
TZI Bremen - Trecvid 2006 high level feature extraction

A. Bruckmann B. Lerbs D. Gao J. Eidtmann L. Mozogovenko
M. Buczilowski T. Jughardt Y. Xu A. Jacobs A. Lüdtke

O. Herzog
TZI - Center for Computing Technologies, University of Bremen,

Am Fallturm 1, D-28359 Bremen, Germany
{andreasb|blerbs|gaodanxy|eidtmann|margo|ptmc|juggi|sinead|jarne|ludi|herzog}@tzi.de

Abstract

In this paper, the system developed by the Uni-
versity of Bremen for participation in the Trec-
vid 2006 high-level feature extraction task is pre-
sented. Six runs have been submitted, each of
them incorporating a different combination of
three classifiers based on image, sound, and text
features. For the feature Corporate Leader, above-
average results could be achieved. Results are
shown and differences between the runs are dis-
cussed.

1 Introduction

The next pages will describe the techniques the
University of Bremen has used to generate a video
analysis for the Trecvid contest.
This paper is for people interested in picture,
sound and video analyzing technologies. The
documents starts with a quick overview of all
runs, followed by a description of all used classi-
fiers. Then, the methods used for fusion of the
different classifiers are introduced. The paper
closes with a discussion of the results.

2 Submitted runs

To get a good overview about how well our dif-
ferent classifiers perform we created six different
runs. Every run has a different set of classifiers
enabled. There are three classifiers based on im-
age, sound, and text. You can find detailed in-
formation about every classifier later in this doc-
ument in sec. 3.
The following table shows the different runs, their
IDs and a small description:

• TZI Text - Within this run only the text
classification module was used

• TZI RelaxText - Within this run the text
classification module was used, taking into
account temporal dependencies and depen-
dencies between different high-level features
using an approach based on probabilistic
relaxation

• TZI Avg - All available classifiers were en-
abled, combined with a performance-weighted
average fusion

• TZI RlxAll - Here every classifier combined
with a fusion method based on probabilis-

1

tic relaxation, taking also into account tem-
poral dependencies and dependencies be-
tween different features

• TZI Image - This run incorporates the image-
based classifier only

• TZI RelaxImage - Within this run the image-
based classifier was used, accounting for
temporal dependencies and dependencies
between different high-level features using
the probabilistic-relaxation-based approach

In the following section the different classifiers
will be described in detail. The above-mentioned
fusion methods will be described in sec. 4.

3 Classifiers

We used more than one classifier to analyze the
videos. In fact we used three different classifiers
based on images, sound, and text. The results
of these three classifier are combined later in a
classifier fusion step.

3.1 Image features

The image feature classifier uses every 20th frame
of a video to do its calculations. Within these
calculations filters are used to calculate a prob-
ability for every high level feature.

3.1.1 Region of interest filter

The region of interest (ROI) filter is a special fil-
ter that can only be used in combination with
other filters. We use it in combination with the
color histogram (for 64 and 512 colors) and the
text detection filter, for the detection of the Map
high-level feature only. As a preprocessing filter

it tries to cut out an important region of the cur-
rent frame so that the next calculation step, e.g.,
a color histogram, will operate only on that re-
gion. It is intended to be used for TV screens
built up with a picture inside picture method,
e.g., a screen showing a weather map in the main
area but also showing a temperature info box at
the bottom and a “Weatherman” box on the left
side. A map detection filter based upon a color
histogram of the whole image would include all
the colors of the info boxes and the weatherman,
although these colors might be less important
for finding maps. In this case the ROI filter is
used to separate the map’s main screen, so that
the map filter will only build a histogram based
upon the actual map. This operation isn’t al-
ways clear, because it is a matter of interpreta-
tion which region of the screen will be important
for a filter. We have parameterized the ROI fil-
ter in a way that minimizes the rate of falsely
detected regions on an internal test set.

Filter implementation The ROI filter was
the result of some experiments with edge detec-
tion mechanisms. In the beginning we planned
to use an edge detection algorithm for finding
country borders inside maps, but this turned out
to be not very successful. The only noticeable
schemes on the edge images of maps we exam-
ined were borders of the picture inside picture
screens and the edges of information boxes. We
thus changed our strategy to create a filter de-
tecting different areas on screen. The ROI filter
is searching for horizontal and vertical line seg-
ments and decides upon some definitions (i.e.,
percentage of line pixels, length of combined line
pixels etc.) if these segments are parts of a long
line. If a line has reached a parameterized size it
is taken to the next processing step. In that step,

2

the filter tries to build rectangles based upon the
detected lines. The size and the position of these
rectangles is used to determine the one rectangle
which is returned as the region of interest.

3.1.2 Color correlogram

This filter is an implementation of a standard
color correlogram filter [3]. A color correlogram
(henceforth correlogram) expresses how the spa-
tial correlation of pairs of colors changes with
distance.
We used the correlogram for the high-level fea-
tures Charts, Desert, Explosion/Fire, and Maps.

3.1.3 Color histogram filter

The color histogram filter reduces the amount
of colors by removing a parameterizable number
of bits inside every RGB color channel. We use
color histograms with sizes of 4 or 8 bins per di-
mension (R, G, and B), for a total of 64 or 512
bins, respectively. These histograms are used ei-
ther with or without the ROI filter (see above).
We used the color histogram for the high-level
features Airplane, Charts, Corporate Leader, En-
tertainment, Military, Mountain (64 bins respec-
tively), Animal, Car, Desert, Explosion/Fire,
Maps, Police/Security, Truck, Waterscape/Water-
front, and Weather (512 bins respectively).

3.1.4 Text detection filter

The text detection filter is based on an algorithm
developed in a Diploma thesis at the University
of Bremen [9]. It uses an edge detection filter tai-
lored for overlayed text to find single characters
and searches for regions where many characters
appear on a line. It tries to find words and sen-
tences by their typical spatial distribution and
returns the positions of these inside an image.

We adapted the algorithm’s parameters to val-
ues we found to work good for finding names of
locations on maps on an internal test set.
We used the text detection filter only for the
Maps high-level feature.

3.1.5 US-flag detector

A very important criterion to find US-flags in
an image are its characteristic colors and their
spatial arrangement. Our US-flag filter is there-
fore searching for neighbored red and white ar-
eas. We define a 5× 5 area as white respectively
red, if it contains mostly red or white pixels. Our
definition of red and white is explained later in
more detail. The blue stars of the US-flag are
ignored, because on nearly every picture we ex-
amined containing a US-flag the blue parts were
hidden or neglectably small.
For better color separation the picture is first
converted to HSV color space. We mark a pixel
as red if its hue (H) lies between 340 and 20
degrees. We mark a pixel as white if saturation
(S) is low and luminance (V) is relatively high.
The next thing to look at is the distribution of
the mostly red and mostly white areas. We count
all red and white 5×5 areas that lie next to each
other. The combination of red, white, and red
and white areas is counted, too. The higher these
counts, the more probable it is, that a given im-
age contains an US-flag. The filter is used specif-
ically to detect the US-flag high-level features.

3.1.6 Face and person detector

We use an implementation of the algorithm by
Lienhart and Maydt [5] to detect persons and
frontal faces in an image. We use the face de-
tector for the high-level features Entertainment,
Face, Police/Security and Weather. We use the

3

person detector for the features Entertainment,
Military, Office, Police/Security, and Weather.

3.1.7 Edge direction histogram

This filter is an implementation of a standard
edge direction histogram by H. Tamura et al.[8].
We use it to analyze an image for directed tex-
tures. Tamura’s directionality criterion is char-
acterized by a histogram based on eight orienta-
tions. The edge direction histogram is used for
the high-level features Desert, US-flag, Moun-
tain, Truck, and Waterscape/Waterfront.

3.1.8 Image feature classification

The Trecvid 2005 common annotation set was
separated into two different sets for every fea-
ture, an internal training set and an internal test
set. The training set was used for building clas-
sification models, while the internal test set was
used to validate these models.
We use a support vector machine (SVM) in the
form of the SVM-light software [4] to train one
model for each Trecvid high-level feature, based
on our image filter results as described in the
previous section. As a kernel we chose the radial
basis function (RBF) kernel. We set the relative
significance of positive vs. negative examples to
positive examples
negative examples to account for a low number of
positive examples. In our validation process, we
vary the variance parameter, which takes values
2n with n ∈ {−4...4}, n ∈ Z. The trade-off be-
tween training error and margin is also varied
and takes values 2m with m ∈ {−1...4}, n ∈ Z.
We validate a model created with given parame-
ters on our internal test set, using the F-measure
(F−measure = 2×recall×precision

recall+precision). We retain the
model with the highest F-measure
The validation process is aware of how often a

Figure 1: Model building process

feature occurs. In case that the feature occurs
frequently a big amount of positive and a small
amount of negative examples are used, while in
case that the feature occurs infrequently it is the
opposite.
Figure 1 shows a schema of the model building
process. The abbreviations in the figure have the
following meaning:

• tx - Text detection

• txr - Text detection with ROI filter

• ch - Color histogram

• chr - Color histogram with ROI filter

• fd - Face detector

• pd - Person detector

• dh - Edge direction histogram

• cc - Color correlogram

The best validating models are then applied to
the Trecvid 2006 test set. A schematic represen-
tation of the process can be seen in fig. 2. On

4

Figure 2: Analyzing the Trecvid 2006 test set

the 2006 test set we analyzed every 20th frame
and returned the best positive result in a shot as
the result for that shot.

3.2 Audio-based classifier

The audio classifier searches the audio tracks
of the Trecvid collection for a number of pre-
viously learned sounds. We trained models for
gunshots, outdoor, applause and person on a
manually selected subset of the Trecvid devel-
opment data and applied the resulting classifiers
to the Trecvid 2006 test set. We then applied a
simple mapping from detected sounds to a subset
of the LSCOM-lite high-level features: If a gun-
shot was detected in a shot, the feature Military
was assumed to be present. The same goes for
applause, which was used to detect the feature
Crowd. The features Person and Outdoor are di-
rectly mapped from the corresponding detected
sounds.
The classifier is built up of two stages. In the
first stage we extract spectral features from the
audio tracks. In the second step we use a super-
vised learning algorithm for training and predic-
tion. Our approach is based on the algorithm

proposed by Hoiem et al. [2] but it differs in
classifying. While Hoiem et al. suggest a de-
cision tree classifier, we chose to use a support
vector machine (SVM) in the classifier stage, in
the form of the Libsvm library [1].
We will first describe the feature extraction step,
followed by a description of our selection of train-
ing data and the training of a support vector
machine.

3.2.1 Audio feature extraction

The first step of the sound feature extraction
module is to create an abstract feature repre-
sentation of the audio signal using an FFT on
a temporally shifted window of the audio track.
From the spectral representation, a set of 63 de-
scriptive features is computed [2] to serve as in-
put to the classifier. The size of the window is
dependent of the type of sound that should be
detected. The longer the sound, the bigger the
window. We use 800 milliseconds for gunshots,
1200 milliseconds for applause. When applying
the final classifiers to the test set, the window is
shifted in steps of 100 milliseconds. For training,
we manually cut a set of training sounds for each
type of sound to be detected.

3.2.2 SVM classification

We found that the Trecvid 2005 common anno-
tation data was not detailed enough to be able
to automatically generate an appropriate train-
ing set. Thus, we chose to manually create a
training set for the sound we wanted to detect.
We cut a small number of short example sounds
between 0.5 and 2.5 seconds from the Trecvid
2005 development set, including all the disturb-
ing sounds that might be in the background. The
manual searching and cutting of sample sounds

5

takes a long time, but is in the end the only way
to ensure that the system learns the right type of
sounds. It turned out that the selection type and
also the number of training sounds has a great
effect on the prediction quality of the SVM. Dur-
ing the testing of the system for various videos,
the prediction sometimes returned very few or
no results, even if the news contained plenty of
the regarded sound events. The reason for this
was probably that the analyzed sounds were too
different from the training examples. However,
finding good training examples that cover the
whole variance of guns, explosions in video ma-
terial is hard to manage, and it is very hard to
cut the sounds from the test material.
Our solution to this problem was to lower the
threshold on the prediction values yielded by the
SVM classifier, such that not only positive pre-
dictions are counted, but also negative results
down to -0.4 or lower. That way, we reached a
much bigger number of positives.

As a third modality we integrated a classifier
based on spoken text, which will be described
in the following section.

3.3 Text-based classifier

Our text-based classifier consists of two stages.
First, a fixed-dimensional feature vector is com-
puted based on the words spoken in a shot and
its temporal vicinity. Then, for each of the 39
LSCOM-lite high-level features, a two-class SVM
classifier is applied to the shot’s feature vector.
Thus, our text-based classifier is based on the
shot as atomic unit, using the TRECVID com-
mon shot boundary reference [7].
In this section, we will first describe the genera-
tion of the feature vector, followed by a descrip-
tion of the training process used to setup the 39

SVM classifiers.

3.3.1 Text features

The basis for our text features are the results of
the automatic speech recognition (ASR) given by
the Linguistic Data Consortium. In the training
process, we used the data from the TRECVID
2005 development set. For classification of the
2006 test set, we used the corresponding 2006
ASR output.
All three languages are processed separately. For
english videos, we directly use ASR output. For
chinese and arabic videos, we used the corre-
sponding machine translation (MT) output in-
stead. Thus, we use english text as the basis
for all videos, regardless of their original lan-
guage. We use, however, different vocabularies
and thus a slightly different feature vector gen-
eration process for different languages. This in-
fluences the subsequent classification stage, for
each high-level feature has to have a classifier
trained for each of the three languages.
The text feature vector for a given shot and a
given language is built up in four steps. First,
we remove common english stop words. Then,
an english stemming algorithm is applied to the
remaining words. The number of different en-
glish stems occuring in all 2005 videos of the
given language determines the vocabulary size
and thus the feature vector dimensionality for
this language. In the next step, we count the
stems occuring in the given shot and its tempo-
ral vicinity (within four seconds before the start
and four seconds after the end of the shot). This
yields a (sparse) word frequency vector. In the
last step, the word frequency vector is binarized.
The binary word frequency vector is used as in-
put for the SVM classifier described in the next
section.

6

The text feature vector generation for TRECVID
2006 shots is done in the same way as for the 2005
data. If word stems occur in the ASR/MT that
are not in the vocabulary of the corresponding
language (which is based on 2005 data), they are
simply discarded.

3.3.2 SVM classification

Classification of the text feature vectors is done
using Support Vector Machines (SVM), using
the LIBSVM library [1]. We built a total of three
times 39 classifiers, one for each LSCOM-lite fea-
ture for each of the three languages. For each
classifier, we partitioned the TRECVID 2005 data
of the corresponding language into a training set
and a validation set. Using a linear SVM ker-
nel we then did a grid search over the SVM cost
parameter C, training on our training set, and
validating on our validation set. We picked the
classifier with the highest average precision on
the validation set to be used with the TRECVID
2006 test data. The TRECVID 2005 common
annotation data was used for training and vali-
dation.
In the training process, only shots with a mini-
mum of three spoken words were taken into ac-
count. The SVM class weights were set accord-
ing to the distribution of present vs. not present
high-level features in our training set.
In addition to the 39 LSCOM-lite features we
also created classifiers for the two LSCOM [6]
features Commercial Advertisement and Politics,
based on the LSCOM annotation on TRECVID
2005 development data.

4 Classifier fusion

To combine the results of our different classifiers
(based on image, sound, and text features), we

used different classifier fusion techniques. The
first fusion method we employ is performance-
weighted average. Knowing that only a subset of
the 39 LSCOM-lite features would be evaluated
by NIST, we employed another technique to take
into account possible dependencies between fea-
tures, based on probabilistic relaxation labelling.
This technique also takes into account temporal
dependencies. This is motivated by the obser-
vation that most of the LSCOM-lite features are
related to each other in some way. E.g., the pres-
ence of a face strongly coincides with the pres-
ence of a person. By analyzing the 2005 devel-
opment annotation data, we could confirm that
observation. Our hope was to improve the re-
sults of other classifiers if we would have a good
performing classifier for a related feature.
In the fusion step, only classifiers that address
the same high-level feature are fused. For each
TRECVID feature, we have up to three classi-
fiers (image-, sound-, and text-based). The max-
imum number of classifiers to be fused is there-
fore three.

4.1 Performance-weighted average

Each classifier in the previous section yields a
probability estimate between zero and one for
a given shot. We also have access to several
performance criteria for each classifier, based on
the internal test/validation set. We use a classi-
fier’s F-measure on the validation set to weight
its probability estimate in relation to other clas-
sifiers for the same high-level feature.

4.2 Probabilistic relaxation labelling

Relaxation labelling is the process of assigning
labels to different objects according to a priori
knowledge about the compatibility of different

7

objects’ labels and certain observed object fea-
tures.
We use relaxation labelling as a means to fuse
different classifiers for the same high-level fea-
ture, to take into account dependencies between
different high-level features in the same shot (e.g.,
presence of a face and presence of a person), and
to consider temporal dependencies between con-
secutive shots.

4.2.1 Fusion of different classifiers

To fuse n different classifiers for the same high-
level feature, we use n + 1 objects in the relax-
ation process, with two labels each (present and
not present). One object represents the fusion
result. It is linked to each of the other n objects,
which represent the classifiers’ results. The la-
belling probabilities of the classifier objects are
initialized with the classifiers’ results. The fu-
sion result object’s labelling probabilities are ini-
tialized with a constant, 0.5 in our case. The
compatibility coefficients between classifier re-
sults and fusion result are computed according to
Yamamoto [10], based on the conditional prob-
abilities of the high-level feature being present
given the classifier says it is present. These can
be directly computed from the performance of
the respective classifier on our validation set (e.g.,
probability for a feature being present if a clas-
sifier says it is present equals the classifier’s pre-
cision).

4.2.2 Feature dependencies

To model interdependencies between different high-
level features in the same shot, we assign each
high-level feature to one object in the relaxation
process. The labelling probabilities of these ob-
jects are computed through classifier fusion as

described in the previous section. In the case
of only one available classifier result for a high-
level feature (as is in runs TZI RelaxText and
TZI RelaxImage), the labelling probabilities are
taken directly from that classifier’s result.
Every object is linked to every other object, with
a compatibility coefficient computed according
to Yamamoto [10], based on the conditional prob-
abilities of the two high-level features computed
using the TRECVID 2005 common annotation
data.
For the runs including text classifier results, there
are 41 objects (LSCOM-lite features plus Politics
and Commercial Advertisement), in the run only
including image classifiers (TZI RelaxImage),
there are 39 objects, one for each LSCOM-lite
concept.

4.2.3 Temporal dependencies

Temporal dependencies are modelled in the same
way as dependencies between different features,
with a difference in computing the compatibility
coefficients. Here, the conditional probability is
computed on subsequent shots. To model tem-
poral dependencies in the relaxation process, a
shot (represented by its 39/41 objects) is linked
to its predecessor and its successor (represented
by their 39/41 objects).

5 Results

Figure 3 shows the TZI results compared to the
median performance and the best performance
among all Trecvid 2006 participants. The perfor-
mance of the different TZI runs will be discussed
in the following sections.

8

Figure 3: Results for all evaluated features: The
six TZI runs, the median performance, and the
best performance among all participants

5.1 Text classifier

The text classifier worked best for the features
Weather and Map, which is what we expected
based on our experiments with the Trecvid 2005
development set. It is easy to imagine that spe-
cial (trained) words occur frequently in Weather
reports, and maps are often linked to weather
news. The next best features are Military and
Car. The letter is unexpected and might be by
chance. The overall results are not as good as
we expected after experiments with the english
Trecvid 2005 data. We suspect that the results
for arabic and chinese videos, which were simply
merged with the english results, but were based
on different classifiers, may have worsen the re-
sults, due to the low number of positive examples
in arabic and chinese development data in com-
parison to the english data.

5.2 Image classifier

In developing the image classifiers, we first fo-
cussed on the features Waterscape/waterfront,

US-Flag, and Map. Due to the change in the
Trecvid high-level feature extraction task, we had
to extend our focus to the other 36 feature and
create a more general system. The Map fea-
ture is among our best results, which is what
we expected due to our above-mentioned focus
in the beginning of the development. The best
performing image-based classifier is the one for
the Sport feature, which we expect to be due to
the characteristic coloring of sport scenes.

5.3 Performance-weighted average fu-
sion

The weighted average fusion classifier was only
in one case significantly better than the best sin-
gle classifier, in the case of the Weather feature.
In all other cases, the weighted average perfor-
mance was between our best performance and
the worst for that feature. This suggests, that
the positive results returned by the different clas-
sifier were disjunctive. This would suggest the
use of another fusion algorithm, e.g., a Maximum
fusion.

5.4 Relaxation-based fusion

The results with relaxation are a bit disappoint-
ing. There are situations where relaxation helped
to achieve higher precisions for some features but
there are also situations where the precision was
less because of relaxation. In some small experi-
ments we did with the temporal relaxation, how-
ever, we came to the conclusion that it can help
a lot for features that appear in temporal blocks,
like, e.g., Commercial advertisement. In the fu-
ture, it might help to modify the relaxation pro-
cess in a way that only relates features that are
dependent in a statistically significant manner.

9

5.5 Overall comparison

For most features, our results are below the me-
dian and for some features, especially those we
have not concentrated on, the results are not sat-
isfying, so that we come to the conclusion that
here are still a lot of things to do to reach the
current state of the art.

References

[1] Chih-Chung Chang and Chih-Jen Lin. LIB-
SVM: a library for support vector machines,
2001. Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm.

[2] D. Hoiem, Y. Ke, and R. Sukthankar. Solar:
Sound object localization and retrieval in
complex audio environments. March 2005.

[3] Jing Huang, S. Ravi Kumar, Mandar Mitra,
Wei-Jing Zhu, and Ramin Zabih. Image in-
dexing using color correlograms. In CVPR
’97: Proceedings of the 1997 Conference on
Computer Vision and Pattern Recognition
(CVPR ’97), page 762, Washington, DC,
USA, 1997. IEEE Computer Society.

[4] T. Joachims. Making large-Scale SVM
Learning Practical. MIT-Press, 1999.

[5] Rainer Lienhart and Jochen Maydt. An ex-
tended set of haar-like features for rapid ob-
ject detection. In ICIP (1), pages 900–903,
2002.

[6] Milind Naphade, John R. Smith, Jelena
Tesic, Shih-Fu Chang, Winston Hsu, Lyn-
don Kennedy, Alexander Hauptmann, and
Jon Curtis. Large-scale concept ontology for
multimedia. IEEE MultiMedia, 13(3):86–
91, 2006.

[7] C. Petersohn. Fraunhofer hhi at trecvid
2004: Shot boundary detection system. In
TREC Video Retrieval Evaluation Online
Proceedings, 2004.

[8] Hideyuki Tamura, Shunji Mori, and Takashi
Yamawaki. Textural features correspond-
ing to visual perception. IEEE Trans. Syst.,
Man, Cyb., 8(6):460–473, 1978.

[9] N. Wilkens. Detektion von videoframes mit
texteinblendungen in echtzeit. Master’s the-
sis, Universität Bremen, 2003.

[10] K. Yamamoto. A method for deriving com-
patibility coefficients for relaxation opera-
tors. 10:256–271, 1979.

10

