A Personalized Calendar Assistant

Pauline M. Berry, Melinda Gervasio, Tomas E. Uribe, Karen Myers, and Ken Nitz

Artificial Intelligence Center
SRI International
333 Ravenswood Avenue
Menlo Park, California 94025

{surname}@ai.sri.com

Abstract

Many calendar tools have become available to organize,
display, and track a user’s commitments. However, most
people still spend a considerable amount of time personally
organizing meetings and managing the constant changes and
adjustments that must be made to their schedules. Our goal
is to provide the technology necessary to manage an
individual’s calendar. The resulting agent will let the user
retain control of decisions when necessary and relinquish
control to the assistant at other times. Meanwhile, the agent
will be sensitive to the user’s wishes and preferences.

The key elements in our approach are the creation of a
process framework that captures possible interactions with
users and other agents, learning technology to capture the
user’s preferences, and advisability to enable direct
instruction by the user at various levels of abstraction. As
the system improves its model of the user over time,
reliance on user interaction will decrease.

Introduction

Management and command decision makers handle many
simultaneous activities while responding to unexpected
opportunities and obstacles. A key organizational tool is
their calendar and an important support function is the
maintenance of their calendar and the coordination of
meetings and other shared tasks. Often the decision-
maker’s performance depends on interactions over long
periods of time with people inside and outside of the
organization, wherever and whenever those interactions
need to take place. The objective of this work is to build a
Personalized Calendar Assistant (PCalM) to coordinate
these interactions and schedule events on the user’s
calendar. This paper describes the project vision, the
current implementation and the research challenges for our
future work.

PCalM is designed to build the user’s trust in its
capabilities so that the user will delegate significant
responsibility: entirely transferring to it routine scheduling
tasks.

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

The functional goals of PCalM are threefold:

* To increase autonomy through use: as the user becomes
more confident with the agent’s ability, the agent can
retain more decision-making responsibility

* To have the agent learn when to involve the user in a
decision as autonomy increases

* To have the system learn user preferences through a
combination of passive learning and advice-taking

A process framework captures the key decision points in
calendar management and allows the user to make choices
or give advice within this clearly defined framework.
These choices range from selecting an alternative process,
such as negotiate or relax, to simple preferences over time
slots, such as don’t schedule meetings just before lunch. In
addition, these decision points provide the structure over
which the agent can learn process preferences, scheduling
preferences and eventually new processes from the user.

Let’s consider a scenario:

“Annie (A) wants to organize a meeting with her boss Bill
(B), an external client, Clark (C), and one of her design
engineers, Doug or David (D/ and D2). She wants the
meeting to happen next Monday and requires at least a -
hour slot and a private space with a projector. Her
Personal Calendar Assistant (PCalM) replies that the
request is not feasible because although the client arrives in
town next Monday his travel schedule means it will be too
late to schedule a meeting. A relaxes the time constraint
indicating that the meeting could occur anytime next week.
Both DI and D2 have blocked out their schedules for
Thursday and Friday because a development deadline is
looming on the horizon. A’s boss is free only on Thursday
and Friday. The PCalM agent is aware that A does not like
to bother her boss so she initiates a negotiation cycle with
D1 and D2.DI’s PCalM quickly responds that DI is
willing to meet anytime on Thursday, and A’s PCalM agent
quickly accepts the offer and proposes several time slots to
A. These candidate time slots are ordered using evaluation
criteria that have been learned over time to reflect the ones
that A prefers.”

The Personal Calendar Assistant project is part of a more
ambitious automated assistant called CALO. CALO is a
personal assistant that is persistent, can act autonomously,
and is robust. The above scenario is part of the CALO
evaluation schedule and supported by the current
implementation of PCalM. PCalM is an early test of the
hypothesis that in order to persist, an intelligent agent must
learn and adapt to the user’s changing needs.

Background

It is interesting to note the recent surge in meeting systems
for both research and commercial needs. Tools and
standards for representing, displaying, and sharing
schedule information have become common. A generally
adopted standard for calendar representation is iCalendar
[RFC2447]. As mentioned, these systems still leave the
user with the bulk of decision-making and negotiation
responsibilities.

The emphasis in the research community has been on
automated meeting scheduling: how to find feasible time
slots for meetings given multiple, overlapping sets of
participants and constrained temporal and, perhaps,
location requirements. Generally, the work in this area can
be divided into two categories specified by [Ephrati et al.
1994], as Open and Closed scheduling systems. In Open
systems each individual is an autonomous entity
responsible for creating and maintaining his or her own
calendar and meeting schedules, perhaps selfishly. The
user may operate in an unbounded environment without
constant obligation to one organization. In a Closed system
the meeting mechanisms are imposed on each individual
within the system, and a consistent and complete global
calendar is maintained. Closed systems are more common
because preference measures can be normalized across
participants, participant availability is known at all times
and the problem can be formulated as one of constraint
optimization. However, not all closed systems are
centralized and there has been some interesting work in
distributed solutions to the closed scheduling problem
[Ephrati et. al.1994] [Sandip and Durfee 1998].

Closed systems are rarely adopted in because the users
seldom live in a truly closed environment and so need to
retain more personal control of their calendars. Open
scheduling systems pose other interesting challenges, such
as privacy: an individual may not wish to share all, part, or
any of his schedule, or may choose not to participate in a
meeting.

PCalM

CALO exists in an open, unbounded environment and thus
PCalM is an open scheduling system. PCalM’s primary

responsibility is to its user. Issues of privacy, authority,
cross-organizational scheduling and availability of meeting
participants abound. There is some exciting work in the
area of meeting scheduling for Open systems [Franzin et al.
2002] and [Payne et al. 2002]. In the former, complete
privacy is assumed and the availability and preferences of
other users are learned across time. In the latter, RCAL, a
more cooperative environment is assumed and meetings
are scheduled using constraint-based algorithms.

PCalM is based on existing open scheduling algorithms
and is similar in approach to the RCAL system. However,
we extend the notion of collaboration in general, and more
specifically to the individual user. The collaborative
scheduling process is separated from the constraint
reasoning algorithms to enable interaction with the user
and other PCalM agents. This interaction forms the
framework for learning and adjustable autonomy.

The calendar management processes are represented as
context-sensitive, hierarchical procedures. These provide
hooks into the user’s decision process at multiple levels of
abstraction. These hooks can be used to passively learn the
user’s preferences or to facilitate the specification of advice
from the user. Through the continual use of passive
learning [Scerri et al. 2001] and advice taking, PCalM
constructs a dynamic preference profile containing two
types of guidance:

* Preferences over schedules, either locally (e.g., the time,
duration, location of an individual meeting) or globally
(e.g., the density or distribution of meetings or average
gap between meetings)

* Process selection and application criteria over both
existing process descriptions (e.g., negotiate or relax)
and new processes

Both types of information can be actively asserted using a
policy specification language, building on work on
advisability and adjustable autonomy [Myers and Morley
2003] or passively learned by monitoring the user’s
decisions.

Figure 1 illustrates the functional architecture. The short-
term objective is to effectively manage the user’s calendar
process and preferences. In the future, more extensive
studies of the interaction between agents will be conducted
in collaboration with USC-ISI [Tambe and Zhang 2000].

CONSTRAINT]
REASONER

Request
(constraints,
preference profile)

Solutions/conflicts

CALENDAR Request/update other \ML
PROCESS |Response/query CALOs
OUTLOOK/ existing| Relational | MANAGER D—

Request/update
CALO GUI |Response/query

[~
CALENDAR cal interface & -
VIEWING (icalendar) \%b
TooL | Updated
calendar ! f
Y prep :)r;/gce user feedback

PREFERENCE| initial preference

INITIALIZER profile PREFERENCE
[y 3 LEARNER

' general knowledge

about calendar
preferences

similar users’
calendars

Figure. 1 Functional Architecture

PCalM is a multiagent system. The agent architecture OAA
[Cheyer and Martin 2001] provides direct connectivity and
is common to the overall CALO system. PCalM has
several functional components:

* The process manager, is responsible for managing the
scheduling and negotiation strategies.

e The constraint reasoner (reasoner), maintains
consistency of scheduling commitments and provides
solutions to new scheduling problems.

* The preference learner (learner), monitors scheduling
decisions made by the user or pcalm and learns
preferences over time. It also provides these preferences
in the form of evaluation functions for use by the
reasoner.

e The preference initializer, provides a basis for
populating the preference profile of a new user or
maintaining it as cross-CALO learning improves.

* The calendar tool, has initially been an instrumented
form of OUTLOOK. However, the system is designed to
be calendar tool-independent and is compatible with the
icalendar standard [Dawson and Stenerson 1998].

Schedule Management

The process manager component is built on top of a
procedural reactive controller called SPARK [Morley
2004]. SPARK is a new Belief-Desire-Intention agent
framework grounded in a model of procedural reasoning
[Georgeff and Ingrand 1989]. SPARK incorporates an
agent-based language that allows the development of active
systems that interact with a constantly changing and
unpredictable world. It enables both goal-directed and
reactive behavior.

The procedural framework allows hierarchical, context-
dependent processes to be explicitly encoded and both
goal-directed and reactive execution to be managed
seamlessly. The explicit representation of processes, or

strategies, makes it possible to track the progress of an
active process, to modify ongoing processes in response to
situational change, and even to adopt newly defined, or
learned, processes.

The structured management of processes within this
framework also provides a way to standardize operation,
reducing the likelihood of errors and unexpected behaviors.
This feature is extremely important if PCalM is going to
gain the trust of the user over time. The explicit
representation of preconditions for the applicability of a
process, decision points within a process, and ease of
transition to alternative refinement of strategies allows the
involvement of the user in decision-making to be adjusted
seamlessly. These same decision points also provide the
basis for learning of user preferences as discussed in a later
section.

The scheduling strategies for PCalM are designed to
address the following key issues for a personalized
scheduling tool

Scheduling Requests

The user or another CALO agent requests to schedule a
new, or modify an existing, commitment. Even in a
straightforward request from a user to delete a meeting,
various strategies must be considered — or example, delete
and notify other participants, request that meeting host
delete user from participant list, delete the whole meeting.
At each decision point there is an opportunity to involve
the user. Each user may prefer a different strategy or a
different level of involvement in decisions thus motivating
the need for adjustable autonomy.

Information Sharing

The sharing of information about one’s calendar in an open
system is extremely important and impacts issues of
privacy and security, such as when and how much
information to request or supply. It also impacts the ability
to schedule meetings efficiently. The approach of PCalM is
to enable and allow users to define their own policies for
sharing their calendar information. Thus, strategies must be
able to adapt to a varying degree of knowledge about
another’s calendar and scheduling preferences.

As part of the PCalM development we are extending our
shared calendar information to include user preference over
possible time slots and a measure on individual
commitments to represent the potential cost to delete or
reschedule.

Conflict Resolution

When a conflict is detected there are two main classes
for resolution: relaxation and negotiation. Relaxation and
negotiation can be viewed as independent strategies for
resolution or may be intertwined and interdependent. The
implementation of PCalM currently refers the decision to
relax or negotiate to the user. In the future, strategies will

be developed to provide functionality automatically. An
interesting concept being considered is the learning of
relaxation strategies.

Adyvice

The process manager is able to take advice from the user
and conform to organizational policies. Advice is defined
to be an enforceable well-specified constraint on the
performance or application of an action in a given
situation. [Sloman 1994] defines two types of policy:
authorization and obligation. We extend this categorization
to include preference.

* Authorization defines the actions that the agent is either
permitted or forbidden to perform on a target.

¢ Obligation defines the actions that an agent must perform
on a set of targets when an event occurs. Obligation
actions are always triggered by events, since the agent
must know when to perform the specified actions.

* Preference defines a ranking in the order or selection of
an action under certain conditions.

Advice can apply to the application of strategies, the
conditions under which a strategy is applicable, or the
instantation of a variable. Advice may be conflicting, can
be long lived and its relevance may decay over time.
Adpvice can be used to influence the selection of procedures
and strategies for problem solving and also to influence
adjustable autonomy. The management of advice is an
open issue for CALO, but the application of advice is
central to both SPARK and PCalM.

The Constraint Reasoner

To find suitable meeting times, we use a constraint
reasoning module, implemented in the ECLiPSe constraint
logic programming language [Wallace et. al 1997]. This
module exposes an OAA interface [Cheyer and Martin
2001] where meeting schedules for the different
participants are asserted, preferences expressed, and
meetings requested. One, all, or a given number of
solutions can be returned. Given a cost function that
expresses the preferences, the module can rank the
solutions according to their cost, returning the best ones
first.

The solutions could be ranked strictly according to the
evaluation, but this will most likely produce a set of
solutions with small variations. Instead, the system will
attempt to use specific preferences to present qualitatively
different solutions.

We are extending this module to support constraint
relaxation, where partial or approximate solutions are
returned if not all the desired constraints can be met. The
user preferences will define a ranking on the constraints,
indicating their relative importance. These preferences may

be adjusted by the learning module after each scheduling
task is completed.

Learning Preferences

As an adaptive assistant that learns to tailor its behavior to
an individual user, PCalM’s preference learning
component is an important part of the system. Calendar
Apprentice (CAP) [Mitchell et al. 1994] is another system
that applies machine learning techniques to the task of
automatically acquiring user scheduling preferences.
However, while CAP learned to predict values for specific
meeting attributes such as location and duration, PCalM
instead learns an evaluation function used to rank candidate
meeting schedules. PCalM is thus similar to systems such
as the Adaptive Route Advisor [Fiechter and Rogers, 2000]
and the Interactive Crisis Assistant [Gervasio et al. 1999],
which learned evaluation functions for ranking candidate
driving routes and crisis response schedules, respectively.

Formulating the scheduling assistance task as a ranking
problem presents both advantages and challenges. By
letting the system suggest more than one (but not too
many) candidate schedules, we increase the probability that
the user will find an acceptable suggestion without having
to consider all alternatives. However, when a user selects a
suggested schedule (or overrides all suggestions), the only
feedback PCalM gets about the goodness of its ranking
function is a preference of one schedule over some others.
The straightforward application of machine learning
approaches to learning ranking functions typically requires
much richer input—for example, a ranked list of candidates
or instances associated with specific numeric value
assignments.

In our initial implementation of the schedule preference
learner, we explored two approaches. The first was a large
margin method [Fiechter and Rogers, 2000] that basically
learned the tradeoffs a user was willing to make between
meeting schedule attributes such as (closeness to) specified
meeting date and earliness. Because we were interested in
providing reasonable scheduling assistance early in the
learning curve and in rapidly acquiring user preferences,
we extended this approach with an active learning strategy
that proposed schedules about which a user selection would
provide the most information for refining the preference
profile.

However, while casting preferences as tradeoffs had been
intuitively appealing for problems such as providing
driving route advice and recommending flight itineraries, it
presented a less compelling case for meeting scheduling,
where user preferences seemed less a matter of tradeoffs
and more a matter of having preferences about particular
attributes or combinations of attributes. That is, the
problem seemed more one of learning which days and
times a user preferred for which meetings rather than
learning how much a user was willing to deviate from a

particular day of the week if the meeting could be kept to a
particular duration. In addition, because the large margin
method was a non incremental algorithm applied in an
online setting, we experienced performance degradation as
the system acquired more training examples.

For these reasons, we implemented an incremental Naive
Bayesian approach that learns a model of the preferred
class from selected schedules (i.e., positive examples only)
and used degree of membership in that class to rank
candidate schedules. An important feature we wanted to
accommodate was the incorporation of explicit user
preferences into the learned model. To accomplish this, we
convert explicit preferences about attributes or
combinations of attributes (e.g., prefer Monday meetings
and Wednesday afternoon meetings) into equivalent
training examples for the learning algorithm.

Preliminary experiments with synthetic data show how
incorporating these explicit preferences can improve the
learning rate. Because of the challenges of evaluating
interactive systems, we are currently designing more
thorough experimental evaluation using synthetic and
human users in both real and artificial settings. We plan to
explore other approaches to learning ranking functions
such as learning ensembles of rankers [Cohen et al. 1998]
that may be useful for learning more complicated
preference functions. And while we have focused thus far
on learning from direct user interaction, we are also
interested in leveraging patterns of behavior learned from
historical data about scheduled meetings. Ultimately, we
want PCalM to be learning more complex preferences such
as processes for scheduling meetings of a particular type or
procedures for resolving scheduling conflicts. We thus
plan to investigate various approaches to procedural
learning within a mixed-initiative setting, including
interactive knowledge acquisition and programming by
demonstration.

Future Challenge

As this project continues, we will address several key
challenges,

Conflict Resolution. Although some traditional resolution
strategies have been incorporated into the meeting
scheduler, there is an opportunity to explore the twin
problems of relaxation and negotiation to improve the
resolution of scheduling conflicts. We intend to build on
existing work on learning strategies for constraint
relaxation in other domains to learn how and when to relax
meeting scheduling constraints. Similarly, the notion of
relaxation is a key component of more complex negotiation
strategies.

Probabilistic Information and Cost. Some calendar
events are scheduled but do not often occur,and users may
double-book themselves, knowing that one or other of the
events may not occur as planned. It will be important for

PCalM to be able to represent the probability, or
possibility, of the actual occurrence of an event as well as
the cost to delete or reschedule an event. This information,
combined with adequate monitoring systems, could
provide more realistic calendar reasoning.

Adding Advice and Learned Knowledge or
Capabilities. As advice, preferences, new strategies, and
other new knowledge are added to the system there must be
a concept of anytime verification to ensure that these new
constructs are compatible with the existing system goals,
functionality and robustness. In reality, conflicts will be
created that must be resolved if the system is to run
seamlessly as it adapts.

Summary

We have described ongoing work on an adaptive
personalized calendar management tool called PCalM. The
tool is designed to be persistent, gain the user’s trust and,
as a result, become more autonomous over time. The key
elements of an explicit and adaptable process framework,
learning algorithms, and adjustable autonomy provide the
necessary foundations for robust reasoning, and the
inclusion of preference and advice formalisms offer the
flexibility required for the tool to be useful and
personalized.

Acknowledgments. This work is supported by DARPA under
Contract NBCHD030010.

References

Cheyer, A. and Martin, D. (2001) The Open Agent Architecture.
Journal of Autonomous Agents and Multi-Agent Systems, vol. 4,
no. 1, pp. 143-148, March.

Cohen, W. W., Schapire, R. E., and Singer, Y. (1998). Learning
to order things. Advances in Neural Information Processing
Systems.

Dawson, F., and Stenerson, D. (1998). Internet Calendaring and
Scheduling Core Object Specification (Icalendar), Network
Working Group RFC 2445, (http://www.ietf.org/rfc/rfc2445.txt).

Ephrati, E., Zlotkin, G., and Rosenschein, J.S. (1994). A non
manipulable meeting scheduling system, Proc. Thirteenth
International Distributed Artificial Intelligence Workshop,
Seattle.

Fiechter, C.-N. and Rogers, S. (2000). Learning subjective
functions with large margins. Proc. Seventeenth International
Conference on Machine Learning, pp. 287-294.

Franzin, M. S., Freuder, E. C., Rossi, F., and Wallace, R. (2002)
Multi-agent meeting scheduling with preferences: Efficiency,
privacy loss and solution quality. AAAI 2002 Workshop on
Preference in Al and CP.

Georgeff, M.P. and Ingrand, F. F. (1989). Decision-making in an
embedded reasoning system, Proc. Eleventh International Joint
Conference on Artificial Intelligence.

Gervasio, M., Iba, W., and Langley, P. (1999). Learning user
evaluation functions for adaptive scheduling assistance. Proc.
Sixteenth International Conference on Machine Learning, pp.
152-161.

Mitchell, T. M., Caruana, R., Freitag, D., McDermott, J., and
Zabowski, D. (1994). Experience with a learning personal
assistant. Communications of the ACM, vol. 37, no. 7, pp. 80-91.
Morley, D. (2004). Introduction to SPARK, Technical Report,
Artificial Intelligence Center, SRI International, Menlo Park,
California.

Myers, K. L. and Morley, D. N. (2003). Policy-based agent
directability. Agent Autonomy, Kluwer Academic Publishers.
Payne, T. R., Singh, R., and Sycara, K. (2002). Rcal: A case study
on semantic web agents, Proc. of First International Conference
on Autonomous Agents and Multi-agent Systems.

Sandip, S., and Durfee, E.H. (1998). A formal study of distributed
meeting scheduling. Group Decision and Negotiation, vol. 7, pp.
265-298.

Scerri, P., Pynadath, D., and Tambe, M. (2001). Adjustable
autonomy in real-world multi-agent environments. Proc.
International Conference on Autonomous Agents (Agents'01).
Sloman, M. (1994). Policy driven management for distributed
systems. Plenum Press Journal of Network and Systems
Management, vol.2, no. 4, pp. 333-360.

Tambe, M. and Zhang, W. (2000). Towards flexible teamwork in
persistent teams: extended report, Journal of Autonomous Agents
and Multi-agent Systems, vol. 3, pp.159-183.

Wallace, M., Novello, S., and Schimpf, J. (1997). ECLiPSe: A
Platform for Constraint Logic Programming. Technical report,
IC-Parc, Imperial College, London.

