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Abstract

The PicSOM Group’s participation in TRECVID 2015 includes successful submissions in the semantic indexing (SIN) and
localization (LOC) tasks. We also registered for the multimedia event detection (MED) and linking (LNK) tasks, but didn’t run
any experiments nor submit any results.

In semantic indexing (SIN), we participated in the main task only. We extended our last year’s set of features with five new
convolutional neural network (CNN) activation features based on three new different network architectures. We also implemented
two simple feature weighting schemes to improve the precision of our detections. We submitted the following four SIN runs:
• 4 HEMULEN: Baseline run matching the best PicSOM SIN submission in TRECVID 2014
• 3 SNIFF: Similar to the 4 HEMULEN baseline run with five new convolutional neural network (CNN) activation features
• 2 MUMINMAMMAN: Similar to 3 SNIFF, but the weights of the individual detectors based on the different features were

optimized jointly for all concepts
• 1 LILLAMY: Similar to 2 MUMINMAMMAN, but the optimization was class-specific
The run 1 LILLAMY obtained the highest MXIAP score of 0.2794. The run 4 HEMULEN which matched our best submission in
TRECVID 2014 produced MXIAP score of 0.2445 which is considerably lower than the corresponding result 0.2880 last year.
We thus assume that the evaluated SIN concepts this year were more difficult than those of last year.

We submitted four runs in the localization (LOC) task:
• 4: Baseline run with I-frame level temporal localizations from our SIN system and spatial detections from class-specific average

locations from the training data
• 3: Deformable Part-Based Model (DPM) result with HOG features for both temporal and spatial localization
• 2: Temporal localizations from our SIN system and spatial localizations from DPM-based results
• 1: Temporal localizations combined from our SIN results and DPM results, spatial localizations from DPM
This was our first participation in the LOC task. Our results were not good, but still valuable for our own knowledge. It seems
in the light of the F-scores, that our SIN method was better for I-frame level temporal localization, but when pixel-level spatial
localization was considered, the SIN detection results didn’t bring any advantage to the DPM-based results.

I. INTRODUCTION

In this notebook paper, we describe our experiments for
the TRECVID 2015 evaluation [1]. We participated in two
tasks, the semantic indexing (SIN, Section II) and localization
(LOC, Section III). In addition, we registered and planned
to participate in the multimedia event detection (MED) and
linking (LNK) tasks, but didn’t finally have the necessary
resources. Overall conclusions are presented in Section IV.

II. SEMANTIC INDEXING

Our submissions to the semantic indexing (SIN) task are
based on fusing several supervised detectors trained for each
concept, based on different shot-level image features. The ba-
sic system architecture is the same as we have used in previous
editions of TRECVID [2]. As the concept-wise ground-truth

for the supervised detectors we used the annotations gathered
by the organized collaborative annotation effort [3]. All our
runs were submitted to the main task and are of training type
D. We did not participate in the no annotation condition.

A. Features and classifiers
In addition to the main keyframes provided in the master

shot reference, we extracted additional frames from training
data shots longer than two seconds. In 2013 and 2014 we had
used all I-frames provided in the test data set, but this time
we reduced the number of I-frames used with a logarithmic
curve which resulted in using a total of approximately 500,000
I-frames, which is roughly 30% of the available I-frames.

1) Old global, BoW, FV and VLAD features: We used
the six image features from our previous TRECVID sub-
missions: two global features (Centrist and ScalableColor)



and four BoV-type features (SIFT, ColorSIFT, SIFTds, and
ColorSIFTds). Non-linear SVM classifiers were used with the
exponential χ2 kernel for the BoV features and the RBF kernel
for the global features. See [4], [2] for details.

Similarly to TRECVID 2014 SIN, we extracted dense SIFT
descriptors and encoded them using both Fisher vectors [5]
and VLAD [6]. The codebooks were constructed using a 128-
component GMM and k-means with 512 clusters, respectively.
The corresponding classifiers were trained using linear SVMs.

2) CNN features: For the feature extraction in the
keyframes we use CNNs pre-trained on the ImageNet database
for object classification [7]. We used all the same CNN
features as in TRECVID 2014, see [8]. In this year, we addi-
tionally used three new different CNN architectures, namely,
16-layer and 19-layer VGG [9] nets, and GoogLeNet [10]. In
the case of VGG nets, we extract the activations of the network
on the first fully connected (fc6, 4096-dimensional) layer with
the given input images as the features. For GoogLeNet, we
used similarly the output of the 5th Inception module, having
the dimensionality of 1000.

Both a single center region or ten regions as suggested
in [11] were extracted from all images. In the case of ten
regions, both average and maximum pooling of the region-wise
features were used. Furthermore, we augment these features
with the reverse spatial pyramid pooling proposed in [12]
with two scale levels. The second level consists of a 3 × 3
grid with overlaps and horizontal flipping, resulting in a total
of 26 regions, on the scale of two. The activations of the
regions are then pooled using average and maximum pooling.
Finally, the activations of the different scales are concatenated.
The resulting spatial pyramid features are therefore 8192-
and 2000-dimensional for the VGG nets and GoogLeNet,
respectively. See [13] for more details.

As classifiers for the CNN features, we utilized linear SVMs
with homogeneous kernel maps [14] of order d = 2 to
approximate the intersection kernel.

B. Classifier fusion

Classifier outcomes were in the first stage fused over the
features for each frame with arithmetic mean. In the second
fusion stage over the frames of each shot we used the
maximum value. This can be written for concept class c as

ri,c = max
j=1,...,ni

1

N

N∑
k=1

wk,c ri,j,k,c , (1)

where N is the number of used features, ni is the number of
frames in shot i and ri,j,k,c is the detection score for class
c with feature k in frame j of shot i. The weighting term
wk,c is an additional factor we hadn’t used in our earlier
experiments. Index c refers to the concept class and k to
the feature in question. We studied both concept-specific and
concept-independent selection of w. In the latter case the
weight term simplifies to wk.

Otherwise, the score values for the shots were obtained in
the same manner as in TRECVID 2014 for each run as the

TABLE I
AN OVERVIEW OF THE SUBMITTED RUNS IN THE SEMANTIC INDEXING

TASK. SEE TEXT FOR DETAILS.

features weight in (1)
run id TV14 5×CNN wk wk,c MXIAP
4 HEMULEN • 0.2445
3 SNIFF • • 0.2646
2 MUMINMAMMAN • • • 0.2765
1 LILLAMY • • • 0.2794

maximum over the frame-wise scores resulting from the now
weighted arithmetic mean over all features.

C. Mining hard negatives

A concept-wise, two-class classifier generally produced
false positives on negative examples that were similar to
the positive examples according to the used feature space.
Therefore, to acquire more relevant negative examples, we
performed n rounds of hard negative mining [15] and sampled
10 000 negative examples on each round. The final classifier
for a given feature was obtained by fusing the classifier trained
with the original, randomly sampled negatives and the n
classifiers using mined relevant negatives.

In preliminary experiments, we observed that a single
round of mining hard negatives already brought the greatest
improvement. We therefore used the value n = 1 in the
following experiments. This procedure is equal to that we used
in TRECVID 2014 for the first time.

D. Submitted SIN runs

This section describes our submitted semantic indexing
runs. Table I shows an overview, where the first two columns
in the middle refer to the used features: the 38 features of
our best-performing TRECVID 2014 [8] submission (TV14)
and the five new CNN activation features. We used hard
negative mining for all CNN features in both two sets. The
next two columns indicate whether class-independent (wk) or
class-dependent (wk,c) feature weighting scheme was used.
The rightmost column lists the corresponding mean extended
inferred average precision (MXIAP) [16] values.

Figure 1 shows how our runs were positioned in the MXIAP
scores among all the 86 submitted runs. Figure 2 further
illustrates the concept-wise XIAP results of our runs together
with the maximum and median results of all the submissions.
All our submissions were of training type D.

The run 4 HEMULEN is intended to match the best PicSOM
submission in TRECVID 2014, denoted then as 1 Mårran,
i.e. to use the same features, classifiers, and method of
fusion [8]. The run 3 SNIFF differs from the baseline only
by its use of the five additional CNN-based features.

In the run 2 MUMINMAMMAN, the class-independent fea-
ture weighting was used. The feature-specific values were
optimized by a gradient search where the tests sets of
TRECVID 2013 and 2014 were used as a validation set. The
run 1 LILLAMY is equal to the previous one, but now the
optimization was run independently for all the 60 semantic
concepts.



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 1. Overview of the MXIAP all SIN runs submitted with our submissions in bolded bars.

According to our MXIAP results, the most notable in-
crease of performance compared to our last year’s submission
comes from the new additional features. Both types of feature
weight optimization further improve the result, while the class-
dependent weighting scheme is slightly better than the class-
independent one. As can be seen in Figure 2, the superiority of
these two approaches is dependent on the concept in question.

III. LOCALIZATION

The Deformable Part-Based Method (DPM) of Felzen-
szwalb et al. [17] has shown to provide excellent performance
in human and generic object detection. An object is modeled
as a collection of parts in the DPM model. The parts are
constructed with a root model that can be seen as analogous
to the standard HOG-based representation of Dalal and Triggs
[18]. The DPM model employs latent SVM formulation for
learning. The root filter, the part filters and the deformation
cost of the configuration of all parts are concatenated to
obtain a detection score for a window. The standard DPM
framework employs HOG features computed over a dense
grid of 8× 8 non-overlapping cells. Several variants for DPM
framework [19], [20], employing color and texture features
have been proposed in literature. In our submitted runs, we
used the standard DPM model with HOG features [17]. In the
future we will experiment with a variant of HOG with color
name features [19].

A. Submitted LOC runs

Table II summarizes or four submitted LOC runs. For
run 4, we used just the I-frame-wise detections from our

TABLE II
OUR LOC RUNS AND THEIR I-FRAME FSCORES (IF), RECALLS (IR) AND

PRECISIONS (IP) AND CORRESPONDING MEAN PIXEL MEASURES
FSCORES (PF), RECALLS (PR) AND PRECISIONS (PP)

runId IF IR IP PF PR PP
1 0.6321 0.6275 0.7741 0.3875 0.4530 0.4340
2 0.6643 0.6173 0.8034 0.3868 0.4719 0.4289
3 0.5232 0.5351 0.7445 0.3944 0.4503 0.4344
4 0.6643 0.6173 0.8034 0.2670 0.2934 0.3771

SIN subsystem described in the previous section. The spatial
localizations were based on input-independent class-specific
means of the object bounding boxes in the training data. For
those classes that didn’t have any training data we used the
averages of the bounding boxes of the other classes. The
required threshold parameter was optimized for each concept
separately based on the distributions of the SIN scores for the
positive and negative samples in the training set. These run 4
localizations were also used as a backup result for concepts
5 Anchorperson and 31 Computers, for which there were no
training data available, in all other submitted runs.

Run 3 is based on the use of the Deformable Part-Based
Model (DPM) score with HOG features for both temporal and
spatial localization. A common threshold value was used for
all concepts.

Run 2 was formed so that SIN scores were first used to
select the I-frames that were the most likely to contain the
concept in question. Then the spatial region proposal by the
DPM model was used to provide the bounding box.

In run 1, the selection of the I-frames was implemented by
summing our SIN and DPM scores for the temporal part of
the localization and then the spatial part was carried out by
using the bounding box proposed by the DPM model.

Our LOC results are overall quite bad, but still valuable for
our own knowledge. The DPM model seems to be working
because the mean pixel measures are clearly better with it than
with the average proposals. However, on the I-frame level our
SIN result is better than the DPM result, but their combination
does not seem to bring any improvement.

IV. CONCLUSIONS

Concerning the SIN task results, it seems that other groups
have improved their methods since TRECVID 2014 more than
what we have been able to do. Looking at our own SIN
results only, we are satisfied with the progress we have made.
Both the additional CNN features and the two feature weight
optimization schemes gave clear improvements in our MXIAP
scores.

Concerning the LOC task, this was our first time participa-
tion and we didn’t expect much of the outcome yet. Still, there



is some promise in the results, even though the combination of
the image-level detection value and the spatial region proposal
did not work quite as well as we expected. In the forthcoming
years we plan to investigate more efforts in this task if it will
be continued.
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Trecvid 2015 – an overview of the goals, tasks, data, evaluation
mechanisms and metrics. In Proceedings of TRECVID 2015. NIST,
USA, 2015.

[2] Satoru Ishikawa, Markus Koskela, Mats Sjöberg, Jorma Laaksonen,
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Fig. 2. The concept-wise XIAP results of our submitted runs for each evaluated concept in the semantic indexing task. The order of the runs is as in Table I,
i.e. 4 HEMULEN, . . . , 1 LILLAMY. The median and maximum values over all submissions are illustrated as horizontal lines.


