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Abstract

This paper presents the framework and results of the team *““Florida International University - University of
Miami (FIU-UM)” in TRECVID 2012 Semantic Indexing (SIN) task [3] [13]. Four runs of the SIN results were
submitted, and the summary of the four runs is as follows:

e F_A_FIU-UM-1-brn_1: Fusion of the results generated from three models, corresponding to the rest of the
three runs.

e F A FIU-UM-2 2: SMR+KF+CAN - Subspace Modeling and Ranking (SMR) using the Key Frame-based
low-level features (KF). The Concept Association Network (CAN) is applied to the ranking results to improve
some poor detected concepts according to their relationship to other concepts.

e F A_FIU-UM-3-brn_3: MCA+KF+SF+CAN - Multiple Correspondence Analysis (MCA) based ranking
using KF features and shot-based features(SF). CAN is applied to the ranking results of this round as well.

e F A_FIU-UM-4.4: LR+KF+CAN - Logistic Regression (LR) using KF features. CAN is applied to the
ranking results of this round as well.

In Runs 2, 3, and 4, each of them uses a different learning algorithm to train the model and predict testing
instances. KF features are used in all these runs, but SF features are used only in Run 3. Additional training labels
provided by NIST are also used in Run 3 (called “brn” in the name) as atrial. The Concept Association Network
(CAN) isapplied to all these runsto utilize the correlation between the concepts to improve the concepts with poor
performance by the concepts with good performance. Finally, the results of these three runs are fused together to
generate Run 1 asthe best run. From the submission results, Run 1 does perform the best among all the four runs.

1 Introduction
The semantic indexing (SIN) task [14] in TRECVID 2012 project [11] aims to identify the semantic concept

contained within a video shot, with the attempt to address the challenges like semantic gap, data imbalance,
scalability, etc. The automatic annotation of semantic concepts within video shots can be afundamental technology



for categorization, retrieval, and other video exploitation. Research directions of semantic concept retrieval include
developing robust learning methods that adapt to the increasing size and diversity of the videos, detecting low-level
and mid-level features that have a high discrimination capability and fusing the information from other sources
such as audio and text.

Compared to last year's SIN task, the same 346 high-level semantic concepts are kept and used this year.
However, the size of the training video collection this year is 1/3 more than that of last year's training video
collection. The participants are alowed to submit amaximum of 2, 000 possible shots for each of the 346 semantic
concepts, and the submission result is evaluated using a measure called mean extended inferred average precision
(mean xinfAP) [17].

This paper is organized as follows. Section 2 describes our proposed framework and the specific methods used
in each run. Section 3 shows the submission results in details. Section 4 concludes this paper and proposes some
future directions.

2 Semantic Indexing (SIN)
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Figure 1. The whole framework for semantic indexing

Our overall framework of TRECVID 2012 SIN task is shown in Figure 1. As can be seen from this figure,
both the shot level features (SF) and key frame level features (KF) are extracted and normalized. Runs 2 and 4 are
generated using KF alone from SMR and LR, respectively; while Run 3 is generated from MCA-based ranking
using both KF and SF. Results from the 3 models are fused to get Run 1 based on the evaluation using xinfAP.
Specifically, we select the ranking results for each concept based on the Top-2000 xinfAP values for that specific
concept from Runs 2 to 4. The xinfAP values are calculated from the models trained on TRECVID 2011 training
data and evaluated on TRECVID 2011 testing data.

2.1 Data Pre-processing and Feature Extraction

In both training and testing videos, one key frame per shot is provided to SIN task participants. The key
frame delivers certain information of the shot, but obviously not sufficient to present the whole content of the
shot. Considering the limited information in the key frame, supplemental frames are extracted as complementary



information from the shot for the training purposes. The number of supplementa frames extracted from each
training shot depends on the length of the shot. The maximum number of supplemental frames extracted from a
shot is four, while if the length of the video is smaller than one second, no supplemental frame is extracted. In the
testing phase, supplemental frames are not used.

Ten KF features are extracted from each extracted frame in the training and testing frames, including color
histogram in the HSV space, color moment in the Y CbCr space [15], canny edge histogram, sobel edge histogram,
texture co-occurrence, color and edge directivity descriptor (CEDD) [4], histogram of oriented gradients (HOG)
[6], haar wavelets [16], Gabor wavelets [7], and local binary patterns (LBP) [10]. Histogram equalization is
employed to adjust the contrast of frames before extracting the features.

Besides KF features, we also consider motion features based on optical flow analysis to improve the detection
performance of motion-related concepts, such as “Airplane Flying” and “Running”. Optical flow is characterized
by its global descriptive capability and is usually used for modeling the temporal dynamics of moving objects.
First, five keyframes are extracted around the original key frame at an interval of 0.2 second. Next, the 30-bin
Histogram of Oriented Optical Flow (HOOF) [5] features are calculated for each consecutive pair of keyframes.
Finally, a30 x 4 dimensional motion feature vector is constructed for each shot.

2.2 Subspace Modeling and Ranking

In Run 2, subspace modeling and ranking (SMR) proposed in [12] is utilized to train and rank the testing data.
For each concept, the training data set isfirst split into a positive subset and a negative subset. The positive subset
is made up of positive instances; whereas the negative subset consists of negative instances. Two subspace models
are built from the two subsets separately. First, the z-scores normalization (as shown in Equations (1) and (2)) is
applied to the positive subset and the negative subset, respectively.
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where P°¢ and oP°¢ values are the sample mean value and standard deviation of the positive training instances
and ;"% and o™ values are the sample mean value and standard deviation of the negative training instances.
Then, Singular Value Decomposition (SVD) is used to derive the Principal Components (PCs) and eigenval ues of
the normalized positive instances (denoted by PosX) and those of the normalized negative instances (denoted by
NegX) from their covariance matrix CovPosX (see Equation 3) and CovNegX (see Equation 4), respectively.

CovPosX = PosXT . PosX; 3
Mpos
1
CovNegX = NegXT . NegX, (@]
Mneg

where my,,, and m,., are the numbers of positive instances and negative instances, and PosX! and Neg X' are
the transpose of PosX and NegX, respectively. Equation (5) shows how SVD is applied to CovPosX with the
eigenvaues XJ”° > N0 > ...

CovP0osX = UposEiposVpos- (5)

Here, U,,s={ PCY**, PCY**, ...} and the diagonal value of X, is {\[”°, \}%, ... }. Upeq and X,,¢4 can be derived
in the same manner. Those PCs attached to zero eigenvalues are discarded since they contain no extra information.



A subspace spanned by U, is built for the positive training instances and likewise a subspace spanned by U,
is built for the negative training instances. The two subspaces as well as those related eigenvalues are used in the
testing phase for each testing instance.

In the testing phase, each testing instance X; goes through the normalization step using the pairs (1#°°, oP°%)
and (u"*¢9, 0™<9) (see Equation (1) and Equation (2)) to get PosX; and NegX;. Then, PosX; is projected to the
subspace spanned by U, and NegX; is projected to the one spanned by U,.,, as shown in Equation (6) and
Equation (7).

Y = PosX;- PCY; s € [1,#0f PCsin Upos) ©
V" = NegX;-PCy%t € [1,#0of PCsin U] )

The distance measures shown in Equation (8) and Equation (9) are used to calculate the distances of the pro-
jected data from Equation (6) and Equation (7) to the positive and negative models.
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The idea behind these distance measures is that an instance fits to a model if the distance calculated from the
model is small. Based on thisidea, aranking strategy is proposed in Equation (10).

DisX] — DisXP*
DisX] + DisXP*"
Thisranking strategy implies that an instance closer to the positive learning model than to the negative learning

model must have alarger possibility to belong to the positive class. Therefore, for atesting instance, the higher it
holdsa SCORE value, the closer it is towards the positive model. Therefore, it should get a higher rank.

SCORE; =

(10)

2.3 MCA-based Ranking

In Run 3, both KF features and SF features are early fused together to train the ranker since the MCA-based
ranking algorithm we devel oped processes one feature at atime. Therefore, increasing the dimension of the feature
space only increases the complexity of the learning agorithm linearly. [8] introduced the main MCA technique;
whereas the MCA-based ranking algorithm is extended from it. After generating the angles between each feature
and the class, Equation (12) is adopted to calculate the weight between an interval j of afeature I and the positive
class C', where a’. is the angle between interval j of feature F* and the positive class C! in the projected space.
Here, a{p indicates the correlation between the interval and the positive class, and asmaller angle indicates alarger
correlation. The squared cosine value of the angle is usually used to measure the quality of the correlation, which
serves as the weight of afeature interval to the positive class in our framework. The ranking score of an instance
SCORE; can be calculated by summing all the weights of its feature intervals. If |F'| is the total number of
features, and m is the total number of instances, SCORE; is calculated by Equation (12), where weightg isthe
weight of the interval into which instance X; of feature F' falls.

F=|F| ‘
SCORE; = Y  weighty; (11)
F=1

where weight% = (cos(aiﬂ))? (12)



2.4 Logistic Regression Model

Run 4 is executed using the logistic regression model. The general idea of this model is to maximize the loga-
rithm likelihood of thetraining datainstances. Specifically, assume that thefeatures of instance X (1 < F' < |F,
where | F'| is the total number of features) form a vector &%) and the weight vector is@ = [6, 01,65, ..., 0|F‘+1]T.
Thelikelihood that instance X; is positive is given by Equation (13). In the training data, if the positive instance is
assigned the label 1 and the negative instance is assigned the label 0, a cost function could be defined in Equation
(14). The weight vector € could be learned by minimizing the cost function using the gradient descent algorithm.
The updating rule is given by Equation (15).
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Here, § isthe learning rate, m is the total number of training data instances, §, is the ' element of the vector 6
and y9 is either 1 or 0 indicating the data instance is positive or negative. For a testing instance, the likelihood
that the instance is positive is computed using Equation (13) by plugging in the feature values and the trained
parameter 6.

2.5 Concept Association Network

Since the concepts do not occur independently inthe TRECVID 2012 data sets and they have some correlations,
the concept association network [9] is utilized in this project to model the correlations among different concepts.
The proposed framework is shown in Figure 2(a) (training phase) and Figure 2(b) (testing phase). The training
phase consists of the Concept Based Classifiers Training Component and the Concept Association Network Train-
ing Component. The former is the architecture of the concept detection framework proposed in our work. For
example, in atraining data set, there are m instances and n high-level (n = 346) concepts to detect. The train-
ing instances are preprocessed and a set of features are extracted. Afterwards, n binary content-based classifiers
such as the subspace-based models or the MCA-based classifiers are trained for n concepts, so that each model
k (1 < k < n) outputs m scores for the k" concept, represented by Cj, in the figure. The Concept Association
Network Training Component receives the scores from the Concept Based Classifiers Training Component and
discovers the frequent itemsets in the label matrix to build a Concept Association Network (CAN). The detailed
steps of building the CAN are introduced as follows.

First, dl the labels of the training instances are organized into a label matrix. Specifically, the labels of all the
m instances for the n high-level concepts are organized into alabel matrix L = {{x},i=1,2,..,mand k=1, 2,
.y 1, Where l;, = C,i orl, = C,g indicates the i*" instance is labeled as positive or negative for the &" concept.
Table 1 shows an example of alabel matrix.

Next, the association links among different concepts are generated by mining the significant rules from the
label matrix. The Apriori algorithm [1] is applied to the label matrix to discover the association rules. The specific
algorithm to generate al the 2-item rules works as follows. First, all 1-itemsets are generated for L. Only the
1-itemsets {C,i} consisting of positive concept-class pairs are retained. Second, al the candidate 2-itemsets are
generated by combining the 1-itemsets with a minimum support of one. Afterwards, the candidate 2-itemsets



Table 1. Label matrix
Instance Ci | Co| o | Cr | .| Cn
Instancel | C? [ Co | .. CL | ..|C°
Instance2 | CY | Cs | .. | CY | ... | CL
Instancei | CT+ | CY | .. | CY | ... | C}
Instancem | C? | C3 | .. | CL | .. | C°

which contain the concept of interest are organized together. Based on these 2-itemsets, a set of candidate
rules which draw the conclusion that the concept of interest is positive are generated. In order to select the most
significant rules, two rule pruning modules are incorporated into the framework.

Currently, only binary co-occurrences relationships between concepts are considered. Therefore, only the 2-
item rules are generated. In order to retain the most significant rules, the support ratio and the interest ratio are used
to select rules. Formally, let C; represent the target concept which is the concept of interest and C. represent the
reference concept which is the concept used to help the detection of the target concept; and let sup(X) represent
the support value of the itemset X. The support ratio (R;) and interest ratio (R;) are defined in Equation (16)
and Equation (17), respectively. Intuitively, these criteria represent rule selection from the target concept point of
view and the reference concept point of view. The theoretical justification of these rulesisin [9]. In addition, the
thresholds for these two ratios are determined using the cross validation process.

_supl({C}, 1Y)
sup({Cf})

o sup({C}, Gy }) (17)
sup({C1}) x sup({C}})’

From the network point of view, if all the relationships among concepts are modeled in anetwork G={V, A, W'},
where V' is a set of nodes with each node representing a concept, A represents a set of links, and each link has a
weight in set /7 to model the relationship between two nodes. The selected significant rules could be viewed as
the significant links from the reference concepts to the target concept. These links are defined as the association
links and form the core of the concept association network.

Because the output scores of different models could fal into different ranges, the raw scores are preprocessed
to feed into the concept association network. In addition, the information of the credibility of the score is not
included in the raw score. Therefore, the raw scores are converted to the probability-based scores using the Bayes
Rule. Assuming for an instance 4, the detection score of Cj, is O(k, ). The output score O'(k, i) for Cj which
encompasses the information of the credibility of the model is given in Equation (18).

(16)

p(O(k,4)|C = 1) x p(Cr = 1)
Sr_0p(0(4,9)|Cr = 2) x p(C = 2)’

where p(C), = 1) isthe prior probability of Cj, appeared in adatainstance and is estimated by dividing sup({Cl})
by the total number of training instances. p(C; = 0) isone minus p(Cy, = 1) because there are only two possible
cases. p(O(k,1)|Cy, = 1) isthe conditional probability density function (pdf) fr(z) = p(x|C) = 1) evaluated at
x = O(k,i), and p(O(k,i)|Cy, = 0) isthe conditional pdf fy(z) = p(z|Cy = 0) evaluated at © = O(k,i). To
estimate fp(z) and fn(x), the Parzen-Window approach [2] is employed here.

The last step is to integrate the posterior probability scores from the reference concepts and the target concept
properly to generate the final score. This process is the fusion process which is very important for the overall
performance of the framework. In this study, the logistic regression model is utilized to fuse the outputs together.

O/ (ki) = (19)
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Table 2. The MAP values at first n shots for all four runs
n 10 100 1000 2000

F.AAFIU-UM-1.1 457% 30.6% 17.2% 14.2%
FA_FIU-UM-2.2 454% 289% 16.4% 13.8%
FA_FIU-UM-3.3 37.8% 254% 152% 12.9%
FAAFIU-UM-44 359% 275% 17.3% 14.8%

The details could be found in [9] and the weights for the links are learned using the cross validation procedure.
After this step, the concept association network with all the learned weights is built using the training instances.

In the testing phase, the same set of features asin the training phase isfirst extracted. For each testing instance,
it receives one score from each content-based classifier. By leveraging the concept association network, for a
target concept, a new score which integrates the information from reference concepts is generated as the fina
output score.

3 Experimental Results

The whole framework of TRECVID 2012 SIN task contains three stages:
1. Model training: use TRECVID 2011 training videos as training data.

2. Model evaluation: use TRECVID 2011 testing videos as testing data to evaluate the framework and tune the
parameters of the models.

3. Model testing: use TRECVID 2011 training + TRECVID 2011 testing videos as TRECVID 2012 training
data, and TRECVID 2012 testing videos as testing data to generate the ranking results for submission.

Figure 3 to Figure 6 show the performance of our semantic indexing results. More clearly, Table 2 shows the
mean average precision (MAP) values of thefirst 10, 100, 1000 and 2000 shots. The inferred true shots and mean
xinfAP are shown in Table 3.
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Table 3. Inferred true shots and mean xinfAP

Inferred true shots  Mean xinfAP
F_A_FIU-UM-11 13049 0.084
FA_FIU-UM-222 12721 0.079
F_A_FIU-UM-3.3 11897 0.068
F_A_FIU-UM-44 13597 0.076

Evauation results show that similar results from all four runs, but Run 1 which fuses the results from the rest

of three runs performs slightly better than the rest under different criteria. Based on the whole process of the task,
we have the following insights:

e The model performance is proportiona to the number of features, but it increases slower and slower after a
certain number of features.

e Increasing the number of positive instances such as extracting more frames from positive shots can notice-
ably improve the model performance since for many concepts, the positive to negative ratio is very low,
which is also referred as the data imbalance issue.

4 Conclusion and Future Work

In this notebook paper, the framework and results of team FIU-UM in TRECVID 2012 SIN task is summarized.

From the results, we can see there are still alot of improvements to be done. Some important directions need to
be investigated:

e The current features in our framework are global features, so the object-level and mid-level features need to
be explored.

e From the experiment, we have seen that by adding more positive training instances, the model performance

has noticeably improved. Thus, other methods will be introduced to solve the dataimbalance issue in order
to improve the model performance.

o Although three different learning al gorithms are adopted in our framework, further improvements need to be

made to the current learning algorithms or other algorithms such as support vector machine (SVM) should
be investigated.
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