Hydraulics
Tan Lai Wai (
[email protected])
Q2.
A river 6 m wide conveys flow at a normal depth 2.0 m along a slope
of 0.0002 and n = 0.035, upstream of a water fall. The flow reduces to
a depth of 1.9 m just before the fall. Using direct step method with N
= 5 steps, determine:
(i) type of flow profile;
(ii) length of gradually‐varied flow profile produced; and
(iii) sketch of the flow profile.
‐ End of Question ‐
BFC21103 Hydraulics
Tan Lai Wai (
[email protected])
THANK YOU
BFC21103 Hydraulics
Tan Lai Wai (
[email protected])