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Abstract. This paper presents a general surveillance event detection system that 
participated in the interactive Surveillance Event Detection (iSED) task of 
TRECVID 2013. In the proposed system, a set of spatio-temporal features 
including Space-Time Interest Points (STIP) and Dense Trajectories are 
extracted, and a sliding temporal window is employed as the detection unit. 
Fisher Vector is used to encode low-level features as the representation of each 
sliding window. Both feature-level and decision-level fusions are used to 
combine multiple features. In order to deal with the highly imbalanced nature of 
surveillance data, the system performs detections using the CascadeSVMs 
algorithm according to each specific event and camera view. Two different 
interactive environments are evaluated, one focuses on high throughput and the 
other includes related result expansion. In the primary run evaluations, our 
system ranks the top in 2 out of 7 event detection tasks.  

1.   Introduction 

Automatic event detection of video surveillance has many real-world applications 
for home security (e.g., AT&T Digital Life) and public security (e.g., IBM Smart 
Surveillance Solutions). In the past decades, most research of human activity analysis 
mainly experimented on relatively simple and clear scenes where only a limited 
number of actors perform explicit actions. This constrained scenario seldom holds in 
real-world surveillance videos due to the great challenges of large variances of 
viewpoint, scaling, lighting, cluttered background, etc. In order to bridge research 
efforts and real-world applications, TRECVID [8] provides the interactive 
Surveillance Event Detection (iSED) task to evaluate event detection in real-world 
surveillance settings. In TRECVID 2013 [13], iSED provides a corpus of 144-hour 
videos under five camera views from the London Gatwick International Airport. In 
this dataset, 99-hour videos can be used as the development set with annotations of 
temporal extents and event labels. Our system is evaluated on all the seven events, 
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i.e., CellToEar, Embrace, ObjectPut, PeopleMeet, PeopleSplitUp, PersonRuns, and 
Pointing. 

The remainder of this paper is organized as follows. Section 2 introduces the 
overall system architecture. In Sections 3 and 4, we provide detailed procedures of 
feature extraction and video representation. Section 5 describes the learning algorithm 
and feature fusion. The interactive design is presented in Section 6. A variety of 
experimental results and discussions are presented in Section 7. Finally, Section 8 
summarizes the approaches and performance of the system.  

2.   System Overview 

As demonstrated in Fig. 1, the system consists of 4 major components: (1) low-
level feature extraction, (2) video (sliding window) representation based on Fisher 
Vector, (3) event learning and prediction by CascadeSVMs, and (4) human interaction. 
 

 
 

Figure 1: AT&T Research surveillance event detection system overview. 
 

Most recent work on action recognition demonstrates that local spatio-temporal 
features are more robust to posture, occlusion, illumination, and cluttered background 
compared to global features. A spatio-temporal feature extraction usually includes 
two phases: detection, i.e., a feature detector localizes interest points in a spatio-
temporal space; and description, i.e., a feature descriptor computes representations of 
detected points. Space-Time Interest Point (STIP) [4] employs 3D Harris corner 
detector to detect sparse points with large gradient magnitude in both spatial and 
temporal domains. Histogram of Gradients (HOG) and Histogram of Optical Flow 
(HOF) are then computed and concatenated as descriptors. However, it is restrictive 
to have large intensity changes in both spatial and temporal dimensions, which could 
result in insufficient detections. On the other hand, dense sampling has shown to 



improve action recognition over the state-of-the-art sparse interest point detectors 
[10]. Dense Trajectories (DT) [9] densely samples interest points at multiple spatial 
scales. The sampled points are tracked over a dense optical flow field and reinitialized 
every few frames. Several local descriptors, e.g., Trajectory and Motion Boundary 
Histogram (MBH), are then extracted from the space-time volumes aligned with the 
trajectories. In this system, STIP-HOG/HOF, DT-Trajectory, and DT-MBH are used 
as the low-level features to characterize human actions.  

After local feature extraction, feature encoding is commonly used to aggregate the 
low-level features to represent images and videos. This can be done in two ways [1]: 
(1) by pooling the coded visual words (e.g., soft quantization with average pooling, 
sparse coding with max pooling) and (2) by recording the differences between 
features and visual words (e.g., Fisher kernel encoding, super vector encoding). The 
relative displacements between descriptors and visual words capture the feature 
distribution information that helps to retain some information lost in the quantization 
process. An evaluation of recent feature encoding methods in [1] identifies the 
superiority of Fisher Vector in image classification. In this system, Fisher Vector is 
employed with spatial pyramids [6] to encode local spatio-temporal features. 

Having obtained the above video representations, the event models can be learned 
by linear SVMs solvers [3]. However, the surveillance data is highly imbalanced 
because positive events are far less frequent than negative ones, e.g., the sequences of 
CellToEar are only 0.31% of the entire video. The CascadeSVMs proposed by Yang 
et al. [11] is used to handle this difficulty. In order to combine multiple features, we 
employ both feature-level and decision-level fusions. A simple post processing is 
performed over the positive classification results to determine temporal localization of 
each event and further remove false alarms. It is observed that most positive samples 
continuously last for a number of frames as temporal extents of most events cover 
several sliding windows. So neighboring positive predictions are grouped into a 
merged detection, which is assigned a higher confidence score than those isolated 
positive predictions. 

Contrary to typical search systems employed in TRECVID evaluations, a triage-
based interaction style is utilized in these experiments. In this style, results from an 
automatic baseline are ingested into the system and roughly explored based on the 
order of decreasing likelihood. Two slightly different interactive systems were 
evaluated: a linear interface focusing purely on in-order and single result visualization 
as well as a non-linear interface that also visualizes temporally adjacent results and 
the entire list of results to be evaluated. Several detection permutations are explored 
in submissions using interaction output of the linear interface and different decision 
thresholds. 

3.   Low-Level Feature Extraction 

We extract a set of local spatio-temporal features including STIP-HOG/HOF [5], 
MoSIFT [2], ActionHOG [11], DT-Trajectory [9], DT-HOG [9], DT-HOF [9], and 
DT-MBH [9]. Based on empirical evaluations of single features and their 
combinations, STIP-HOG/HOF, DT-Trajectory, and DT-MBH are kept in the final 
evaluation. 



3.1.   STIP-HOG/HOF 

STIP detector combined with HOG/HOF descriptors has been widely used in action 
recognition and detection tasks [5]. STIP detects interest points by searching 
significant variations in both space and time. The second moment matrix at each 
spatio-temporal point is given by 𝜇 ∙  ;𝜎, 𝜏 = 𝑔(∙  ; 𝑠𝜎, 𝑠𝜏) ∗ (∇𝐿(∙  ;𝜎, 𝜏)∇𝐿(∙
  ;𝜎, 𝜏)!) ; where 𝜎  and 𝜏  are spatial and temporal scales, 𝑔  is a Gaussian 
smoothing function, and ∇𝐿 is space-time gradient. The detected interest points 
correspond to the local maxima of 𝐻 = det 𝜇 − 𝑘trace!(𝜇). A dense sampling of 
the spatio-temporal scales (𝜎, 𝜏) is used instead of performing the scale selection as 
in [4]. This has been shown to give promising recognition performance and reduce 
computational cost [5].  

HOG/HOF descriptors are computed based on the space-time neighborhoods of 
detected interest points to capture the local appearance and motion information. The 
neighborhood size (∆! ,∆! ,∆!) is defined by ∆!= ∆!= 18𝜎 and ∆!= 18𝜏. Each 
STIP volume is subdivided into 3×3×2 cuboids. Each cuboid generates a 4-bin 
histogram of gradient orientation and 5-bin histogram of optical flow. The histograms 
are then normalized and concatenated as the HOG/HOF descriptor. 

3.2.   DT-Trajectory 

Dense Trajectories [9] provides an alternative to the joint space-time based interest 
point detectors. It is motivated by the difference between 2D space domain and 1D 
time domain in videos, as well as the success of dense sampling over sparse detection 
in image classification. As suggested in [9], interest points are densely sampled on a 
grid spaced by 5 pixels at 8 spatial scales spaced by a factor of 1 2. The sampled 
points are tracked by median filter in a dense optical flow field. A trajectory is 
removed once it reaches a length of 15 frames to avoid drifting in the tracking 
process. In order to assure dense sampling, a new trajectory is initialized if there is no 
tracked point within a 5×5  neighborhood. The trajectories with large sudden 
displacements and static trajectories are pruned. 

DT-Trajectory characterizes the shape of a trajectory that is used to capture local 
motion cues. As each trajectory has a fixed length of 15, its shape is described by a 
sequence (∆𝑃! ,… ,∆𝑃!!!")  of point displacements ∆𝑃! = 𝑃!!! − 𝑃! = (𝑥!!! −
𝑥! , 𝑦!!! − 𝑦!). DT-Trajectory is finally represented as the normalized sequence vector 
∆𝑃! ,… ,∆𝑃!!!" ∆𝑃!!!!"

!!! . 

3.3.   DT-MBH 

The space-time volume aligned with a trajectory is used to extract local descriptors. 
The size of a volume is 32×32 pixels and 15 frames. The volume is subdivided 
into a grid of 2×2×3 spatio-temporal bins. In order to suppress camera motion 
induced by optical flow, MBH is employed in [9] to separately compute spatial 
derivatives 𝐼!! , 𝐼!" , 𝐼!" , 𝐼!!  of horizontal and vertical components 𝐼! , 𝐼!  of 
optical flow 𝐼. The motion boundaries generated by the gradients 𝐼!! , 𝐼!" , 𝐼!" , 𝐼!!  



of the two separated optical flow components 𝐼! , 𝐼!  reduce most camera motion in 
background and highlight foreground motion. Similar to the HOG descriptor, gradient 
orientations of 𝐼!  and 𝐼!  are quantized into 8 -bin histograms that are then 
normalized using L2 norm.  

4.   Video Representation 

We employ Fisher Vector [7] combined with spatial pyramids [6] to represent each 
sliding window. Fisher Vector provides a feature aggregation scheme based on Fisher 
kernel that shares the benefits of both generative and discriminative models. Fisher 
Vector describes each feature descriptor by its deviation with respect to the 
parameters of a generative model. The spatial pyramids are then used to roughly 
incorporate the spatial layout of the video scene.  

4.1.   Fisher Vector 

Fisher Vector chooses the Gaussian mixture model (GMM) as the generative model 
𝑈! 𝑥 = 𝜋!𝑢!(𝑥)!

!!! , 𝑢! denotes the 𝑘th Gaussian component: 
 

𝑢! 𝑥 =
1

2𝜋
!
! 𝛴!

!
!
exp −

1
2
   𝑥 − 𝜇! !  𝛴!!!   𝑥 − 𝜇!   , 

 
∀𝑘 ∶ 𝜋! ≥ 0, 𝜋!!

!!! = 1.  

(1) 

 
where the feature descriptor 𝑥 ∈ ℝ!; 𝐾 is the number of Gaussian components; 𝜋!, 
𝜇!, and 𝛴! are the mixture weight, mean vector, and covariance matrix, respectively. 
𝛴! is assumed to be a diagonal matrix with the variance vector 𝜎!!. The GMM 
parameters 𝜆 = {𝜋! , 𝜇! ,𝛴! , 𝑘 = 1,… ,𝐾} are estimated based upon a large set of 
training descriptors using the Expectation-Maximization (EM) algorithm to optimize 
the Maximum Likelihood (ML). 

For a set of descriptors 𝑋 = {𝑥!,… , 𝑥!} extracted from a sliding window, the soft 
assignment of descriptor 𝑥! to component 𝑘 is defined as: 

 

𝛾!! =
𝜋!𝑢!(𝑥!)
𝜋!𝑢!(𝑥!)!

!!!
  . (2) 

 
The Fisher Vector of 𝑋 is then represented as 𝛹 𝑋 = {𝜌!, 𝜏!,… , 𝜌! , 𝜏!}, where 

𝜌!  and 𝜏!  are 𝐷 -dimensional gradients with respect to mean vector 𝜇!  and 
standard deviation 𝜎! of the 𝑘th component: 
 

𝜌! =
1

𝑁 𝜋!
𝛾!!

!

!!!
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1

𝑁 2𝜋!
𝛾!!

!

!!!

(𝑥! − 𝜇!)!

𝜎!!
− 1   . (4) 

 
Compared to the Bag-of-Words (BoW) based approaches, Fisher Vector has several 

advantages: (1) BoW is a particular case of Fisher Vector where only the gradient to 
the mixture weights of GMM is utilized. The additional gradients with respect to 
mean vectors and standard deviations in Fisher Vector provide extra distribution 
information of descriptors. (2) We can compute Fisher Vector upon a much smaller 
vocabulary that facilitates a lower computational cost. (3) Fisher Vector performs 
well with simple linear classifiers that are efficient in terms of both training and 
testing. 

This system follows the two schemes introduced in [7] to normalize Fisher Vector, 
i.e., L2 normalization and power normalization. The L2 normalization is proposed to 
remove the dependence on the proportion of event-specific information contained in a 
video, in other words, to cancel the effect of different amount of 
foreground/background information contained in different video segments. The power 
normalization is motivated by the observation that, as the number of Gaussian 
components increases, Fisher Vector becomes more peaky around zero in a certain 
dimension, which negatively impacts the dot-product in the following steps. The 
power normalization 𝑓 𝑧 = sign 𝑧 𝑧 !  with 0 < 𝛼 ≤ 1  is applied to each 
dimension 𝑧 in Fisher Vector. We choose 𝛼 = 0.5 (the Hellinger kernel) to perform 
the signed square-rooting operation. In this system, the power normalization is first 
applied and then the L2 normalization.   

4.2.   Spatial Pyramid 

The spatial pyramid [6] is applied to capture the rough geometry of a video scene. It 
spatially subdivides a video into a set of regions where statistics of low-level 
descriptors are pooled. This system uses the 3-level spatial pyramids with 1×1, 3×1, 
and 2×2 grids as illustrated in Fig. 2. Fisher Vector is computed from each grid and 
they are concatenated as the video representation. The temporal pyramids introduced 
in [5] are not used due to the explosion of feature dimension and memory 
requirement. 
 

 
 



Figure 2: The spatial pyramids of 3 levels with 1×1, 3×1, and 2×2 grids. Fisher Vectors are 
generated from each grid and concatenated as the final video representation. 

5.   Model Learning and Feature Fusion 

The sliding window scheme (60-frame window steps in every 15 frames) in this 
system generates quite imbalanced data as shown in Fig. 3. Most (5 7) positive 
events appear in less than 2% of the entire video sequences. CellToEar and 
PeopleSplitUp are the least and most frequent events that are only 0.31% and 4.37% 
of the training video sequences, respectively. The CascadeSVMs [11] scheme is 
employed to overcome this imbalance. In each stage of this algorithm, the same-
amount positive and negative samples are used to train a classifier that favors to the 
positive class. This leads the classifier in each stage to a high detection rate but a high 
false alarm rate as well. By cascading multiple classifiers, it is able to remove 
considerable false alarms but maintain a reasonable detection rate. In order to reduce 
intra-class variance and memory consumption, the models are learned according to 
each specific event and camera view. This system therefore includes 35 models of 7 
events under 5 camera views. 

 

 
Figure 3: Proportions of video sequences containing positive events in the training set. 

 
As introduced in Section 3, three low-level features are extracted from each sliding 

window, i.e., STIP-HOG/HOF, DT-Trajectory, and DT-MBH. Each low-level feature 
generates a corresponding Fisher Vector. We employ both early fusion (feature-level 
fusion) and late fusion (decision-level fusion) to combine the three feature sets, as 
illustrated in Fig. 4. The fusions in feature-level and decision-level are executed 
before and after classification, respectively. The feature-level fusion aims to combine 
different features to generate a new feature vector that explicitly takes account of the 
relationship between different feature sets. Simple concatenation, Adaboost, and 
Random Forests are widely used in the feature-level fusion [12]. The decision-level 
fusion combines outputs of classifiers to make the final prediction. Popular decision-
level fusion methods include minimum, maximum, median, majority voting, weighted 
sum, and geometric mean [12]. In this system, the simple concatenation and weighted 
sum are employed for early fusion and late fusion, respectively. 
 



 
 

Figure 4: Illustration of early fusion and late fusion in combining multiple low-level features. 
Because of the sliding window scheme used in our system, an event might span 

several different windows. After the classifier prediction, a simple post processing is 
applied to group continuous positive windows to determine the final temporal location 
of a detected event. In the merging process, two positive predictions disconnected by 
less than 𝜔 negative predictions can be merged together, where 𝜔 is set to 3 in this 
system. The merged detections are assigned higher scores than those isolated positive 
predictions in the human inspection process. 

6.   Human Interaction 

Two different interactive environments are evaluated: one focuses on high 
throughput while the other also includes related result expansion. These two 
interactive systems are described in detail in the following subsections. 

6.1.   High Throughput User Interface 

Fig. 5 illustrates the first user interface, which is simple yet effective in removing 
false events. The main goal here is to let the user focus on only one event at a time 
and make decision for the target event in a minimum amount of time. The event type 
and the progress information of the current interactive session are shown in the top 
row. The user is able to pause/resume the timer if necessary. The event video clip is 
pre-generated and played back in the middle at the original resolution. The associated 
information for the current event is shown above the video clip, which includes the 
video ID, event boundary, and machine generated score. The action label shows the 
manual decision about this event, and the original action is set to INIT. The Previous 
and Next buttons are mainly for browsing purposes, since in the practice, once the 
user makes decision on the current event, the UI will automatically moves to the next 
event in the pipeline. 

Right below the event video are all possible actions that the user may choose. They 
are Reject, Accept, ExpandLeft, ExpandRight, Split, and Skip. The Reject and Accept 
actions let the user to reject the events from the final list and accept it with its original 
boundary, respectively. The ExpandLeft action doubles the event duration by moving 
its starting frame backward. Similarly the ExpandRight action doubles the duration by 
shifting its ending frame foreword. These two actions are useful for adjusting the 



boundaries of the event that either starts before the detected starting frame or ends 
after the detected ending frame to make sure the center of the reported events overlap 
with the span of the actual events. When there are two isolated events found in the 
current window, the user can evenly split the single event into two by the Split action. 
The Skip action is a special action when the user cannot make decision and do not 
want to spend more time on the current event. Usually, the Skip action is considered 
as a Reject action, but it gives the user an option to revisit the difficult events later if 
time allows. In addition to these actions, the user can also accept the events with 
adjusted boundaries, for example, moving the start frame 1, 2, or 3 seconds forward, 
or moving the end frame 1, 2, or 3 seconds backward. All these action selections are 
arranged in a group, so the user can easily provide feedback for a sequence of events 
without much movement of the mouse. 

 
 

Figure 5: Illustration of the UI for high throughput. 
 

Since the number of machine detected results is typically large, much more than the 
number of events that a user can go through within 25 minutes, this interface tries to 
increase the throughput by playing back video in a faster rate. Depending on the 
events, the user may choose to playback the video in a wide range of rates, from half 
to five times real time. The choice of the playback rate is kept for all following events 
unless the user decides to change it again. 

6.2.   Triage User Interface 

When creating the interface for iSED evaluation, a triage interactive mode (as 
opposed to an exploration mode) is chosen for experimentation for three reasons: the 



evaluation metric is very sensitive to correct and incorrect detections, the automatic 
detector baseline is fair, and the entire sample space is not that large. The interface is 
shown in Fig. 6. 

Icons of all detected events are listed in the first row. The current event is displayed 
in the middle at a higher resolution. The user can playback the entire events at 
different playback rate. To simplify the interface, some of the controls (e.g., playback 
rate change) are implemented by keystroke instead of mouse clicking. For the current 
event, its temporally adjacent events are shown on the left hand side, and its 
associated information is presented on the right hand side. At the bottom, the recent 
labeled events are presented on the right hand side, and the left hand side is reserved 
for a collaborative labeling mode where two users can go through the results 
simultaneously. This collaboration mode is not fully implemented for this evaluation 
task. 

 
 

Figure 6: Illustration of the UI for triage. 

7.   Experimental Results 

TRECVID iSED 2013 provides 99-hour videos for development and 15-hour 
videos for evaluation. All videos are captured by 5 fixed cameras with the frame 
resolution 720×576 at 25fps. We downsample all videos to half size in the low-level 
feature extraction but keep the full resolution in the human interaction. We train the 
GMM with 128 Gaussian components and utilize the 8-grid spatial pyramid in this 
system. Hence, the dimensions of Fisher Vectors are 331776, 61440, and 393216 for 
STIP, DT-Trajectory, and DT-MBH, respectively. In the human interaction process, 
25 minutes are allowed for each event. The experiments reported in this paper are 
performed on a server that comprises 32 cores (2.0GHz), 256GB memory, and 15TB 
disk. 

We first compare our system to other best systems in TRECVID iSED 2013 by the 
primary metric Actual Detection Cost Rate (ADCR) and the secondary metric 
Minimum Detection Cost Rate (MDCR) in Table 1. The rank column denotes our 
rankings among all participants in terms of ADCR. We achieve the best performance 



in two event tasks, i.e., ObjectPut and PeopleSplitUp. The Detection Error Tradeoff 
(DET) curves of all events are shown in Fig. 8. These curves represent event-averaged 
miss detection probabilities vs. false alarm rates through varying a detection 
threshold. 
 

Table 1: Comparison of our system and other best systems in TRECVID iSED 2013. 
 

Event Rank ADCR of Other 
Best Systems 

AT&T Research Primary Run 
ADCR MDCR #CorDet #FA #Miss 

CellToEar 2 0.90571 0.9908 0.9904 3 19 191 
Embrace 4 0.65401 0.7540 0.7439 50 121 125 
ObjectPut 1 0.98891 0.9806 0.9803 21 44 600 

PeopleMeet 3 0.87042 0.9181 0.9115 44 49 405 
PeopleSplitUp 1 0.84842 0.7781 0.7771 64 367 123 

PersonRuns 4 0.58501 0.7508 0.7244 36 266 71 
Pointing 2 0.95642 0.9659 0.9655 53 48 1010 

1the result attributes to CMU, 2the result attributes to BUPT-MCPRL 
Because of the time constraint (25 mins) for each event detection task in the 

interactive process, a user is not able to verify all of the automatic detections 
generated by the system. In order to investigate the effect of human interaction, we 
compare the results of different schemes on combining human verified samples and 
unprocessed ones in Fig. 7. Experiment 1 shows the result by using both human 
verified samples and the remaining ones. Experiment 2 is the case without human 
interaction. Experiment 3 corresponds to the performance based on human verified 
samples only. As shown in this figure, most results in Experiments 1 and 3 are 
improved compared to Experiment 2, especially for Embrace, PeopleMeet, and 
PersonRuns. This improvement clearly demonstrates the effectiveness of human 
interaction, i.e., (1) a number of false alarms are removed and (2) the boundary 
adjustment functions enforce the centers of some drifted detections fall into the 
ground truth range. Experiments 1 and 3 achieve comparable results in most events. 
The results of PersonRuns and Pointing in Experiment 3 slightly outperform the ones 
in Experiment 1 because most of the unprocessed samples are false alarms. The 
performance of PeopleSplitUp in Experiment 1 is much better than that in Experiment 
3. This is because the increase of correct detections in unprocessed samples outweighs 
the increase of false alarms. Our primary run is based on Experiment 1.  

 

 
 



Figure 7: Different schemes on combining verified samples and unprocessed ones. The results 
in Experiments 1-3 correspond to using both human verified samples and the remaining ones, 
automatic detections without human interaction, and human verified samples only. 

8.   Conclusion 

In this paper we have presented detailed implementation of our iSED system 
participated in TRECVID 2013. Our system starts from extracting low-level features 
of STIP-HOG/HOF, DT-Trajectory, and DT-MBH from each sliding window. Fisher 
Vector is then employed to aggregate the low-level features. We combine multiple 
features by both feature- and decision-level fusions. The CascadeSVMs algorithm is 
utilized to learn the detection models corresponding to the each specific event and 
camera view. We design two interactive environments with one focusing on high 
throughput and the other one including related result expansion. In the evaluations of 
7 event detection tasks, our system ranks 1st in 2 events and achieves top 3 
performances in 5 events. 

 

 
 

    Figure 8: Detection Error Tradeoff (DET) curves of each event. 
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