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In 2005 FXPAL submitted results for 3 tasks: shot boundary detection (section 1, page 1), high-level
feature extraction (section 2, page 5), and interactive search (section 3, page 7).

1 Shot boundary detection

1.1 Summary of submitted runs

The shot boundary detection system we are using for 2005 builds on the framework and system developed
in 2004 which combines pairwise similarity analysis and supervised classification. Using primitive low-
level image features, we build secondary features based on inter-frame dissimilarity. These secondary
features are used as input to an efficient k-Nearest-Neighbor (kNN) classifier. The classifier labels
each frame as a shot boundary or non-boundary, and the classifier outputs are minimally processed to
determine the final segmentation.

This year we added information-theoretic feature selection to determine two secondary feature sub-
sets to improve cut transition detection and gradual transition detection, respectively. These systems
appeared as runs sys10M 0X in the run table. This indeed improved performance over our baseline runs
(sys05 0X), and improved on the performance of a similar system using random projection for dimension
reduction (sys10R 0X). Our performance was worse than anticipated, as our training data was not an
accurate reflection of the test data in the case of video from LBC and CCTV. On the remaining videos,
our performance was very good, and consistent with our training experiments. The realizability of this
approach remains an open question.

1.2 Overview

Our systems are based on the use of pairwise inter-frame similarity features in combination with a fast
exact k-nearest-neighbor (kNN) classifier to label frames as members of the boundary or non-boundary
class. The basic system is documented in [1, 2] and has three main components:

Low-level feature extraction For each frame we extract three channel color histograms in the YUV
colorspace. We extract both global image histograms and block histograms using a uniform 4× 4
spatial grid. Denote the frame indexed feature vectors X = {X(n) : n = 1, · · · , N} for N frames.
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Figure 1: Mean performance of 2005 shot boundary systems on SB04 data.

Inter-frame similarity features For a maximal lag L which is either 5 or 10, we compute two lag
domain (partial) similarity matrix of the form:

S(i, l) = Dχ(Xi, Xi−l) =
1
2

∑
b

(Xi(b)−Xi−l(b))2

Xi(b) + Xi−l(b)
. (1)

The first matrix SG contains the chi-square similarity between frames’ global histograms. The ma-
trix SB contains the chi-square similarity between frames’ block histograms. Intermediate-level
features are constructed from these matrices by concatenating elements within a local neigh-
borhood. For frame n, the inter-frame similarities SG(n + k, n + l) : k, l = −L, · · · , L and
SB(n+k, n+l) : k, l = −L, · · · , L. Because Dχ is symmetric and S(n, n) = 0, the intermediate-level
features have dimensionality 90 for L = 5 and 380 for L = 10.

Frame classification Given the intermediate level feature vector for each frame and a labeled training
set, we use the efficient kNN classifier of [3] to classify each frame as either a non-boundary, cut
boundary, or gradual boundary. This implementation has been tested in a similar context and
provided speedups of more than a factor of 10 over naive implementations.

Our runs were generated by the three following systems:

LAG05 This system used intermediate features corresponding to maximum lag L = 5. It included no
dimension reduction and was used in 2004. These are the sys05 0X runs.

LAG10 This system used intermediate features corresponding to maximum lag L = 10. These features,
and the training data, were then randomly projected [4] to a 90 dimensional subspace. The 90
dimensional features were then input to the kNN. This system was also used in 2004. These are
the sys10R 0X runs.

LAG10MI90 This system used intermediate features corresponding to maximum lag L = 10. These
features, and the training data, were then projected via information-theoretic feature selection as
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described in [5]. A 90 dimensional subset of the original 380 features were then input to the kNN.
These are the sys10M 0X runs.

In 2004, LAG05 outperformed LAG10 in cut boundary detection. This is not surprising since abrupt
boundaries will be most prominent in the inter-frame similarities in a very small local neighborhood
around the boundary frame. These similarities are being smoothed in the random projection, and
resolution is lost. The opposite is true in the gradual boundary case in which LAG10 outperforms
LAG05. Although the feature dimensionality is essentially the same for the two systems, the features
in LAG10 include longer range inter-frame comparisons which improve gradual boundary detection
performance. Smoothing these similarities does not hurt performance since the transitions occur over a
series of frames.

For 2005, we added LAG10MI90 to select feature subsets for detecting cut transitions versus gradual
transitions. The approach has a few drawbacks however. First, it does neglect high order dependencies
which may be important here. Secondly, evaluating the first order terms involves repeated density
estimation. In our experience, estimating these densities, and in turn the feature subsets, has been
unstable. The choice of the number of bins for histograms, and the use of different training files has
produced very different results which is unsettling. Nonetheless, results in the training experiments for
this year are promising.

Shot boundary detection results
Mean Cut Gradual

SYS R P F R P F R P F

LAG05-4 0.8490 0.8080 0.8280 0.8690 0.8470 0.8579 0.7880 0.7010 0.7420
LAG05-5 0.8390 0.8210 0.8299 0.8610 0.8550 0.8580 0.7770 0.7280 0.7517
LAG05-6 0.8270 0.8370 0.8320 0.8510 0.8620 0.8565 0.7560 0.7640 0.7600
LAG10-5 0.8430 0.8050 0.8236 0.8600 0.8470 0.8535 0.7910 0.6970 0.7410
LAG10-6 0.8360 0.8200 0.8279 0.8540 0.8530 0.8535 0.7840 0.7280 0.7550
LAG10-7 0.8220 0.8320 0.8270 0.8410 0.8590 0.8499 0.7650 0.7560 0.7605

LAG10MI90-4 0.8550 0.8060 0.8298 0.8780 0.8540 0.8658 0.7850 0.6810 0.7293
LAG10MI90-5 0.8470 0.8240 0.8353 0.8700 0.8630 0.8665 0.7790 0.7190 0.7478
LAG10MI90-6 0.8380 0.8410 0.8395 0.8620 0.8730 0.8675 0.7690 0.7480 0.7584
LAG10MI90-7 0.8180 0.8580 0.8375 0.8450 0.8800 0.8621 0.7410 0.7900 0.7647

TV AVG. 0.7881 0.7328 0.7594 0.8508 0.78561 0.8169 0.6045 0.5656 0.5844

FXPAL AVG. 0.8374 0.8252 0.8313 0.8591 0.8593 0.8592 0.7735 0.7312 0.7518

Table 1: Table summarizing shot boundary detection results in terms of recall (R), precision (P), and the
f-score (F). In the system description column, the final digit after the dash corresponds to the value of κ
used.

1.3 Training Experiments

For SB05 we are submitting runs using the three systems whose performance on the 2004 test data set
appears in Figures 1. As was the case last year, the mean performance of the systems LAG05 (red)
and LAG10 (green) are similar. The new system, LAG10MI90 (blue) outperforms both consistently. In
these experiments, and in our test systems, we use the 2003 test set to generate our training data. To
generate the training data, we use the manually generated reference segmentation and randomly discard
90% of the non-transition frames.

Examining the separate results for cut and gradual boundary detection, we see that in both cases
LAG10MI90 is able to outperform both 2004 systems. In the cut boundary case, LAG10MI90 performs
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best of the three systems. This is consistent with the idea that most of the information relevant to
cut boundary detection is contained in a small number of local features. In the gradual boundary case
at high recall levels, LAG10 is superior. Again, the use of more data, even if smoothed together in
projection, is beneficial for high recall gradual boundary detection. My conjecture is that any feature
selection (rather than projection) technique will exhibit this behavior. The highest F-scores for gradual
boundary detection are achieved by LAG10MI90.

Figure 2: Performance of 2005 shot boundary systems. Additional curves show performance on LBC data,
CCTV data, and remainder. The panels show cut boundary detection (top) and gradual boundary detection
(bottom). The bottom columns show average TRECVID and average FXPAL results.

1.4 Submitted runs and results

For our submission, we select ten runs for the TRECVID evaluation conducted by NIST. The systems
include the variants described above, and tradeoff precision and recall. For this, we use a parameter
κ : 1 ≤ κ ≤ k where k is the number of neighbors considered by the kNN classifier. For all our systems,
k = 11. A test frame is traditionally assigned the majority label of its k nearest neighbors in the training
set. To study the tradeoff between precision and recall, we assign a test frame the boundary label if at
least κ of its nearest neighbors are boundaries. We then vary κ between 0 and k.

Our performance was disappointing relative to our results in 2004 and the training experiments
above. Post-evaluation analysis revealed that two of the videos in the test set1 exhibited hundreds of
two frame dissolves. Apparently, such dissolves were present neither in the other videos in the test set,
nor in the 2003 test set we used for training data. Figure 2 shows our results for evaluation, the results
on the two aforementioned videos, and the results on the remaining videos.

It seems difficult to draw a clear conclusion from the discrepancy in performance between the training
experiments and test results. One could argue that the approach generalizes poorly, and perhaps this
is an inherent limitation of supervised approaches generally, and nearest-neighbor methods in partic-
ular. The fault could alternately lie with the intermediate similarity features, which may not flexibly
capture characteristics of shot boundaries that would permit such generalization. On the other hand,
the approach did generalize successfully to the data from MSNBC, NBC, NTDTV, and NASA. It’s also
worth noting that the training data is six years older than the test data. Because the TRECVID data

1“20041102 160001 CCTV DAILY NEWS CHN.mpg” and “20041119 140000 LBC LBCNAHAR ARB.mpg”
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from NIST is provided on a two year cycle, we will probably need to wait until next year for manually
segmented training data from the same content providers as the test data to start to resolve these issues.

2 High-level feature detection

2.1 Summary of submitted runs

Unlike shot boundary detection, this was our first year of participation in the high-level feature detection
task. As a result, our chief goal was to develop infrastructure and submit some reasonable baseline
systems. Two of our runs were based on simple single modality SVM classifiers (A AL-Run1 4 and
A AL-Run3 5). An additional run was based on combining these classifiers via logistic regression (A AL-
Run3 3). A final system combined the classifier outputs for the current shots with those of its immediate
neighbors via logistic regression (A AL-Run4 2). This system produced our best runs. The run A AL-
Run1 1 integrated all of this information using a random field modeling framework.

Feature detection results
SYS 38 39 40 41 42 43 44 45 46 47 AVG

A AL-Run1 4 0.099 0.017 0.117 0.053 0.254 0.168 0.17 0 0.207 0.145 0.12
A AL-Run2 5 0.094 0.013 0.136 0.084 0.254 0.161 0.157 0.001 0.132 0.137 0.12
A AL-Run3 3 0.154 0.028 0.151 0.071 0.39 0.239 0.184 0 0.312 0.237 0.18
A AL-Run4 2 0.161 0.03 0.161 0 0.399 0.246 0.225 0.001 0.357 0.259 0.18
A AL-Run1 1 0.137 0.041 0.122 0.052 0.224 0.196 0.173 0.024 0.17 0.264 0.14

MED 0.106 0.031 0.171 0.061 0.225 0.165 0.128 0.001 0.206 0.158 0.139

Table 2: Table summarizing the high-level feature detection results in terms of mean-averaged precision
(MAP). The bottom column shows median TRECVID results.

2.2 Per shot pre-processing

Low-level feature were extracted from each shot in the reference segmentation, mostly from processing
of the keyframes. The informedia team at CMU generously shared their low-level features with us this
year:

• three channel color histograms: hsv, hvc, rgb
• color correlogram
• Gabor texture features
• Canny edge feature
• three Audio feature: MFCC, SFFT and FFT
• face detector output

For each feature in the development set, we trained a SVM classifier using each of the above low-level
features. This results in 400 individual SVMs corresponding to the 40 features and ten modalities.
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2.3 Multi-modality fusion via SVMs

Our systems thus used ten different SVM outputs per feature which were fused according to various
strategies.

A AL-Run1 4 In this run, only the best performing single modality SVM from the training data was
used.

A AL-Run2 5 In this run, only the second best performing single modality SVM from the training
data was used.

A AL-Run3 3 In this run, the results of the ten SVMs were combined via logistic regression.
A AL-Run4 2 In this run, the results of the ten SVMs on the previous, current, and subsequent shot

were combined via logistic regression.
A AL-Run1 1 In this run, the results of the ten SVMs on the previous, current, and subsequent shot

were combined using a random field model to capture inter-concept interaction.

2.4 Information fusion via random fields

The final run was based on the discriminative random field (DRF) model of [11]. This model combines
discriminative classifiers with pairwise interaction representing contextual information. In the original
DRF work, the goal is to perform binary classification of pixel blocks. The random field incorporates
spatial dependencies into the inference. More specifically, the probability of the vector of binary class
labels Y given the image block X as

p(y|x) =
1
Z

exp

∑
i∈S

Ai(yi,x) +
∑
i∈S

∑
j∈Ni

Iij(yi, yj ,x)

 . (2)

The terms Ai are the association potentials which are local discriminative classifiers for the ith spatial
location in the set of locations S. Iij is the term representing the interaction between the ith and jth

spatial locations, for the set of neighbors Ni. [11] details learning and inference methods for this class
of random fields.

We adapted this approach to the semantic labeling context. As before, we use logistic classifiers for
the association terms in (2). Thus we need to identify which concepts are related, i.e. which concepts
are neighbors (connected by an edge in our graph). For this, we performed a chi-squared test using the
ground truth labeling of our training set. We (arbitrarily) selected the five most statistically significant
inter-label relationships to form a fully connected concept graph for each cluster. These graphs define the
neighborhoods Ni for each label yi. This approach allows us to jointly infer all labels in Ni simultaneously
in hopes of exploiting inter-label dependencies.

In contrast to [11], we wanted to include case by case interaction terms (rather than the smoothing
effect provided in the formulation of (2)). Similarly,

Iij(yi, yj ,x) =
∑

k,l∈±1

δ(yi = k)δ(yj = l)V T
kl x . (3)

Here we use Kronecker delta functions so that we learn different weights for each of the four permutations
of (yi, yj). To learn the regression weights, we use gradient descent with the following equations:

dl(θ)
dWi

=
M∑

m=1

{∑
i∈C

(
ym

i −
∑
Y

P (Y |xm, θ)yi

)
xm

}
, (4)
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and
dl(θ)
dVij

=
M∑

m=1

∑
i∈C

∑
j∈Ni

1−
∑

Y (i=k,j=l)

P (Y |xm, θ)

 k l xm

 . (5)

The performance of this system was relatively disappointing, and we believe this is because we did not
approach model induction with sufficient care. Additionally, the use of multiple modalities and multiple
time samples obscured how informative various single modality concept associations and inter-concept
interactions were. In other words, the model was too complicated to properly assess DRFs for high-level
feature extraction. Both the groups of concepts that are collectively detected as well as the association
terms used for a specific concept group need to be constructed and selected with great care. We hope
to apply alternate model induction and feature selection strategies to improve our results in the future.

2.5 Evaluation results

Generally speaking, A AL-Run3 3 and A AL-Run4 2 did fairly well. For most features, they were
above the median. A AL-Run1 4 and A AL-Run2 5 were generally below the median, but this was not
unexpected. A AL-Run4 2 did improve on A AL-Run3 3, although it was more costly computationally.
All systems were straightforward in design, and we look forward to incorporating enhancements to the
system in the future. Results are summarized in Table 2

3 Interactive Search

Figure 3: MAP performance of all interactive search submissions with FXPAL submissions shown in red.
The striped-bars are not actual submissions made to NIST, but indicate the MAP performance of just the
user-identified shots and just the user-identified shots with neighboring shots included.

3.1 Summary of submitted runs

The interactive search system we used this year is incrementaly different from our 2004 system. The
most noteable change for 2005 is the incorporation of high-level feature detection results within the
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Figure 4: MAP performance of FXPAL interactive search submissions. The striped-bars at the right are not
actual submissions made to NIST, but indicate the MAP performance of just the user-identified shots and
just the user-identified shots with neighboring shots included.

search system. We submitted 7 runs for the interactive search task. Each of the 2 searchers answered his
set of 12 topics once, and the system used 7 different methods to augment the list of explicitly-identified
relevant shots at the end of the 15 minute interactive session. The submitted runs differ only in this
final automated query step. The complete set of submitted runs in priority order with system names
and brief descriptions:

1. FXPAL0LN: LSA text query with bracketing - identical to our TRECVID2004 system denoted
LSA1[2]

2. FXPAL1LCN: LSA and concept similarity scores averaged, with bracketing
3. FXPAL2RAN: Ranked combination of LSA and positive and negative concept similarity, with

bracketing
4. FXPAL3RPN: Ranked combination of LSA and positive concept similarity only, with bracketing
5. FXPAL4LC: LSA and concept similarity scores averaged, no bracketing
6. FXPAL5RA: Ranked combination of LSA and positive and negative concept similarity, no brack-

eting
7. FXPAL6RP: Ranked combination of LSA and positive concept similarity only, no bracketing

All runs were fully interactive, type A, condition 1 and in the summary results are abbreviated as:
I A 1 AL0LN, I A 1 AL1LCN, I A 1 AL2RAN, I A 1 AL3RPN, I A 1 AL4LC, I A 1 5RA, I A 1 AL6RP.
The system names are loosely acronymed with the following decoding:

L Latent Semantic Analysis (LSA) based text query/similarity scoring used
N Shots neighboring the relevant shots included (bracketing)
C Concepts (high level features) similarity scoring used
R Combination of text and concept scores by average rank rather than average retrieval score
A Both positive and negative reinforcement from concept similarity used
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P Only positive reinforcement from concept similarity used

See section 3.7 for more details about the nature of the concept and text (LSA) scores.

System MAP score Notes
FXPAL 1 LCN 0.348
FXPAL 0 LN 0.345 Post-processing identical to 2004 text-only system LSA1
FXPAL 4 LC 0.339
FXPAL 2 RAN 0.329
FXPAL 3 RPN 0.323
FXPAL 5 RA 0.311
User ID-ed shots with Neighbors 0.306
FXPAL 6 RP 0.304
User ID-ed shots 0.279

Table 3: MAP scores for the 7 systems in performance order

Our performance was strong overall, submitting the run with the 5th highest MAP score. This is
similar to our performance in 2004, in fact the the baseline system from 2004 is nearly tied as our
best scoring run. Figure 3 shows the MAP performance of the FXPAL runs against the entire set of
interactive search submissions and Figure 4 the FXPAL submissions alone. This year we had only 1
searcher session for each topic (in 2004 we had 3 unique users answer each topic) so all variation in our
runs is from system differences. The MAP performance between different systems is not overwhelming,
ranging from 0.348 to 0.304. Table 3.1 lists the runs in performance order. From this ordering a few
observations can be made:

• The text-only baseline system from 2004 is out-performed by 1 concept-enhanced system by a
small margin

• For every strategy, including a shot bracketing step improves performance
• The rank-based methods of combining similarity measures are outperformed by the score-averaging

methods

Using the randomization script provided by NIST, an analysis of the statistical significance between
our results yielded a probability of only 0.00034 that the LCN>LN result is due to chance, despite
the small margin in performance. Figure 5 illustrates the performance in a slightly different way. For
each topic the 7 systems were ordered by average precision and a histogram formed of the ranks over
the 24 topics. In this we can see that the LCN system did not garner the highest MAP score through
exceptional performance on a small handful of topics, but rather was most likely to perform best on any
given topic.

3.2 Overview

The interactive search interface was designed for efficient browsing and rich visualization of search results,
and is largely unchanged from our 2004 system [2].

Query results are displayed as a list of story thumbnails, sized in proportion to their query relevance.
The story-level graphical summaries (thumbnails) use query relevance to build a queryrelated montage
of the underlying shot thumbnails. Visual cues are widely used throughout the application to represent
query-relevance and navigation history as well as shots included and excluded from the results list.
Keyboard shortcuts are used throughout to reduce the amount of mousing required to sift through results
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Figure 5: For each system, the histogram of the ranks achieved when the performance on each topic is
individually compared with average precision. LCN stands out as the system most likely to be in first place,
coming in first or second in 19 of the 24 topics.

lists. We use a 2 level video segmentation with an automatically generated story-level segmentation
supplementing the reference shot segmentation[6]. Text-based latent semantic analysis (LSA) of the
transcripts is used to build the story-level segmentation. User text searches are performed with exact
and/or LSA-based text search and optionally combined with a still-image query-by-example capability.
The LSI of story segments is also leveraged in the UI to allow the user 2 different ways to search for
“similar” stories or shots. In 2005 this function has incorporated similarity of high-level features as well.

3.3 Data Pre-processing

We perform a completely automatic pre-processing step to identify topic or story units to augment the
reference shot boundaries [6]. These story segments provide the basic unit of retrieval during queries.
To accomplish this segmentation we use the reference shot boundaries and the ASR transcripts. We
build a latent semantic space (LSS) treating the stopped and stemmed [8] text tokens for each shot in
the testing corpus as a separate document, adding words from adjacent shots to maintain a minimal
number of tokens in each document. We then project the text for each shot into this shot-based LSS
and compute a similarity matrix for each video using cosine similarity on the reduced-order vectors (one
vector per shot). A checkerboard kernel is passed over the similarity matrix and points of highest novelty
are chosen as story boundaries, as in [1]. A post-processing step assures the sanity of the boundary sizes
and finds new boundaries in overly large segments. In preparation for interactive operation text indices
are built for both shot-level and story-level segmentations using Lucene [9] (for keyword search) and our
latent semantic indexing system (for fuzzy text search) Color correlograms [10] are pre-computed for
each shot thumbnail image.

3.4 Search Engine

Queries are specified by a combination of text and images. The searcher can opt to perform a textonly
or image-only search by leaving the image or text query area empty. The searcher can choose an exact
keyword text search, a latent semantic analysis (LSA) based text search, or a combination of the two
whereby the keyword and LSA-based retrieval scores are averaged together to form a combined score.
We use only the provided ASR transcript to provide text for story and shot segments. The exact text
search is based on a Lucene [9] back end and ranks each story based on the tfidf values of the specified
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Figure 6: Interactive system interface. (A) Story keyframe summaries in the search results (B) Search text
and image entry (C) TRECVID topic display (D) Media player and keyframe zoom (E) Story timeline (F)
Shot keyframes (G) Relevant shot list

keywords. In this mode the story relevance, used for results sorting and thumbnail scaling and color
coding as described in following sections, is determined by the Lucene retrieval score. When the LSA
based search is used [7], the query terms are projected into a latent semantic space (LSS) of dimension
100 and scored in the reduced dimension space against the text for each story and each shot using a
cosine similarity function. In this mode, the cosine similarity value determines the query relevance score.
In our application the LSS was built treating the text from each story segment (determined as described
in Section 3.3 as a single document. When determining text-query relevance for shots, each shot gets the
average of the retrieval score based on the actual shot text and the retrieval score for its parent story.
That is, the shots inherit text relevance from their stories. An image similarity matching capability is
provided based on color correlograms [10]. Any shot thumbnail in the interface can be dragged into the
query bar (Figure 6 B)and used as part of the query. For each shot thumbnail the color correlogram is
compared to the correlogram for every shot thumbnail in the corpus. To generate an image-similarity
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(a) (b)

Figure 7: Transcript feedback dialog windows. (a) shows transcript text for the selected shot or story and
(b) shows terms related to the query and terms not in the dictionary. Note that ’Condoleeza’ does not
appear in the dictionary because it is never correctly transcribed in the data.

(a) (b)

Figure 8: A story summary quad (a) and the complete set of 9 shots contained in the story. The search
target was condi Rice (the text query was “lisa rice”)

relevance score at the story level, the maximum score from the component shots is propagated to the
story level. The document scores from the text search are combined with document scores from the
image similarity to form a final overall score by which the query results are sorted. A query returns a
ranked list of stories.

3.5 Concept Similarity

As part of our high-level feature detection effort (see section 2) we had available ’concept’ (high-level
feature) probability vectors for 29 of the concepts in the light weight ontology for every shot in the testing
set. That is, each shot has an associated 29 element vector describing the probability of occurrence of
29 of the high-level features. Table 4 shows which features were included in this vector. These were
incorporated into the interactive portion and the post-processing portion of the system.

During interactive operation the user can choose to “find similar” shots based on a set of selected
shots. This action uses the same components that are used at the end of the interactive session. Two
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animal boat ship building car charts crowd explosion fire face flag us government leader maps military mountain
natural disaster outdoor people marching person police security prisoner road sky sports studio urban vegetation
walking running waterscape waterfront weather

Table 4: The high-level features included in the concept vector for each shot.

similarity measures are combined; one between the text of the selected segment(s) and those of candidate
stories, and one between the concept vectors the selected segments and those of candidate stories. The
text-similarity is the cosine distance between the text of the selected segment(s) and the text of each
candidate segment. The concept distance is the minimum euclidean distance between the concept vectors
of the example shots and the concept vectors of each candidate segment. The two similarity scores are
averaged together to create a similarity score for each candidate segment.

3.6 Interface Elements

The interactive search system is pictured in Figure 6. The TRECVID test question and supporting
images are shown in section C. Text and image search elements are entered by the searcher in section
B. Search results are presented as a list of story visualizations in section A. A selected story is shown in
the context of the video from which it comes in section E and expanded into shot thumbnails in section
F. When a story or shot icon is moused-over an enlarged image is shown in section D. When a video
clip is played it is also shown in section D. User selected shot thumbnails are displayed in section G.

3.6.1 Thumbnails

Shots are visualized with thumbnails made from the primary keyframe drawn from the reference shot
segmentation. Story thumbnails are built in a query-dependent way. The 4 shot thumbnails that score
highest against the current query are combined in a grid. The size allotted to each portion in this 4-
image montage is determined by the shots score relative to the query. Figure 8 shows an example of this
where the query was “Lisa Rice” (“Lisa” was a common mis-recognition of the name “Condoleeza”) and
the shots most relevant to the query are allocated more room in the story thumbnail.

3.6.2 Overlays

Semi-transparent overlays are used to provide 3 cues. A gray overlay on a story icon indicates that it has
been previously visited (see Figure 6 A and E). A red overlay on a shot icon indicates that it has been
explicitly excluded from the relevant shot set (see Figure 6 F). A green overlay on a shot icon indicates
that it has been included in the results set (see Figure 6 F). Horizontal colored bars are used along the
top of stories and shots to indicate the degree of query-relevance, varying from black to bright green.
The same color scheme is used in the timeline depicted in Figure 6 D.

3.6.3 Transcript Dialogs

An addition to the interface in 2005 year are two optional dialogs pictured in Figure 7 intended to
provide information about the underlying transcript and text query operation. One dialog shows the
transcript from the selected shot or story and the other shows terms related to the query (determined
from the latent semantic space) and query terms that are not contained in the dictionary.A
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Figure 9: Process flow for the various methods of performing queries to augment the shots identified by the
user during the interactive session.

3.7 Post-Interactive Processing

When the searcher decides to end the task by pressing the end question button or when the 15 minute
allotted time expires, the search system uses 7 different methods to perform an automated search process
to fill out the remaining slots in the 1000 shot result list. This process is illustrated in the flow diagram
of Figure 9. The MAP performance of the user-identified shots with no automated query to fill out the
results is shown in Figures 3 and 4.

Three methods are used to identify and rank candidate shots for the post-interactive portion of the
system operation.

• The transcript text from the shots marked relevant is used to form a text query which is passed
to the LSA-based text query.

• The concept vectors from the shots marked relevant are used to rank the remaining candidate
shots.

• The shots neighboring (or bracketing) the user-identified relevant shots are added to the result list
even if they were marked as not-relevant by the user. The MAP performance contribution of this
step can be seen in Figures 3 and 4 and is roughly one third of the total difference between the
user-identified shots alone and the best performing system (LCN).

3.7.1 LSA-based Similarity

In this method the text from the shots that have been judged by the searcher to be relevant is combined
to form a single LSA-based text query. This query is applied to the unjudged shots and the highest
scoring ones retained for the result list.
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3.7.2 Concept Query

In this method the concept vector of a shot is compared against the concept vectors of the marked
relevant and not-relevant shots. For each group (relevant, not-relevant) the minimum euclidean distance
is computed, yielding a positive and negative similarity measure for each candidate shot.

3.7.3 Combining Measures

The concept similarity measure(s) and the text similarity measures were either averaged with equal
weighting (systems LCN LN LC) or the candidate shots were sorted by each measure (text, positive
concepts, negative concepts) and their ranks in each sorted list averaged together (systems RAN RPN
RA RP) to form a final ordering from which to select likely shots. In all cases, if bracketing is used
(systems LCN LN RAN RPN) the bracketed shots (those shots immediately adjacent to all shots marked
relevant by the searcher) are included in the results immediately following the user-selected shots.

3.8 Future Work

In 2005 we integrated the high-level features into the search system in a fairly ad-hoc manner. Moving
forward we’ll apply more principled methods to determine the best measures and weightings for using
concept-vector distance in the retrieval framework. Also in 2006 we hope to increase the number of test
subjects and submit complete topic answers from more than one set of users.
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