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Abstract 

We participated in all two types of Instance Search (INS) task in TRECVID 2017: automatic 

search and interactive search. For the automatic search, our approach consists of two stages: 

similarity computing and result re-ranking. In the similarity computing stage, we first 

conducted two search processes: location-specific search and person-specific search, and then the 

final results were obtained by score fusion of the above two processes. In the location-specific 

search process, we adopted two methods to get the location score: (1) Approximate K-means 

(AKM) based search using handcrafted features, and (2) DNN-based search using deep features. 

In the person-specific search process, we also adopted two methods, namely (1) deep face 

recognition, and (2) text-based search. After getting the scores of location-specific and 

person-specific search, we conducted instance score fusion from two directions: searching the 

specified person based on location-specific results, and searching the specified location based on 

person-specific results. Then we further integrated the above two directions to obtain the final 

instance search results, which can simultaneously capture the cues of both location and person. In 

the result re-ranking stage, we applied semi-supervised learning based re-ranking method, which 

aims to filter noisy shots in the top ranked results, for improving the accuracy of automatic search. 

For the interactive search, we first used the same approach with the similarity computing stage in 

automatic search to get the original query scores. Then, we also adopted interactive query 

expansion strategy, and the scores of expanded and original queries were merged to effectively 

boost the search accuracy. The official evaluations showed that our team ranked 1st in both 

automatic and interactive search. 



1 Overview 

In TRECVID 2017[1], we participated in all two types of Instance Search (INS) [2] tasks: 

automatic search and interactive search. In both automatic search and interactive search, our team 

ranked 1st among all teams. 

For the automatic search, our approach consists of two stages: similarity computing and 

result re-ranking. In the similarity computing stage, we first conducted two search processes: 

location-specific search and person-specific search, and then performed score fusion from two 

directions: searching the specified person based on location-specific results, and searching the 

specified location based on person-specific results. We further integrated the above two directions 

to obtain the final instance search results, which can simultaneously capture the cues of both 

location and person. In the result re-ranking stage, we applied semi-supervised learning based 

re-ranking method, which aims to filter noisy shots in the top ranked results, for improving the 

accuracy of automatic search. For the interactive search, we adopted interactive query expansion 

strategy based on automatic search, and the scores of expanded and original queries were merged 

to effectively boost the search accuracy.  

We totally submitted 7 runs including 6 automatic runs and 1 interactive run. The official 

evaluation results of our 7 runs are shown in Table 1. Table 2 gives the detailed explanation of 

brief descriptions in Table 1. The framework of our system is shown in Figure 1. In the 6 

automatic runs, the notations “A” and “E” specify whether the video examples were used or not, 

and the methods of two runs are the same if the only difference between them is the notation “A” 

or “E”. The difference between Run1_A/E and Run2_A/E is that Run2_A/E incorporates 

text-based person search method based on the methods of Run1_A/E. Compared to Run2_A/E, 

Run3_A/E applies semi-supervised learning based re-ranking strategy to improve the search 

results. Run4 is an interactive search run with human feedback based on automatic search. 

Table 1: Results of our submitted 7 runs on Instance Search task of TRECVID 2017. 

Type ID MAP Brief description 

Automatic 

PKU_ICST_RUN1_A 0.448 A+D+F 

PKU_ICST_RUN1_E 0.471 A+D+F 

PKU_ICST_RUN2_A 0.531 A+D+F+T 

PKU_ICST_RUN2_E 0.549 A+D+F+T 

PKU_ICST_RUN3_A 0.528 A+D+F+T+S 

PKU_ICST_RUN3_E 0.549 A+D+F+T+S 

Interactive PKU_ICST_RUN4 0.677 A+D+F+T+H 

 

Table 2: Description of our method. 

Abbreviation Description 

A Approximate K-means (AKM) based location search 

D DNN-based location search 



F Face recognition 

T Text-based person search 

S Semi-supervised learning based re-ranking 

H Human feedback 

 

 

Figure 1: Framework of our instance search approach for the submitted 7 runs. 

2 Similarity Computing Stage 

2.1 Location-specific Search 

We adopted two methods to conduct location-specific search, namely AKM-based search and 

DNN-based search, which used location features from handcrafted features and deep features 

respectively. Finally, we took the advantages of both the two methods by fusion strategy. 

2.1.1 AKM-based Search 

For AKM-based location search, we first extracted keypoint-based BoW features by AKM 

algorithm, and then conducted location search by cosine distance measurement. The 

keypoint-based BoW features of shots were extracted in the following three steps: 

(1) First, we extracted the keypoint features of each key frame. Three detectors including Harris 

Laplace[3], Hessian Affine[4] and MSER[5] with two descriptors including 128-dimensional 

SIFT descriptor[6] and 192-dimensional ColorSIFT descriptor[7]. So there were 6 kinds of 

keypoint features generated for each key frame as a result. 

(2) Second, for each kind of keypoint feature, we used AKM algorithm to cluster them into 



one-million cluster centroids and built a visual vocabulary with these cluster centroids. 

(3) At last, as each shot consisted of several key frames, we assigned each keypoint of all the key 

frames into the nearest centroid, where the word weights were determined by the 

keypoint-to-word similarity and region of interest (ROI), and generated a one-million 

dimensional BoW feature. As a result, we generated 6 BoW features for each shot 

corresponding to 6 kinds of keypoint features, as shown in Figure 2. 

 

Figure 2: Extracting keypoint-based BOW features 

 

After getting 6 kinds of keypoint-based BoW features, we conducted location search by cosine 

distance measurement based on each kind of keypoint-based BoW feature and obtained 6 groups 

of similarity scores. Finally, we integrated them using late fusion strategy to get the AKM-based 

location similarity: 

𝐴𝐾𝑀𝑖𝑗 =
1

6
∑ 𝐵𝑂𝑊𝑖𝑗

(𝑘)
𝑘                            (1)  

where 𝐴𝐾𝑀𝑖𝑗 denotes the AKM-based location similarity score between shot i and location j. 

𝐵𝑂𝑊𝑖𝑗
(𝑘)

 denotes the similarity score between shot i and location j based on kth BoW feature. 

2.1.2 DNN-based Search 

We also exploited DNN models to promote location-specific search. Three widely-used DNN 

models, namely VGG-16[8], GoogLeNet[9], and ResNet-152[10], were adopted to extract 

location-specific DNN features. We also adopted progressive training strategy to further improve 

the discrimination of models. Our framework included two stages: model training and location 

search.  



(1) Model Training 

In the training stage, (1) we pre-trained the DNN models with the Places365[11] dataset, which is 

a large dataset for scene understanding. The models could be properly initialized to fit for the 

location-specific search task. (2) We made various kinds of transformations, including image 

blurring, noising and scaling, etc., on the provided location example images, which formed the 

training set to fine-tune the pre-trained models. (3) We adopted progressive training strategy for 

promoting the discrimination of the models. First, we conducted the location search using the 

features extracted from the models obtained by previous step. Then the frames in the top N (set to 

be 20 here) returned shots as well as their transformations were selected to expand the training set. 

Finally, we continued to fine-tune the models using the newly expanded training set. The selected 

shots increased the size and diversity of the training set, to promote the models to learn more 

discriminative features. 

(2) Location Search 

In the location search stage, we extracted DNN features from three fine-tuned models 

respectively, and calculated the similarity scores based on cosine distance measure. For exploiting 

the complementarity among the three models, we averagely fused the similarity scores of them to 

get the DNN-based location similarity: 

𝐷𝑁𝑁𝑖𝑗 =  1 3⁄ (𝑉𝐺𝐺𝑖𝑗 + 𝐺𝑂𝑂𝐺𝐿𝐸𝑖𝑗 + 𝑅𝐸𝑆𝑁𝐸𝑇𝑖𝑗)              (2)  

where 𝐷𝑁𝑁𝑖𝑗 denotes the DNN-based location similarity score between shot i and location j. 

𝑉𝐺𝐺𝑖𝑗, 𝐺𝑂𝑂𝐺𝐿𝐸𝑖𝑗 and 𝑅𝐸𝑆𝑁𝐸𝑇𝑖𝑗 denote the similarity scores based on VGG-16, GoogLeNet, 

and ResNet-152 features respectively. 

2.1.3 Location Similarity Fusion 

After obtaining the scores of AKM-based and DNN-based location similarity for each location 

example and test shot, we performed late fusion of these two kinds of similarity scores to get the 

final location similarity simij = 2 ∙ AKMij + DNNij, and further obtained the retrieval ranking of 

location-specific search. 

2.2 Person-specific Search 

In person-specific search process, we adopted two kinds of methods, including face recognition 

and text-based search. 

2.2.1 Deep Face Recognition 

We detected faces from the video key frames by MTCNN[12], and extracted a 4096-dimensional 

feature vector for each face image by VGG-Face model[13]. The faces in query person examples 

were also detected and represented as 4096-dimensional feature vectors. However, we noticed that 

there were some “bad” faces in query examples, which caused bad retrieval performance due to 



blur and difficulties to distinguish. So we detected and removed such “bad” faces by following 

strategy: For the given 4 query faces of a specific person, we calculated the similarity sij between 

i-th and j-th query face. We defined 𝑐𝑖 = ∑ 𝑠𝑖𝑗𝑗≠𝑖  as the confidence score of the i-th query face. 

Then the i-th query face would be detected as “bad” face if 𝑐𝑖 + 𝜃 < ∑ 𝑐𝑗𝑗≠𝑖 3⁄ , where 𝜃 was set 

to be 0.05 here. 

Then, similar to DNN-based location search, we adopted progressive training strategy for 

promoting the discrimination of the VGG-Face model. First, we conducted the person search 

using the features extracted from the VGG-Face model. Second, the faces in the top N (set to be 

50 here) returned shots were selected to form the training set, then used to fine-tune the VGG-Face 

model, and the fine-tuned model were denoted as VGG-Face-ft model. 

Finally, we extracted a 4096-dimensional feature vector based on the VGG-Face-ft model for 

each face image, and calculated the similarity cosij between the shot i and person j. The faces in 

the top N (set to be 200 here) returned were selected to train an SVM[14] model, and svmij denotes 

the classification score of predicting shot i as person j. We combined the similarity and 

classification scores to get the final similarity as simij = cosij+svmij. 

2.2.2 Text-based Search 

The process of text-based search was similar to that we performed last year[15]. We used the 

transcripts of videos provided by NIST to perform text-based person search for each topic. 

Besides the person’s name pointed out explicitly by the topic, we extended the person’s 

information for search by retrieving some structured data from related Wikipedia webpage, such 

as nick name, character name, names of the specific person’s family and his/her closest friends, etc. 

For each topic, we generated a list of shots whose transcripts included the keywords of the topic. 

The text-based search results were used for instance score fusion. Please see Section 2.3 for 

details. 

2.3 Instance Score Fusion 

So far we have gotten the location similarity from the location-specific search, as well as the 

person similarity from the person-specific search. This year, each query topic was to find a given 

person in a given place, which required the fusion of both location and person similarity. Our 

fusion strategies that comprehensively considered the location and person similarity were adopted 

as the following two directions: 

(1) We searched the specified person from candidate location shots. We first got candidate 

location shots with a considerable probability to contain the specified locations. Specifically, 

top-N (N > 1000) returned shots were selected as the candidate location shots from the 

location-specific results. Then, we used text-based person search results to modify person 

similarity and got the score 𝑠1 as following: 



𝑠1 = 𝜇 ∙ similarityperson                           (3)  

where 𝜇 was the text-based bonus parameter. We set 𝜇 > 1 if the shot existed in text-based 

person search results, and 𝜇 = 1 otherwise. By the text-based bonus parameter 𝜇, we could 

use the auxiliary information from the text to retrieve the shots with query topic. Next we rank 

the candidate location shots by the score 𝑠1 to generate the location-based ranking list. 

Moreover, for those shots not included in top-N location-specific results, we set 𝑠1 = 0. 

(2) We searched the specific location from candidate person shots. Similarly, top-M (M > 1000) 

returned shots from the person-specific results were selected as the candidate person shots 

with a considerable chance to contain the specified persons. We also used text-based person 

search results to modify location similarity and got the score 𝑠2 as following: 

𝑠2 = 𝜇 ∙ similaritylocation                          (4)  

Then we used 𝑠2 to rank the candidate person shots to generate the person-based ranking list. 

Similarly, we set 𝑠2 to be 0 for the shots not in the top-M person-specific results. 

(3) Moreover, in order to make full use of location-based ranking list and person-based ranking 

list to improve the search performance, we proposed a fusion strategy on 𝑠1 and 𝑠2. In this 

strategy, the fusion score of a shot would be calculated as: 

𝑠𝑓 = 𝜔(𝛼𝑠1 + 𝛽𝑠2)                              (5)  

where 𝛼  and 𝛽  were weight parameters to balance 𝑠1  and 𝑠2 , and 𝜔  was a bonus 

parameter. We set 𝜔 > 1 if the shot simultaneously existed in the top-N location-specific 

results and top-M person-specific results, otherwise 𝜔 = 1. The bonus parameter 𝜔 could 

help to highlight the common shots of both location-specific and person-specific search 

results, which were more likely to be the right instances. It could be easily seen that the final 

instance score preserved information of both location and person aspects, and the fusion of 

them could improve the instance search accuracy. 

(4) Finally, we proposed a time sequence based ranking algorithm to refine the fused results. It 

was inspired by the fact that the information in video is continuous, and adjacent shots in time 

sequence usually contain similar content. In detail, we recalculated the scores of shots in 

fusion score ranking list as following: 

𝑠𝑓
(𝑖+𝑘)

= 𝑠𝑓
(𝑖)

+ 𝜃𝑘                              (6)  

where 𝑠𝑓
(𝑖)

 denoted the score of 𝑖-th shot and 𝑠𝑓
(𝑖+𝑘)

 denoted the score of  (𝑖 + 𝑘)-th shot, 

namely 𝑖-th shot’s neighbor shot in time sequence. 𝑘 was the index gap between these two 

shots (−𝑇 < 𝑘 < 𝑇) and 𝜃 was a parameter to adjust the similarity score. We used the 

adjusted scores to rank shots and got the final shot ranking list, which could enhance the 

instance search performance. 



3 Result Re-ranking Stage 

In result re-ranking stage, we adopted semi-supervised re-ranking algorithms to refine the 

ranked results obtained from above fusion step. We noted that there were still a few noisy shots in 

the top ranked shots, although most of the top ranked shots were correct and looked similar to 

each other. In order to filter these noisy shots, we further proposed a semi-supervised learning 

based re-ranking algorithm[15] to refine the top-ranked results. The detail of this algorithm was 

described as below and Figure 3: 

 

Figure 3: Our semi-supervised re-ranking algorithm. Green rectangles mean right results, 

while red ones mean wrong results. Green edges in the graph mean high similarity between 

shots, while red ones mean low similarity. 

 

(1) Given the data matrix of 1000 top-ranked shots F and L, where Fi meant the DNN feature 

vector for location of a key frame and Li meant the shot ID of vector Fi, i ∈{1, 2, …, n} 

where n > 1000 meant there were n key frames from 1000 shots. 

(2) Initialized the affinity matrix W with all zeros, and updated as following: 

𝑊𝑖,𝑗 =  
𝐹𝑖 ∙ 𝐹𝑗

|𝐹𝑖| ∙ |𝐹𝑗|
, 𝑖, 𝑗 ∈ {1, 2, … , 𝑛}, 𝑖 ≠ 𝑗                    (7)  

(3) Generated the k-NN graph: 

𝑊𝑖,𝑗 =  {
𝑊𝑖,𝑗 ,         𝐹𝑖 ∈ 𝑘𝑁𝑁(𝐹𝑗);

0,           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  
                   (8)  



where 𝑘𝑁𝑁(𝐹𝑗) denoted the set of k-nearest neighbors of 𝐹𝑗. 

(4) Constructed the matrix: 𝑆 =  𝐷−
1

2𝑊𝐷−
1

2 , where D was a diagonal matrix with its (i, 

i)-element equal to the sum of the i-th row of W. 

(5) Iterated 𝐺𝑡+1 = 𝛼𝑆𝐺𝑡 + (1 − 𝛼)𝑌 until convergence, where 𝐺𝑡 denoted the refined result in 

t-th round and we set 𝐺0 = 𝑌. 𝛼 was a parameter in the range (0, 1), and Y was the final 

ranking list of key frames from 1000 top-ranked shots, and we set the score of each key frame 

as the same with its original shot. 

4 Interactive Search 

This year we used similar strategy as what we used in the interactive search task of INS 2016. 

For the sake of efficiency, we performed interactive search based on RUN2_E without result 

re-ranking stage. First, the user labeled the top-ranked results in the ranking lists of automatic 

search as positive or negative samples for each topic. In the final interactive run, the positive 

samples would rank at the top of the list, while the negative ones would be discarded. Next, the 

positive samples were used as expanded queries to conduct the location and person search. The 

number of expanded queries for each topic was up to 10 to guarantee the efficiency of interactive 

search. After getting the scores of expanded queries, the scores of expanded and original queries 

were merged together to effectively boost the search accuracy.  

5 Conclusion 

By participating in the instance search task in TRECVID 2017, we have the following 

conclusions: (1) Video examples are still helpful for accuracy improvement, which can provide 

more information to get higher results (see Table 1). (2) The automatic removal of “bad” faces is 

important to achieve accurate face recognition results, which causes severe confusion. (3) The 

fusion of location and person similarity is a key factor of the instance search. Because we have 

various cues for instance search, we should carefully balance and make full use of them to achieve 

ideal search results. 
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