N

MICROCHIP

MPLAB® XC16 ASSEMBL ER,
LINKER AND UTILITIES
Usar’s Guide

Note the following details of the code protection feature on Microchip devices:

. Microchip products meet the specification contained in their particular Microchip Data Sheet.

. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

. Microchip is willing to work with the customer who is concerned about the integrity of their code.

. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicity or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company'’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMSs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

= 1SO/TS 16949 =

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT
logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR,
Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK
MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST
logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32
logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC,
SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are
registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, Anyln, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,
ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-
Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi,
MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,
PICDEM, PICDEM.net, PICkit, PICtalil, PureSilicon, QMatrix,
RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial
Quad I/0, SMART-L.S., SQI, SuperSwitcher, SuperSwitcher I,
Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany |l GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies.

© 2013-2018, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-2828-2

DS50002106D-page 2

© 2013-2018 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES
MICROCHIP USER’S GUIDE

Table of ContentsDS50002106D

P O A e e 7
Part 1 — MPLAB XC16 Assembler

Chapter 1. Assembler Overview

I Vo) o o [o 1o TSRS 15
1.2 FRALUIE SBL ...ttt e e e e e e aeneeeae 15
1.3 ASSEMDBIEr USAQE ..cooeeiiiiieeeeeeeeeeeeeeee e 15
1.4 Input/OUtPUL FlES oo, 16
Chapter 2. Assembler Command Line Options
b0 N 11 o To [1 T 1o o P USSR 19
2.2 CoMMANA-LINE SYNTAX ...vvviiiiiiiiiiiiiiiiiiiiiiie ettt ettt e e 19
2.3 Options that Modify the Listing OQULPULcoovviviiiiiiiieeeeeeee e 20
2.4 Options that Control Informational OUEPULeeveiiieiiiiiiiiiiiiiiiiieieieeeeeeeeee. 31
2.5 Options that Control Output File Creationcccccvvevveviieiiiiiiieieeeeeeeeee e, 32
2.6 OthEI OPLIONS ..ttt 33
Chapter 3. MPLAB XC16 Assembly Language
G 700 R 011 (o To [T 1T o PR 35
3.2 INtErN@l PrePrOCESSON ..vvvuiiiiiieeie ettt s e e e e e et s e e e e e e e et e e e e eeeeeaenen s 35
3.3 Source Code FOrmMAaLoouuuiiiiiiiicii e 36
I O g =T = Tox (=] = PP PPTPPPPP 39
G T8 ST 0] 4151 = 1 | £ 40
3.6 SYMDOIS <. 42
3.7 EXPIESSIONS ...uiiiiiiiiiieie ettt ettt e e e e e e e e e e e 46
IR I O] o1=T =1 o] £ PSPPSR 46
3.9 SPECIAI OPEIALOIS ...oeieeiiiiiiie ittt eas 48
Chapter 4. Assembler Directives
0 R 1 0T [Tt o] o PP PPTPPPPP 55
4.2 Directives that Define SECHONSo.cuiiiiiii i 56
4.3 Directives that Fill Program MemOIYccccooviieiieiiiiiiiiieeeeeeeeiies e e e e e eeeeienns 64
4.4 Directives that Initialize ConsStantscccvvvviiiiiiii e, 66
4.5 Directives that Declare SYmboIScoiiiiiiiiiie e 70
4.6 Directives that Define SymbolSoooviiiiiiii 71
4.7 Directives that Modify Section Alignmentccccooeviiiiiiiiiciien e, 72
4.8 Directives that Format the Output LiStiNgcccvvveveeiiiiiiiiiiiieee e 78
4.9 Directives that Control Conditional ASSembIyccccovviiiiiiiiiiiiiiiir e, 79

© 2013-2018 Microchip Technology Inc. DS50002106D-page 3

16-Bit Assembler, Linker and Utilities User’s Guide

4.10 Directives for Substitution/EXPanSIONc.eeeveiieeiiiiiiiiiieie e e 81
4.11 Miscellaneous DIFeCHIVESccuviiiiiiiiiiiii 84
4.12 Directives for Debug Informationcccccevii 86
Chapter 5. Assembler Listing File
5.1 INIFOAUCTION v 89
I CT=T =T - 1[0 o P URPPPUPRRRN 89
5.3 CONLENLS ..ot e e e et e e e e e e e et e e e e e eeene 90
Chapter 6. Assembler Errors/Warnings/Messages
0 1 o To [Tt 1o o SRS 93
6.2 Fatal EITOIS .ioiiiiiiiiiiii 93
G T = 1 0] = 94
L VY= Vg 1 T 102
8.5 MESSAGES ...ciiiiiiiiiiie e 108

Part 2 — MPLAB XC16 Object Linker

Chapter 7. Linker Overview

7.1 INIrOAUCTION oeviiiiiiiiiiiiei e 111
7.2 FRATUINE SBI ...t e e e 111
AR T L1 =T U7 Vo [111
7.4 INPUYOULPUL FIlES ..o 112
Chapter 8. Linker Command Line Options
S 70 R 11 (oo [0 Ti i o] o PP PP RUPPRRPPP 115
8.2 HIGNIIGNTS ... 115
8.3 SYNLAX 1iiiiiiiiiiiiii it e aaaeas 115
8.4 Options that Control Output File Creationcccccviiiviriieieeniiiiiiieeeeeenn 117
8.5 Options that Control Run-time Initializationccccccoeeiiiiiieiie e, 125
8.6 Options that Control Informational OUIPULccovviiiiiiiiiiieiniiiiieeeeeen 127
8.7 Options that Modify the Link Map OUIPULcccovviiiiiiiii e 130
8.8 Options that Specify CodeGuard™ Security Featuresccceeeeeeeen. 131
8.9 Options that Control the PreproCeSSOroooecvveviiiiiiiiie e e e, 133
Chapter 9. Linker Scripts
S 0 I i To [T o) o SRR 135
LS B2 o o | 11T | L 135
9.3 Overview Of LINKEr SCHPLScoviiiiiiieeeiiiiiieeee e 135
9.4 Command Line Informationccccoo i 136
9.5 Contents oOf @ LINKEr SCHPLcvvviiiiiiiieeeceeeicis et 136
9.6 Creating a Custom LINKEr SCHPTevviiiiiiiiiiiiiieee et 149
9.7 Linker Script Command LanQUageceevvuiiiiieeieieeiiiiiiin e e e 149
9.8 EXPressions in LINKEr SCHPLSuuiiiiiiiiiiiiiiiiiie e 166
Chapter 10. Linker Processing
(00 [g1 o o 18 ox (o o PR 173
10.2 HIGIGNTS et e e 173
10.3 Overview of LINKer PrOCESSINGuvuiiiiie i et e e e e 173

DS50002106D-page 4 © 2013-2018 Microchip Technology Inc.

Table of Contents

10.4 MeMOIY AQUIESSING ..evveriiiieeiiiaiiie et e et e e e e e eaeeeeas 176
10.5 Linker AlIOCAtIONccooiiiiieieiiiee e 178
10.6 Global and Weak SYmDOISooviiiiiiiiiiiie e 184
10.7 HANAIES ..ot 185
10.8 Initialized Datacoceeveiiiieieiee e 186
ORI S T=T= (o Kt o] o Y L | - 189
10.10 Stack AlIOCALIONccoeeviiieeieee e 191
Ot I == T B 0T L1 o 192
10.12 Interrupt VEcCtor TabIESc.eviiiiiiiiiic e 192
10.13 Optimizing MemOrY USAJEoiiiieeiiieeieiiiii ettt e e 194
10.14 B0OOt and SECUIe SEQIMENTSoviiiiiiiiiiiriiiiieeee et ee e e s e e 198
10.15 Co-resident Application LINKINGcovvuiiiiiiieeiiiceies e 202
10.16 Notable SYMDOISoeiiiiiiiii e 204
Chapter 11. Linker Examples
112 INEFOAUCTION ooviiiiiiiii i 205
121.2 HIgRIGRNTS ..o e e 205
11.3 Memory Addresses and Relocatable Codeccccccvieiiiiiiiiiivien e, 206
11.4 Locating a Variable at a Specific ADAressccccvvveeeeeiiiiiiiiiieeeeeee 207
11.5 Locating a Function at a Specific Addresscccccvvviiiiiiieeiieeeicee e, 207
11.6 Using More than 32K of CONSIANTSc..vviiiiieiiiiiiii e 208
11.7 Locating a Constant at a Specific Address in Program Memory 210
11.8 Locating and Accessing Data in EEPROM Memoryccccvvveeeeennnnnne 211
11.9 Creating an Incrementing Modulo Buffer in X Memoryccccccceeeeeeeenee. 212
11.10 Creating a Decrementing Modulo Buffer in Y Memorycccccceevineee 213
11.11 Locating the Stack at a Specific ADAressccccvvvviiiiiieieeeeeece e, 213
11.12 Locating and Reserving Program MemoOryccccevveeeeriiiiiniieeeeeeninenne 214
Chapter 12. Linker Map File
12,1 INTFOAUCTION .ooviiiiiiiiiiiie e 215
D2 €= T g =T = (T o 215
12.3 CONEENES ..ot e ettt e e e e e e e e 215
Chapter 13. Linker Errors/Warnings
13,1 INTFOAUCTION oo 223
RS 07 o 1o | 1o | 223
RS R =l (0] = ST TRURP 223
RS TV - T 1 T 229

Part 3 — 16-Bit Utilities (including the Archiver/Librarian)

Chapter 14. MPLAB XC16 Object Archiver/Librarian

141 INEFOAUCTION .oeviiiiiiiii i, 233
14.2 HIGNIGRNTS .o e e 233
14.3 Archiver/Librarian and Other Development TOOISccccooevveiviiiiiiicninennn. 234
I T Y I Y= 234
14.5 INPUYOULPUL FIES evveii e e 234

© 2013-2018 Microchip Technology Inc. DS50002106D-page 5

16-Bit Assembler, Linker and Utilities User’s Guide

I G} 1] £= RPN 234
A O o] 1] 1 P 234
S o] 237
Chapter 15. Other Utilities
15.2 INrOAUCTION ...t e e 239
15.2 HIGNHIGRNTS ocoeeiii et 239
15.3 XC16-DIN2heX ULIIYoovviiiiiiiieiiieecee e 240
15.4 XCLO-NM ULIILY ..oeeeieiiiie e 242
15.5 XC16-0bjdump ULIILYoeveii e e 245
15.6 XCL6-1anliD ULIITYoooeiiiiiiiiiiiece e 249
15.7 XCL6-StHNQGS ULIILY .vevvvviiiii e e e e 250
15.8 XCLO-SHP ULIILY ...ovveiieieeiiiiie e 252

Part 4 — Appendices

Appendix A. Deprecated Features

AL INIFOAUCTION .o e e s 257
A2 HIGNIGNTS . 257
A.3 Assembler Directives that Define Sectionsccooooviiiiiiiiiiiiiiieeeeeee, 257
A.4 Reserved Section Names with Implied Attributesccccceveeeiiiiiiiienenen. 258
A.5 Environmental Variablesccooooiiiiiiiiii e 258
Appendix B. Useful Tables
S0 I (a1 oo 18 T 1] o [T 259
= 2 T | 17T | PR 259
B.3 ASCII CharacCter Stuuiiiiiiii ettt e e e e 259
B.4 Hexadecimal to Decimal CONVEISIONcoccoiviiiiiiiiiieieceiee e 260

Appendix C. GNU Free Documentation License

Appendix D. Document Revision History

10 = PP PPPPPPRRR 267
Worldwide SaleS and SEIVICEcouiiiiiiiiiiiii et 277

DS50002106D-page 6 © 2013-2018 Microchip Technology Inc.

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE

Preface

NOTICE TO CUSTOMERS

document.

All documentation becomes dated, and this manual is no exception. Microchip tools and
documentation are constantly evolving to meet customer needs, so some actual dialogs
and/or tool descriptions may differ from those in this document. Please refer to our web site
(www.microchip.com) to obtain the latest documentation available.

Documents are identified with a “DS” number. This number is located on the bottom of each
page, in front of the page number. The numbering convention for the DS number is
“DSXXXXXA”, where “XXXXX" is the document number and “A” is the revision level of the

For the most up-to-date information on development tools, see the MPLAB® X IDE online help,
available from the Help menu.

INTRODUCTION

This chapter contains general information that will be useful to know before using 16-bit
language tools. Items discussed include:

Document Layout

Conventions Used in this Guide
Recommended Reading

The Microchip Web Site

myMicrochip Personalized Notification Service
Customer Support

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 16-bit
applications. The document layout is as follows:

Part 1 — MPLAB XC16 Assembler

Chapter 1. “Assembler Overview” — gives an overview of assembler operation.

Chapter 2. “Assembler Command Line Options” — details command line options
for the assembler.

Chapter 3. “MPLAB XC16 Assembly Language” — describes syntax used with the
assembler.

Chapter 4. “Assembler Directives” — details the available assembler directives.
Chapter 5. “Assembler Listing File” — describes what symbols are and how to use
them.

Chapter 6. “Assembler Errors/Warnings/Messages” — contains a descriptive list of
the errors, warnings and messages generated by the 16-bit assembler.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 7

16-Bit Assembler, Linker and Utilities User’s Guide

Part 2 — MPLAB XC16 Object Linker

» Chapter 7. “Linker Overview” — gives an overview of linker operation.

e Chapter 8. “Linker Command Line Options” — details command line options for the
linker.

» Chapter 9. “Linker Scripts” — describes how to generate and use linker scripts to
control linker operation.

» Chapter 10. “Linker Processing” — discusses how the linker builds an application
from input files.

e Chapter 11. “Linker Examples” — discusses a humber of 16-bit specific linker
examples and shows the equivalent syntax in C and assembly language.

e Chapter 13. “Linker Errors/Warnings” — contains a descriptive list of the errors and
warnings generated by the 16-bit linker.

Part 3 — 16-Bit Utilities (including the Archiver/Librarian)

» Chapter 14. “MPLAB XC16 Object Archiver/Librarian” — details command line
options for the librarian.

« Chapter 15. “Other Utilities” — gives an overview of all the other utilities and their
operation. Current utilities are:

- xcl6-bin2hex: Converts a linked object file into an Intel® hex file.
- xcl16-nm Utility: Lists symbols from an object file.
- xcl6-objdump Utility: Displays information about object files.

- xcl6-ranlib Utility: Generates an index from the contents of an archive and
stores it in the archive.

- xcl6-strings Utility: Prints the printable character sequences.
- xcl6-strip Utility: Discards all symbols from an object file.

Part 4 — Appendices

« Appendix A. “Deprecated Features” — describes features that are considered
obsolete.

» Appendix B. “Useful Tables” — lists some useful tables: the ASCII character set
and hexadecimal to decimal conversion.

« Appendix C. “GNU Free Documentation License” — details the license require-
ments for using the GNU language tools.

DS50002106D-page 8 © 2013-2018 Microchip Technology Inc.

Preface

CONVENTIONS USED IN THIS GUIDE

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description

Represents

Examples

Arial font:

Italic characters

Referenced books

MPLAB® X IDE User’s Guide

Emphasized text

...Is the only compiler...

Initial caps A window the Output window
A dialog the Settings dialog
A menu selection select Enable Programmer
Quotes A field name in a window or | “Save project before build”
dialog
Underlined, italic text with A menu path File>Save
right angle bracket
Bold characters A dialog button Click OK

Atab

Click the Power tab

Text in angle brackets < >

A key on the keyboard

Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START
Filenames autoexec.bat
File paths c:\mccl8\h
Keywords _asm, _endasm, static
Command-line options -Opa+, -Opa-
Bit values 0, 1
Constants OxFF, 'A’
Italic Courier A variable argument file.o,wherefilecanbe

any valid filename

Square brackets []

Optional arguments

mpasmwin [options]
file [options]

Curly brackets and pipe
character: {|}

Choice of mutually exclusive
arguments; an OR selection

errorlevel {01}

Ellipses...

Replaces repeated text

var name [,
var name...]

Represents code supplied by
user

void main (void)

{
}

Sidebar Text

Device Dependent.

This feature is not supported
on all devices.

Devices supported will be
listed in the title or text.

xmemory attribute

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 9

16-Bit Assembler, Linker and Utilities User’s Guide

RECOMMENDED READING

This documentation describes how to use 16-bit language tools. Other useful
documents are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.

Readme Files

For the latest information on Microchip tools, read the associated Readme files (HTML
files) included with the software.

16-Bit Language Tools Getting Started (DS70094)

A guide to installing and working with the Microchip language tools for 16-bit devices.
Examples using the 16-bit simulator SIM30 (a component of MPLAB SIM) are
provided.

MPLAB® XC16 C Compiler User’s Guide (DS50002071)

A guide to using the 16-bit C compiler. The 16-bit linker is used with this tool.

16-Bit Language Tools Libraries Reference Manual (DS50001456)

A descriptive listing of libraries available for Microchip 16-bit devices. This includes
standard (including math) libraries and compiler built-in functions. DSP and 16-bit
peripheral libraries are described in Release Notes provided with each peripheral
library type.

Device-Specific Documentation

The Microchip website contains many documents that describe 16-bit device functions
and features. Among these are:

« Individual and family data sheets

« Family reference manuals

* Programmer’s reference manuals

DS50002106D-page 10

© 2013-2018 Microchip Technology Inc.

Preface

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web
site is used as a means to make files and information easily available to customers.
Accessible by using your favorite Internet browser, the web site contains the following
information:

« Product Support — Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

* General Technical Support — Frequently Asked Questions (FAQSs), technical
support requests, online discussion groups, Microchip consultant program
member listing

» Business of Microchip — Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

myMICROCHIP PERSONALIZED NOTIFICATION SERVICE

Microchip's personal notification service helps keep customers current on their
Microchip products of interest. Subscribers will receive e-mail notification whenever
there are changes, updates, revisions or errata related to a specified product family or
development tool.

Please visit http://www.microchip.com/pcn to begin the registration process and select
your preferences to receive personalized notifications. A FAQ and registration details
are available on the page, which can be opened by selecting the link above.

When you are selecting your preferences, choosing “Development Systems” will
populate the list with available development tools. The main categories of tools are
listed below:

e Compilers — The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB® C compilers; all MPLAB
assemblers (including MPASM™ assembler); all MPLAB linkers (including
MPLINK™ obiject linker); and all MPLAB librarians (including MPLIB™ object
librarian).

e Emulators — The latest information on Microchip in-circuit emulators.These
include the MPLAB REAL ICE™ and MPLAB ICE 2000 in-circuit emulators

« In-Circuit Debuggers — The latest information on Microchip in-circuit debuggers.
These include the MPLAB ICD 2 and 3 in-circuit debuggers and PICkit™ 2 and 3
debug express.

« MPLAB® IDE - The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

* Programmers — The latest information on Microchip programmers. These include
the device (production) programmers MPLAB REAL ICE in-circuit emulator,
MPLAB ICD 3 in-circuit debugger, MPLAB PM3, and PRO MATE® Il and
development (nonproduction) programmers MPLAB ICD 2 in-circuit debugger,
PICSTART® Plus and PICkit 1, 2 and 3.

» Starter/Demo Boards — These include MPLAB Starter Kit boards, PICDEM™
demo boards, and various other evaluation boards.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 11

http://www.microchip.com
http://www.microchip.com/pcn

16-Bit Assembler, Linker and Utilities User’s Guide

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

« Distributor or Representative

* Local Sales Office

* Field Application Engineer (FAE)

» Technical Support

Customers should contact their distributor, representative or field application engineer

(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com.

Send notification of documentation errors or comments to Microchip via e-mail to
docerrors@microchip.com.

DS50002106D-page 12 © 2013-2018 Microchip Technology Inc.

http://support.microchip.com

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE
Part 1— MPLAB XC16 Assembler

Chapter 1. ASSembler OVEIVIEWcccooiiiiiiiee st e e e e e e ea e 15
Chapter 2. Assembler Command Line OptioNS........cccoeeieiiiiiiiiieiieres e 19
Chapter 3. MPLAB XC16 Assembly LanQuage..........ccoeeeeeiiiiiiiieiiiieeen e 35
Chapter 4. Assembler DIFr€CHIVESc.cooiiiiiieeece et 55
Chapter 5. Assembler Listing Fileccoooorireeeiiece e 89
Chapter 6. Assembler Errors/Warnings/MeSSageScccvvvveerrvreuriniiiiiiiieeeeaeeeaeeeenen 93

© 2013-2018 Microchip Technology Inc. DS50002106D-page 13

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 14 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE

Chapter 1. Assembler Overview

1.1 INTRODUCTION

MPLAB XC16 Assembler produces relocatable machine code from symbolic assembly
language for the dsPIC® DSC and PIC24 MCU families of devices. The assembler is
an application that provides a platform for developing assembly language code. The
assembler is a port of the GNU assembler from the Free Software Foundation.

Topics covered in this chapter are:
» Feature Set

e Assembler Usage
* Input/Output Files

1.2 FEATURE SET

Notable features of the assembler include:

« Support for the entire 16-bit instruction set

« Support for fixed-point and floating-point data

« Support for ELF and COFF object formats

« Available for Windows®, Linux® and Mac OS®

e Command Line Interface

 Rich Directive Set

» Flexible Macro Language

« Available for MPLAB® X IDE and MPLAB IDE v8

1.3 ASSEMBLER USAGE

The MPLAB XC16 Assembler translates user assembly source files into relocatable
object files. These object files can then be put into an archive (MPLAB XC16 Object
Archiver/Librarian) or linked with other relocatable object files and archives to create an
executable file (MPLAB XC16 Object Linker). See the “MPLAB XC16 C Compiler
User’s Guide” (DS50002071) for an overview of the tools process flow.

Typically the command-line driver, xc16-gcc, is used to invoke the assembler as it can
be passed assembler source files as input; however, the options for the assembler are
supplied here for instances where the assembler is being called directly, or when
options need to be set in the assembler tab of the Build Options dialog (MPLAB IDE
v8) or assembler category of the Project Properties window (MPLAB X IDE).

The assembler command line may contain options and file names. For details on
command line option syntax, see Section 2.2 “Command-Line Syntax”.

Note that the assembler will not produce any messages unless there are errors or
warnings — there are no “assembly completed” messages. For more on messages, see
Chapter 6. “Assembler Errors/Warnings/Messages.”.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 15

16-Bit Assembler, Linker and Utilities User’s Guide

1.4 INPUT/OUTPUT FILES

Standard assembler input and output files are listed below.

Extension ‘ Description
Input
.s ‘ Source File
Output
.0 Object File
.1lst Listing File

Unlike the MPASM™ assembler (for use with 8-bit PIC® MCUs), MPLAB XC16 Assem-
bler does not generate error files, hex files, or symbol and debug files. The assembler
is capable of creating a listing file and a relocatable object file (that may or may not con-
tain debugging information). MPLAB XC16 Object Linker is used with the assembler to
produce the final object files, map files and final executable file for debugging with
MPLAB X IDE or MPLAB IDE v8 (see Figure 1.2).

141 Source File

The assembler accepts, as input, a source file that consists of 16-bit device instruc-
tions, assembler directives and comments. A sample source file is shown in
Example 1-1.

Note: Microchip Technology strongly suggests an . s extension for assembly
source files. This will enable you to easily use the C compiler driver without
having to specify the option to tell the driver that the file should be treated
as an assembly file. See the “MPLAB® XC16 C Compiler User’s Guide”
(DS50002071) for more details on the C compiler driver.

DS50002106D-page 16 © 2013-2018 Microchip Technology Inc.

Assembler Overview

EXAMPLE 1-1: SAMPLE ASSEMBLER CODE

.title " Sample dsPIC Assembler Source Code"
.sbttl " For illustration only."

; dsPIC registers
.equ CORCONL, CORCON
.equ PSV, 2

.section .const,psv

hello:
.ascii "Hello world!\n\O0"
.text
.global _ reset
___reset:
; set PSVPAG to page that contains 'hello'
mov #psvpage (hello) , w0
mov w0, PSVPAG

; enable Program Space Visibility
bset.b CORCONL, #PSV

; make a pointer to 'hello'
mov #psvoffset (hello), w0

.end

For more information, see Section 2.2 “Command-Line Syntax” and Chapter
4. “Assembler Directives.”

1.4.2 Object File

The assembler creates a relocatable object file. These object files do not yet have
addresses resolved and must be linked before they can be used for executables.

By default, the name of the object file created is a . out. Specify the -o option (see
Chapter 2. “Assembler Command Line Options.”) on the command line to override the
default name.

By default, object files are created in the ELF format. To specify ELF or COFF format
explicitly, use the —omf option on the command line, as shown:

xcl6-as -omf=elf test.s
xcl6-as -omf=coff test2.s

Alternatively, the environment variable XC16 OMF may be used to specify object file
format for the 16-bit language tools.

143 Listing File

The assembler has the capability to produce listing files. For details on how to generate
a listing file and the components of that file, see Chapter 5. “Assembler Listing File.”

© 2013-2018 Microchip Technology Inc. DS50002106D-page 17

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 18 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE

Chapter 2. Assembler Command Line Options

2.1 INTRODUCTION

MPLAB XC16 Assembler may be used on the command line interface as well as with
MPLAB X IDE or MPLAB IDE v8. The following options may be used with any of these
interfaces.

Topics covered in this chapter are:

¢ Command-Line Syntax

« Options that Modify the Listing Output

» Options that Control Informational Output
« Options that Control Output File Creation
« Other Options

2.2 COMMAND-LINE SYNTAX

The assembler command line may contain options and file names. Options may appear
in any order and may be before, after or between file names. The order of file names
determines the order of assembly.

xcl6-as [options|sourcefiles]...
‘—-’ (two hyphens) by itself names the standard input file explicitly as one of the files
for the assembler to translate. Except for ‘~-’, any command line argument that begins

with a hyphen (*-’) is an option. Each option changes the behavior of the assembler,
but no option changes the way another option works.

Some options require exactly one file name to follow them. The file name may either
immediately follow the option’s letter or it may be the next command line argument. For
example, to specify an output file named test. o, either of the following options would
be acceptable:

®* -0 test.o

® -otest.o

Note: Command line options are case sensitive. I

© 2013-2018 Microchip Technology Inc. DS50002106D-page 19

16-Bit Assembler, Linker and Utilities User’s Guide

2.3 OPTIONS THAT MODIFY THE LISTING OUTPUT

The following options are used to control the listing output. For debugging and general
analysis of code operation, a listing file is helpful. Constructing one with useful
information is accomplished using the options in this section.

* —a[suboption] [=file]

¢ ——listing-lhs-width #

e ——listing-lhs-width2 #

e ——listing-rhs-width #

e ——listing-cont-lines #

23.1 -a[suboption] [=file]

The -a option enables listing output. The -a option supports the following suboptions
to further control what is included in the assembily listing:

-ac Omit false conditionals
-ad Omit debugging directives
-ah Include high-level source
-ai Include section information
-al Include assembly

-am Include macro expansions
-an Omit forms processing
-as Include symbols

-a=file Output listing to specified file (must be in current directory).

If no suboptions are specified, the default suboptions used are hls; the -a option by
itself requests high-level, assembly, and symbolic listing. You can use other letters to
select specific options for the listing output.

The letters after the —a may be combined into one option. So, for example, instead of
specifying —al -an on the command line, you could specify —aln. Most of the exam-
ples in the following sections combine the section’s suboption with -al, because -al
is required for an assembly listing.

DS50002106D-page 20

© 2013-2018 Microchip Technology Inc.

Assembler Command Line Options

23.11 -ac

-ac omits false conditionals from a listing. Any lines that are not assembled because
ofafalse .if or .ifdef (orthe .elseofatrue .if or .ifdef) will be omitted from
the listing. Example 2-1 shows a listing where the —ac option was not used.

Example 2-2 shows a listing for the same source where the —ac option was used.

EXAMPLE 2-1: LISTING FILE GENERATED WITH -al COMMAND LINE

OPTION

MPLAB ASM30 Listing: example2.l.s page 1
1 .data
2 .if 0
3 Af 1
4 .endif
5 .long O
6 .if 0
7 .long O
8 .endif
9 .else
10 Af 1
11 .endif
12 0000 02 00 00 OO .long 2
13 .if 0
14 .long 3
15 .else
16 0004 04 00 00 OO .long 4
17 .endif
18 .endif
19
20 .if 0
21 .long 5
22 .elseif 1
23 .if 0
24 .long 6
25 .elseif 1
26 0008 07 00 00 0O .long 7
27 .endif
28 .elseif 1
29 .long 8
30 .else
31 .long 9
32 .endif

© 2013-2018 Microchip Technology Inc. DS50002106D-page 21

16-Bit Assembler, Linker and Utilities User’s Guide

EXAMPLE 2-2:

MPLAB ASM30 Listing:

1

2

9

10

11

12 0000 02 00 00 00
13

15

16 0004 04 00 00 00
17

18

19
20
22
23
25
26 0008 07 00 00 0O
27
28
30
32

LISTING FILE GENERATED WITH -alc COMMAND LINE
OPTION

example2.2.s page 1

.data
.if O
.else

Jif 1
.endif
.long 2
.if 0
.else
.long 4
.endif

.endif

.if 0
.elseif 1

.if 0

.elseif 1
.long 7

.endif

.elseif 1
.else
.endif

24, 29 and 31.

Note: Some lines have been omitted, due to the -ac option; i.e., lines 3-8, 14, 21,

DS50002106D-page 22

© 2013-2018 Microchip Technology Inc.

Assembler Command Line Options

23.1.2 -ad

-ad omits debugging directives from the listing. This is useful if a compiler that

was given a debugging option generated the assembly source code. The compiler-
generated debugging directives will not clutter the listing. Example 2-3 shows a listing
using both the d and h suboptions. Compared to using the h sub-option alone (see the
next section), the listing is much cleaner.

EXAMPLE 2-3:

MPLAB ASM30 Listing:

1
2
3
9
10
l:example?2.
2:example?2.
3:example?2.
4:example?2.
S5:example?2.
16
17 000000 00
18
6:example2?.3.
20 000002 51
21 000004 40
22 000006 00
22 00
7:example2.3.
29
30 00000a 00
31 00000c 00
32
37
38

w w w w w

LISTING FILE GENERATED WITH -alhd COMMAND LINE
OPTION

example2.3.s page 1

.file "example2.3.c"

.text
.align 2
.global main ; export
_main:
c **** extern int ADD (int, int);
c * Kk k k
c **** int
c **** main(void)
C * Kk kK {
.set _PA 1
00 FA 1nk #0
C KRXFE return ADD(4, 5);
00 20 mov #5,wl
00 20 mov #4,w0
00 02 call _ADD
00 00
c * Kk Kk Kk }
80 FA ulnk
00 06 return
.set __pA ,0
.end

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 23

16-Bit Assembler, Linker and Utilities User’s Guide

23.1.3 -ah

—-ah requests a high-level language listing. High-level listings require that the assembly
source code is generated by a compiler, a debugging option like -g is given to the com-
piler, and assembly listings (-al) are requested. -al requests an output program
assembly listing. Example 2-4 shows a listing that was generated using the -alh
command line option.

EXAMPLE 2-4: LISTING FILE GENERATED WITH -alh COMMAND LINE
OPTION

MPLAB ASM30 Listing: example2.4.s

page 1

1 .file "example2.4.c"

2 .text

3 .align 2

4 .def _main

5 .val _main

6 .scl 2

7 .type 044

8 .endef

9 .global main ; export

10 _main:

11 .def .bf

12 .val .

13 .scl 101
l:example2.4.c **** extern int ADD (int, int);
2:example2.4.c ***x*
3:example2.4.c **** int
4:example2.4.c **** main(void)

S:example2.4.c ***x*x {

14 .line 5

15 .endef

16 .set _pA 1

17 000000 00 00 FA 1nk #0

18
6:example2.4.c ***xx* return ADD(4, 5);

19 .1n 6

20 000002 51 00 20 mov #5,wl

21 000004 40 00 20 mov #4,w0

22 000006 00 00 02 call _ADD

22 00 00 00
7T:example2.4.c ***x*x }

23 .1n 7

24 .def .ef

25 .val .

26 .scl 101

27 .line 7

28 .endef

29

30 00000a 00 80 FA ulnk

31 00000c 00 00 06 return

32 .set __pA ,0

33 .def _main

34 .val .

35 .scl -1

36 .endef

37

38 .end

DS50002106D-page 24

© 2013-2018 Microchip Technology Inc.

Assembler Command Line Options

2.3.14 -ai

-ai displays information on each of the code and data sections. This information con-
tains details on the size of each of the sections and then a total usage of program and
data memory. Example 2-5 shows a listing where the -ai option was used.

EXAMPLE 2-5: LISTING FILE GENERATED WITH -ai COMMAND LINE
OPTION

SECTION INFORMATION:

Section Length (PC units) Length (bytes) (dec)
text O oae ox (33
TOTAL PROGRAM MEMORY USED (bytes): 0x21 (33)
Section Length (bytes) (dec)
data o 0
bss 0 0

TOTAL DATA MEMORY USED (bytes): 0 (0)
2315 -al

—-al requests an assembly listing. This sub-option may be used with other suboptions.
See the other examples in this section.

2.3.1.6 —am

—-am expands macros in a listing. Example 2-6 shows a listing where the —am option
was not used. Example 2-7 shows a listing for the same source where the -am option
was used.

EXAMPLE 2-6: LISTING FILE GENERATED WITH -al COMMAND LINE

OPTION
MPLAB ASM30 Listing: example2.5.s page 1

1 .text
2 .macro div_s regl, reg2
3 repeat #18-1
4 div.sw \regl, \reg?2
5 .endm
6
7 .macro div_u regl, reg2
8 repeat #18-1
9 div.uw \regl,\reg?2
10 .endm

11

12 000000 40 01 20 mov #20, wO

13 000002 52 00 20 mov #5, w2

14 000004 11 00 09 div_u w0, w2

14 02 80 D8

15

16 000008 00 02 BE mov.d w0, w4

17

18 00000a 40 01 20 mov #20, wO

19 00000c B3 FF 2F mov #-5, w3

20 00000e 11 00 09 div_s w0, w3

20 03 00 D8

© 2013-2018 Microchip Technology Inc. DS50002106D-page 25

16-Bit Assembler, Linker and Utilities User’s Guide

EXAMPLE 2-7:

LISTING FILE GENERATED WITH -alm COMMAND LINE
OPTION

MPLAB ASM30 Listing:

example2.6.s

page 1

1 .text
2 .macro div_s regl, reg2
3 repeat #18-1
4 div.sw \regl, \reg?2
5 .endm
6
7 .macro div_u regl, reg2
8 repeat #18-1
9 div.uw \regl, \reg?2
10 .endm
11
12 000000 40 01 20 mov #20, w0
13 000002 52 00 20 mov #5, w2
14 div_u w0, w2
14 000004 11 00 09 > repeat #18-1
14 000006 02 80 D8 > div.uw w0, w2
15
16 000008 00 02 BE mov.d w0, w4
17
18 00000a 40 01 20 mov #20, w0
19 00000c B3 FF 2F mov #-5, w3
20 div_s w0, w3
20 00000e 11 00 09 > repeat #18-1
20 000010 03 00 D8 > div.sw w0, w3
Note: > signifies expanded macro instructions. I

DS50002106D-page 26

© 2013-2018 Microchip Technology Inc.

Assembler Command Line Options

2.3.1.7

—an

-an turns off all forms processing that would be performed by the listing directives
.psize, .eject, .title and .sbttl. Example 2-8 shows a listing where the -an
option was not used. Example 2-9 shows a listing for the same source where the -an
option was used.
EXAMPLE 2-8: LISTING FILE GENERATED WITH -al COMMAND LINE
OPTION

MPLAB ASM30 Listing:
User's Guide Example
Listing Options

example2.7.s page 1

1 .text
2 .title "User's Guide Example"
3 .sbttl " Listing Options"
4 .psize 10
5
6 000000 50 00 20 mov #5, w0
7 000002 61 00 20 mov #6, wl
MPLAB ASM30 Listing: example2.7.s page 2
User's Guide Example
Listing Options
8 000004 01 01 40 add w0, wl, w2
9 .eject
MPLAB ASM30 Listing: example2.7.s page 3
User's Guide Example
Listing Options
10
11 000006 24 00 20 mov #2, wé
12 000008 03 00 09 repeat #3
13 00000a 04 22 BS mul.uu w4, wd, wéd
14
15 00000c 16 00 20 mov #1, w6
16 00000e 64 33 DD sl w6, #4, wé6
MPLAB ASM30 Listing: example2.7.s page 4
User's Guide Example
Listing Options
17
18 000010 06 20 E1 cp w4, wé
19 000012 00 00 32 bra z, done
20
21 000014 00 00 0O nop
22
23 done:
MPLAB ASM30 Listing: example2.7.s page 5

User's Guide Example
Listing Options
24

25 .end

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 27

16-Bit Assembler, Linker and Utilities User’s Guide

EXAMPLE 2-9: LISTING FILE GENERATED WITH -aln COMMAND LINE

OPTION
1 .text
2 .title "User's Guide Example"
3 .sbttl " Listing Options"
4 .psize 10
5
6 000000 50 00 20 mov #5, w0
7 000002 61 00 20 mov #6, wl
8 000004 01 01 40 add w0, wl, w2
9 .eject
10
11 000006 24 00 20 mov #2, wé
12 000008 03 00 09 repeat #3
13 00000a 04 22 B8 mul.uu wd, wéd, wiéd
14
15 00000c 16 00 20 mov #1, w6
16 00000e 64 33 DD sl w6, #4, w6
17
18 000010 06 20 EL cp w4, w6
19 000012 00 00 32 bra z, done
20
21 000014 00 00 0O nop
22
23 done:
24
25 .end
2.3.1.8 -as

—-as requests a symbol table listing. Example 2-10 shows a listing that was generated
using the —as command line option. Note that both defined and undefined symbols are
listed.

EXAMPLE 2-10: LISTING FILE GENERATED WITH -as COMMAND LINE
OPTION

MPLAB ASM30 Listing: sample2b.s

DEFINED SYMBOLS
ABS:00000000 fake
sample2b.s:4 .text:00000000 reset
sample?2b.s:13 .text:0000001c L2
.text:00000000 .text
.data:00000000 .data
.bss:00000000 .bss

UNDEFINED SYMBOLS
i

_J

23.19 -a=file

=file defines the name of the output file. This file must be in the current directory.

DS50002106D-page 28 © 2013-2018 Microchip Technology Inc.

Assembler Command Line Options

2.3.2 --listing-lhs-width #

The --1listing-lhs-width optionis used to set the width of the output data column
of the listing file. By default, this is set to 3 for program memory and 4 for data memory.
The following line is extracted from a listing. The output data column is in bold text.

6 000000 50 00 20 mov #5, wO

If the option --1isting-lhs-width 2 is used, then the same line will appear as
follows in the listing:

6 000000 50 00 mov #5, w0
6 20
2.3.3 --listing-lhs-width2 #

The --1listing-lhs-width2 option is used to set the width of the continuation lines
of the output data column of the listing file. By default, this is set to 3 for program mem-
ory and 4 for data memory. If the specified width is smaller than the first line, this option
is ignored. The following lines are extracted from a listing. The output data column is in
bold.

2 0000 50 6C 65 61 .ascii "Please pay inside."
2 73 65 20 70

2 61 79 20 69

2 6E 73 69 64

2 65 2E

If the option --1isting-1hs-width2 7 is used, then the same line will appear as
follows in the listing:

2 0000 50 6C 65 61 .ascii "Please pay inside."

2 73 65 20 70 61 79 20
2 69 6E 73 69 64 65 2E
2.3.4 --listing-rhs-width #

The --1listing-rhs-width option is used to set the maximum width in characters
of the lines from the source file. By default, this is set to 100. The following lines are
extracted from a listing that was created without using the --1isting-rhs-width
option. The text in bold are the lines from the source file.

2 0000 54 68 69 73 .ascii "This line is long."

2 20 6C 69 6E
2 65 20 69 73
2 20 6C 6F 6E
2 67 65 72 20

If the option --1isting-rhs-width 20 is used, then the same line will appear as
follows in the listing:

2 0000 54 68 69 73 .ascii "This line i

2 20 6C 69 6E
2 65 20 69 73
2 20 6C 6F 6E
2 67 65 72 20

The line is truncated (not wrapped) in the listing, but the data is still there.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 29

16-Bit Assembler, Linker and Utilities User’s Guide

2.35 --listing-cont-lines #

The --1isting-cont-1lines option is used to set the maximum number of continu-
ation lines used for the output data column of the listing. By default, this is 8. The fol-
lowing lines are extracted from a listing that was created without using the
--listing-cont-1lines option. The textin bold shows the continuation lines used
for the output data column of the listing.

2 0000 54 68 69 73 .ascii "This is a long character sequence."
2 20 69 73 20

61 20 6C 6F

6E 67 20 63

68 61 72 61

63 74 65 72

20 73 65 71

75 65 6E 63

65 2E

Notice that the number of bytes displayed matches the number of bytes in the ASCII
string; however, if the option --1isting-cont-1lines 2 is used, then the output
data will be truncated after 2 continuation lines as shown below.

NN DNDDNN

2 0000 54 68 69 73 .ascii "This is a long character sequence."
2 20 69 73 20
2 61 20 6C 6F

DS50002106D-page 30

© 2013-2018 Microchip Technology Inc.

Assembler Command Line Options

2.4 OPTIONS THAT CONTROL INFORMATIONAL OUTPUT

The options in this section control how information is output. Errors, warnings and mes-
sages concerning code translation and execution are controlled through several of the
options in this section.

Any item in parenthesis shows the short method of specifying the option, e.g.,
--no-warn also may be specified as -Ww.

24.1 --fatal-warnings

Warnings are treated as if they were errors.

2.4.2 --no-warn (-W)

Warnings are suppressed. If you use this option, no warnings are issued. This option
only affects the warning messages. It does not change how your file is assembled.
Errors are still reported.

2.4.3 --warn

Warnings are issued, if appropriate. This is the default behavior.

24.4 -J

No warnings are issued about signed overflow.

245 -—-help

The assembler will show a message regarding the command line usage and options.
The assembler then exits.

2.4.6 -—-target-help

The assembler will show a message regarding the 16-bit device specific command line
options. The assembler then exits.

2.4.7 —--version

The assembler version number is displayed. The assembler then exits.

2.4.8 —--verbose (-v)

The assembler version number is displayed. The assembler does not exit. If this is the
only command line option used, then the assembler will print out the version and wait
for entry of the assembly source through standard input. Use <CTRL>-D to send an
EOF character to end assembly.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 31

16-Bit Assembler, Linker and Utilities User’s Guide

2.5 OPTIONS THAT CONTROL OUTPUT FILE CREATION

The options in this section control how the output file is created. For example, to
change the name of the output object file, use -o.

Any item in parenthesis shows the short method of specifying the option, e.g.,
--keep-locals may be specified as -1 also.

251 -g

Generate symbolic debugging information.

Note: For COFF, the option —g does not work with any section other than . text.

2.5.2 -—-keep-locals (-L)

Keep local symbols, i.e., labels beginning with . . (upper case only). Normally you do
not see such labels when debugging, because they are intended for the use of pro-
grams (like compilers) that compose assembler programs. Normally both the assem-
bler and linker discard such symbols. This option tells the assembler to retain those
symbols in the object files.

2.5.3 -o objfile

Name the object file output obj fi | e. In the absence of errors, there is always one
object file output when you run the assembler. By default, it has the name a . out. Use
this option (which takes exactly one filename) to give the object file a different name.
Whatever the object file is called, the assembler overwrites any existing file with the
same name.

254 -omf = format

Use this option to specify the object file format. Valid format names are ELF and COFF.
Object file format names are not case sensitive.

255 -R

This option tells the assembler to write the object file as if all data-section data is
located in the text section. The data section part of your object file is zero bytes long
because all its bytes are located in the text section.

2.5.6 --relax

Turn relaxation on. Convert absolute calls and gotos to relative calls and branches
when possible.

2.5.7 --no-relax

Turn relaxation off. This is the default behavior.

2.5.8 -Z

Generate object file even after errors. After an error message, the assembler normally
produces no output. If for some reason, you are interested in object file output even
after the assembler gives an error message, use the -z option. If there are any errors,
the assembler continues anyway, and writes an object file after a final warning
message of the form “n errors, m warnings, generating bad object file”.

DS50002106D-page 32

© 2013-2018 Microchip Technology Inc.

Assembler Command Line Options

2.5.9 -MD file

Write dependency informationtof i | e. The assembler can generate a dependency file.
This file consists of a single rule suitable for describing the dependencies of the main
source file. The rule is written to the file named in its argument. This feature can be
used in the automatic updating of makefiles.

26 OTHER OPTIONS

The options in this section perform functions not defined in previous sections.

2.6.1 --defsym symeval ue

Define symbol symto given val ue.

2.6.2 -I dir

Use this option to add di r to the list of directories that the assembler searches for files
specified in . include directives. You may use -I as many times as necessary to
include a variety of paths. The current working directory is always searched first; after
that, the assembler searches any -1 directories in the same order as they were
specified (left to right) on the command line.

2.6.3 -p, —-processor=PROC

Specify the target processor, e.g.:
xclo-as -p30F2010 file.s

The assembler defines macros based on the target processor setting, which can be
tested by conditional directives in source code. For example, include file
p30£2010. inc contains the following:

.ifndef 30F2010

.error "Include file does not match processor setting"
.endif

In addition to the target processor, a macro to identify the device family is also defined.
For example:
.ifdef _ dsPIC30F

.print "dsPIC30F family selected"
.endif
Macros for the device families (see Section 3.6.6 “Predefined Symbols”) are defined
based on target processor setting.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 33

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 34 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE
Chapter 3. MPLAB XC16 Assembly Language

3.1 INTRODUCTION

The source language accepted by the macro assembler is described here. All opcode
mnemonics and operand syntax are specific to the target device. The same assembler
application is used for compiler-generated intermediate assembly and hand-written
assembly source code.

Topics covered in this chapter are:

« Internal Preprocessor
» Source Code Format
e Characters

» Constants

e Symbols

« Expressions

e Operators

» Special Operators

3.2 INTERNAL PREPROCESSOR

The assembler has an internal preprocessor. The internal processor:

1. Adjusts and removes extra white space. It leaves one space or tab before the
keywords on a line, and turns any other white space on the line into a single
space.

2. Removes all comments, replacing them with a single space, or an appropriate
number of new lines.

3. Converts character constants into the appropriate numeric value.

If you have a single character (e.g., ‘b’) in your source code, this will be changed
to the appropriate numeric value. If you have a syntax error that occurs at the sin-
gle character, the assembler will not display ‘©’, but instead display the first digit
of the decimal equivalent.

For example, if you had . global mybuf, ‘©’in your source code, the error mes-

sage would say “Error: Rest of line ignored. First ignored character is ‘9".” Notice
the error message says ‘9'. This is because the ‘b’ was converted to its decimal
equivalent 98. The assembler is actually parsing .global mybuf, 98.

The internal processor does not do:

1. macro preprocessing
2. include file handling
3. anything else you may get from your C compiler’s preprocessor

You can do include file preprocessing with the . include directive. See Chapter
4. “Assembler Directives.”

You can use the C compiler driver to get other C-style preprocessing by giving the input
file a . s suffix. See the “MPLAB® XC16 C Compiler User’s Guide” (DS50002071) for
more information.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 35

16-Bit Assembler, Linker and Utilities User’s Guide

If the first line of an input file is #NO_APP or if you use the - £ option, white space and
comments are not removed from the input file. Within an input file, you can ask for white
space and comment removal in certain portions by putting a line that says #ApPP before
the text that may contain white space or comments, and putting a line that says
#NO_APP after this text. This feature is mainly intended to support assembly
statements in compilers whose output is otherwise free of comments and white space.

Note: Excess white space, comments and character constants cannot be used
in the portions of the input text that are not preprocessed.

3.3 SOURCE CODE FORMAT

Assembly source code consists of statements and white spaces.

White space is one or more spaces or tabs. White space is used to separate pieces of
a source line. White space should be used to make your code easier for people to read.
Unless within character constants, any white space means the same as exactly one
space.

Each statement has the following general format and is followed by a new line.

[label:] [mnemonic [operands]] [; comment]
OR

[label:] [directive [arguments]] [; comment]

 Label

¢ Mnemonic
 Directive
» Operands
e Arguments
« Comments

3.3.1 Label

A label is one or more characters chosen from the set composed of all letters, digits,
the underline character (_), and the period (.). Labels may not begin with a decimal
digit, except for the special case of a local symbol. (See Section 3.6.2 “Local Symbols.”
for more information.) Case is significant. There is no length limit; all characters are
significant.

Label definitions must be immediately followed by a colon. A space, a tab, an end of
line, or assembler mnemonic or directive may follow the colon.

Label definitions may appear on a line by themselves and will reference the next
address.

The value of a label after linking is the absolute address of a location in memory.

3.3.2 Mnemonic

Mnemonics tell the assembler which machine instructions to assemble. For example,
addition (ADD), branches (BRA) or moves (MOV). Unlike labels that you create yourself,
mnemonics are provided by the assembly language. Mnemonics are not case
sensitive.

See the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for more
details.

DS50002106D-page 36

© 2013-2018 Microchip Technology Inc.

MPLAB XC16 Assembly Language

3.3.3 Directive

Assembler directives are commands that appear in the source code but are not trans-
lated directly into machine code. Directives are used to control the assembler, its input,
output and data allocation. The first character of a directive is a dot (.). More details
are provided in Chapter 4. “Assembler Directives.” on the available directives.

3.34 Operands

Each machine instruction takes 0 to 8 operands. See the “16-bit MCU and DSC Pro-
grammer’s Reference Manual’ (DS70157). Operands provide data and addressing
information to the instruction. Operands must be separated from mnemonics by one or
more spaces or tabs.

Commas should separate multiple operands. If commas do not separate operands, a
warning will be displayed and the assembler will take its best guess on the separation
of the operands. Operands consist of literals, file registers condition codes, destination
select, and accumulator select.

3.3.4.1 LITERALS

Literal values are distinguished with a preceding pound sign (‘#). Literal values can be
hexadecimal, octal, binary or decimal format. Hexadecimal numbers are distinguished
by a leading 0x. Octal numbers are distinguished by a leading 0. Binary numbers are
distinguished by a leading B. Decimal numbers require no special leading or trailing
character.

Examples:

#0xe, #016, #0b1110 and #14 all represents the literal value 14.
#-5 represents the literal value -5.

#symbol represents the value of symbol.

3.3.4.2 FILE REGISTERS
File registers represent on-chip general purpose and SFRs. File registers are
distinguished from literal values because they do not have the preceding pound sign.

Each of the following examples tells the processor to move data located in the file
register whose address is 14 to the working register wo0:

mov OxE, wO
mov 016, wO
mov 14, w0
.equ symbol, 14
mov symbol, w0

3.3.43 REGISTERS

The following register names are built into the assembler:
w0, wl,w2,w3,wd, w5, wb6, w7, w8, w9, wlO,wll,wl2,wl3,wld, wl5, WO, W1, W2, W3,
W4, W5, W6, W7, W8, WO, W10, W11, W12, W13, W14, W15.

3.3.4.4 CONDITION CODES

Condition codes are used with BRA instructions. See the “16-bit MCU and DSC
Programmer’s Reference Manual” (DS70157) for more details.

bra C, label

© 2013-2018 Microchip Technology Inc. DS50002106D-page 37

16-Bit Assembler, Linker and Utilities User’s Guide

3.3.45 DESTINATION SELECT

The PIC18CXXX-compatible instructions accept WREG as an optional argument to
specify whether the result should be placed into WREG (WO) or into the file register. See
the “16-bit MCU and DSC Programmer’s Reference Manual” (DS70157) for more
details.

add sym, WREG

3.3.4.6 ACCUMULATOR SELECT

The DSP instructions take an accumulator select operand (A or B) to specify which
accumulator to use.

ADD A

3.35 Arguments

Each directive takes 0 to 3 arguments. These arguments give additional information to
the directive on how it should carry out the command. Arguments must be separated
from directives by one or more spaces or tabs. Commas must separate multiple argu-
ments. More details are provided in Chapter 4. “Assembler Directives.” on the available
directives.

3.3.6 Comments

Comments can be represented in the assembler as single-line or multiple-line
comments.

3.3.6.1 SINGLE-LINE COMMENT

This type of comment extends from the comment character to the end of the line. For
a single line comment, use a semicolon (*;’).

Example:

mov w0, wl;The rest of this line is a comment.

3.3.6.2 MULTIPLE-LINE COMMENT

This type of comment can span multiple lines. For a multiple-line comment, use
* ... *I. Multiple-line comments cannot be nested.
Example:

/* All

of these
lines

are
comments */

DS50002106D-page 38

© 2013-2018 Microchip Technology Inc.

MPLAB XC16 Assembly Language

3.4 CHARACTERS

The character set used is standard 7 bit ASCII. Alphabetic case is significant for iden-
tifiers, but not mnemonics and reserved words. Tabs are treated as equivalent to

spaces.

3.4.1

Delimiters

All numbers and identifiers must be delimited by white space, non-alphanumeric
characters or the end of a line.

3.4.2

Special Characters

There are a few characters that are special in certain contexts. Within a macro body,

the character & is used for token concatenation. To use the bitwise & operator within a
macro body, escape it by using && instead. In a macro argument list, the angle brackets
< and > are used to quote macro arguments.

Other special characters are described below.

TABLE 3-1: SPECIAL CHARACTERS AND USAGE
Character Character Description Syntax Usage
period begins a directive
; semicolon begins a single-line comment
/* slash, asterisk begins a multiple-line comment
*/ asterisk, slash ends a multiple-line comment
: colon ends a label definition
pound begins a literal value
rc’ character in single quotes specifies a single character value
"string" |character string in double quotes |specifies a character string

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 39

16-Bit Assembler, Linker and Utilities User’s Guide

3.5 CONSTANTS

A constant is a value written so that its value is known by inspection, without knowing
any context. Examples are:

.byte 74, 0112, 0b01001010, Ox4A, Ox4a, "J’, ’"\J’;All the same value
.ascii "Ring the bell\7";A string constant
.float 0£-31415926535897932384626433832795028841971.693993751E-40

3.5.1 Numeric Constants

The assembler distinguishes three kinds of numbers according to how they are stored
in the machine. Integers are numbers that would fit into a 1ong in the C language.
Floating-point numbers are IEEE 754 floating-point numbers. Fixed-point numbers are
in Q-15 fixed-point format.

3.5.1.1 INTEGERS

A binary integer is ‘0b’ or ‘0B’ followed by zero or more of the binary digits ‘01".
An octal integer is ‘0’ followed by zero or more of the octal digits ‘'01234567".

A decimal integer starts with a non-zero digit followed by zero or more decimal digits
‘0123456789,

A hexadecimal integer is ‘0x’ or ‘0x’ followed by one or more hexadecimal digits
‘0123456789%9abcdefABCDEF’.

To denote a negative integer, use the prefix operator ‘-’

3.5.1.2 FLOATING-POINT NUMBERS

A floating-point number is represented in IEEE 754 format. A floating-point number is
written by writing (in order):

« an optional prefix, which consists of the digit ‘0’, followed by the letter ‘e’, ‘£’ or ‘&’
in upper or lower case. Because floating point constants are used only with
.float and .double directives, the precision of the binary representation is
independent of the prefix.

« an optional sign: either '+’ or ‘-
< an optional integer part: zero or more decimal digits.
 an optional fractional part: ‘.’ followed by zero or more decimal digits.
< an optional exponent, consisting of:
- an‘E'or‘e’.
- an optional sign: either ‘+' or ‘-’
- one or more decimal digits.

At least one of the integer part or fractional part must be present. The floating-point
number has the usual base-10 value.

Floating-point numbers are computed independently of any floating-point hardware in
the computer running the assembler.

DS50002106D-page 40 © 2013-2018 Microchip Technology Inc.

MPLAB XC16 Assembly Language

3.5.1.3 FIXED-POINT NUMBERS

A fixed-point number is represented in Q-15 format. This means that 15 bits are used
to represent the fractional portion of the number. The most significant bit is the sign bit,
followed by an implied binary point, and 15 bits of magnitude, for example:

bit no. 15 . 14 13 12 ... 1 0

value 20 1 22 8 o 14 15

The smallest number in this format is -1, represented by:
0x8000 (1.000 0000 0000 0000)

the largest number is nearly 1 (.99996948), represented by:
0x7FFF (0.111 1111 1111 1111)

A fixed-point number is written in the same format as a floating-point number, but its
value is constrained to be in the range [-1.0, 1.0).

3.5.2 Character Constants

There are two types of character constants. A character stands for one character in one
byte and its value may be used in numeric expressions. A string potentially can contain
many bytes, and its value may not be used in arithmetic expressions.

3.5.21 CHARACTERS

A single character may be written as a single quote immediately followed by that char-
acter, or as a single quote immediately followed by that character and another single
quote. As an example, either “a or ‘a’.

The assembler accepts escape characters to represent special control characters. As
an example, ‘\n’ represents a new-line character. All accepted escape characters are
listed in the table below.

TABLE 3-2: ESCAPE CHARACTERS

Escape Character Description Vﬂﬁj(e

\a Bell (alert) character 07
\b Backspace character 08
\f Form-feed character oC
\n New-line character 0A
\r Carriage return character oD
\t Horizontal tab character 09
\v Vertical tab character 0B
A\ Backslash 5C
\? Question mark character 3F
\" Double quote character 22
\digit digit digit |Octal character code. The numeric code is 3 octal digits.

\x hex-digits Hex character code. All trailing hex digits are combined.

Either upper or lower case x works.

The value of a character constant in a numeric expression is the machine’s byte-wide
code for that character. The assembler assumes your character code is ASCII.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 41

16-Bit Assembler, Linker and Utilities User’s Guide

3.6 SYMBOLS

A symbol is one or more characters chosen from the set composed of all letters, digits,
the underline character (_), and the period (.). Symbols may not begin with a digit. The
case of letters is significant (e.g., foo is a different symbol than Foo). There is no length
limit and all characters are significant.

Each symbol has exactly one name. Each name in an assembly language program
refers to exactly one symbol. You may use that symbol name any number of times in a
program.

* Reserved Names

e Local Symbols

« Giving Symbols Other Values

* The Special DOT Symbol

» Using Executable Symbols in a Data Context

* Predefined Symbols

3.6.1 Reserved Names

The following symbol names (case-insensitive) are reserved for the assembler.

Donotuse .equ, .equivor.set (See Chapter 4. “Assembler Directives.”) with these
symbols.

TABLE 3-3: SYMBOL NAMES — RESERVED

WO wi W2 W3 w4 W5 W6 W7
w8 W9 W10 Wil w12 W13 wi4 W15
WREG A B ov C Z N GE
LT GT LE NOV NC NZ NN GEU
LTU GTU LEU OA OB SA SB

3.6.2 Local Symbols

Local symbols are used when temporary scope for a label is needed. There are ten
local symbol names, which can be reused throughout the program. They may be
referred to by using the names ‘0’, ‘1’, ..., ‘9’. To define a local symbol, write a label of
the form ‘N:’ (where N represents any digit 0-9). To refer to the most recent previous
definition of that symbol, write ‘Nb’, using the same digit as when you defined the label.
To refer to the next definition of a local label, write ‘Nf’. The ‘b’ stands for “backwards”
and the ‘'f’ stands for “forwards”. There is no restriction on how to use these labels; how-
ever, at any point in assembly, no more than 10 backward local labels and10 forward
local labels may be referred to.

EXAMPLE 3-1:

print string:
mov w0, wl

1:
cp0.b [wl]
bra z,9f
mov.b [wl++],w0
call print char
bra 1b

return

DS50002106D-page 42

© 2013-2018 Microchip Technology Inc.

MPLAB XC16 Assembly Language

Local symbol names are only a notation device. They are immediately transformed into
more conventional symbol names before the assembler uses them. The symbol names
stored in the symbol table, appearing in error messages, and optionally emitted to the
object file have the following parts:

TABLE 3-4: SYMBOL PARTS

Parts Description
L All local labels begin with ‘L.
Digit If the label is written ‘0", then the digit is ‘0. If the label is written ‘1", then the
digit is ‘1’. And so on up through ‘9'.
CTRL-A This unusual character is included so you do not accidentally invent a sym-

bol of the same name. The character has ASCII value ‘\001’.

Ordinal number | This is a serial number to keep the labels distinct. The first ‘0:’ gets the num-
ber ‘1’; the 15th ‘0’ gets the number ‘15’; and so on. Likewise for the other
labels ‘1:" through ‘9:". For instance, the first ‘1:" is named L1C-A1, the 44th
‘3. is named L3C-A44.

EXAMPLE 3-2:

00000100 <print string>:
100: 80 00 78 mov.w w0, wl

00000102 <L1-1>:

102: 11 04 e0 cp0.b [wl]

104: 03 00 32 bra Z, . + 0x8
106: 31 40 78 mov.b [wl++], wO
108: 02 00 07 rcall . + 0x6

10a: fb ff 37 bra . + OxXFFFFFFF8

0000010c <L9-1>:
10c: 00 00 06 return

3.6.3 Giving Symbols Other Values

A symbol can be given an arbitrary value by writing a symbol, followed by an equals
sign ‘=', followed by an expression. This is equivalent to using the . set directive (see
Chapter 4. “Assembler Directives.”).

EXAMPLE 3-3:

PSvV = 4

3.6.4 The Special DOT Symbol

The special symbol ‘.’ refers to the current address that is being assembled into. Thus,
the expression:

melvin: .word . ; in a data section

defines melvin to contain its own data address. Assigning a value to . is treated the
same as a .org directive. Thus the expression:

L= 0 F2

is the same as saying:

.org .+2

The symbol ‘$’ is accepted as a synonym for ‘.".

When used in an executable section, ‘.’ refers to a PC address. On the 16-bit device,
the PC increments by 2 for each instruction word. Odd values are not permitted.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 43

16-Bit Assembler, Linker and Utilities User’s Guide

3.6.5 Using Executable Symbols in a Data Context

The 16-bit device modified-Harvard architecture includes separate address spaces for
data storage and program storage. Most instructions and assembler directives imply a
context which is compatible with symbols from one address space or the other. For
example, the CALL instruction implies an executable context, so the assembler reports
an error if a program tries to CALL a symbol located in a data section.

Likewise, instructions and directives that imply a data context cannot be used with sym-
bols located in an executable section. Assembling the following code sequence will
result in an error, as shown:

.text
msg: .asciz "Here is an important message"
mov #msg, w0

Assembler messages:
Error: Cannot reference executable symbol (msg) in a data context

In this example the mov instruction implies a data context. Because symbol msqg is
located in an executable section, an error is reported. Possibly the programmer was
trying to derive a pointer for use with the PSV window. The special operators described
in Section 3.9 “Special Operators.” can be used whenever an executable symbol must
be referenced in a data context:

.text
msg: .asciz "Here is an important message"
mov #psvoffset (msqg), w0

Here the psvoffset () operator derives a 16-bit value which is suitable for use in a
data context.

The next example shows how the special symbol “.” can be used with a data directive
in an executable section:

.text
fred: .long paddr(.)
Here the paddr () operator derives a 24-bit value which is suitable for use in a data

context. The . 1long directive pads the value to 32 bits and encodes it into the . text
section.

DS50002106D-page 44

© 2013-2018 Microchip Technology Inc.

MPLAB XC16 Assembly Language

3.6.6 Predefined Symbols

The assembler predefines several symbols which can be tested by conditional
directives in source code.

TABLE 3-5: PREDEFINED SYMBOLS

Symbol

Definition

Device Family Symbols

__C30COFF 16-bit compiler COFF output
__C30ELF 16-bit compiler ELF output
__dsPIC30F dsPIC30F target device family
__dsPIC33F dsPIC33F target device family
__dsPIC33E dsPIC33EP target device family
_ PIC24F PIC24F] target device family

_ PIC24FK PIC24FK target device family
__PIC24H PIC24H target device family

_ PIC24E PIC24EP target device family
__MCHP16 No target device family specified

Feature Symbols

___HAS DSP Device has a DSP engine
__HAS EEDATA Device has EEDATA memory
___HAS DMA Device has DMA memory
__HAS DMAV2 Device has DMA v2 support

__HAS_CODEGUARD

Device has Codeguard™ Security

__HAS_PMP

Device has Parallel Master Port (PMP)

__HAS_PMPV2

Device has PMP v2 support

___HAS_PMP_ENHANCED

Device has Enhanced PMP

__HAS_EDS

Device has EDS

__HAS_5VOLTS

Device is a 5-volt device

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 45

16-Bit Assembler, Linker and Utilities User’s Guide

3.7 EXPRESSIONS

An expression specifies an address or numeric value. White space may precede and/or
follow an expression. The result of an expression must be an absolute number or an
offset into a particular section. When an expression is not absolute and does not pro-
vide enough information for the assembler to know its section, the assembler
terminates and generates an error message.

3.7.1 Empty Expressions

An empty expression has no value: it is just white space or null. Wherever an absolute
expression is required, you may omit the expression, and the assembler assumes a
value of (absolute) 0.

3.7.2 Integer Expressions

An integer expression is one or more arguments delimited by operators. Arguments are
symbols, numbers or subexpressions. Subexpressions are a left parenthesis ‘(' fol-
lowed by an integer expression, followed by a right parenthesis *)’; or a prefix operator
followed by an argument.

Integer expressions involving symbols in program memory are evaluated in Program
Counter (PC) units. On the 16-bit device, the PC increments by 2 for each instruction
word.

EXAMPLE 3-4: BRANCH AFTER A LABEL

Branch to the next instruction after label 1. by specifying 1.+2 as the destination.
bra L+2

3.8 OPERATORS

Operators are arithmetic functions, like + or %. Prefix operators are followed by an
argument. Infix operators appear between their arguments. Operators may be
preceded and/or followed by white space.

Prefix operators have higher precedence than infix operators. Infix operators have an
order of precedence dependent on their type.

3.8.1 Prefix Operators

The assembler has the following prefix operators. Each takes one argument, which
must be absolute.

TABLE 3-6: PREFIX OPERATORS

Operator Description Example
- Negation. Two’s complement negation. -1
~ Bit-wise not. One’s complement. ~flags

DS50002106D-page 46 © 2013-2018 Microchip Technology Inc.

MPLAB XC16 Assembly Language

3.8.2 Infix Operators

Infix operators take two arguments, one on either side. Operators have a precedence,
by type, as shown in the table below; but, operations with equal precedence are per-
formed left to right. Apart from + or —, both operators must be absolute, and the result
is absolute.

TABLE 3-7: INFIX OPERATORS

Operator Description Example
Arithmetic
* Multiplication 5 * 4 (=20)
/ Division. Truncation is the same as the C operator /. 23 / 4 (=5)
% Remainder 30 % 4 (=2)
<< Shift Left. Same as the C operator ‘<<’ 2 << 1 (=4)
>> Shift Right. Same as the C operator >>’ 2 >> 1 (=1)
Bit-Wise
& Bit-wise And 4 & 6 (=4)
. Bit-wise Exclusive Or 4 ~ 6 (=2)

! Bit-wise Or Not 0x1010 ! 0x5050

(=0xBFBF)
| Bit-wise Inclusive Or 2 | 4 (=6)

Simple Arithmetic

+ Addition. If either argument is absolute, the resulthasthe |4 + 10 (=14)
section of the other argument. You may not add together
arguments from different sections.

- Subtraction. If the right argument is absolute, the result |14 - 4 (=10)
has the section of the left argument. If both arguments
are in the same section, the result is absolute. You may
not subtract arguments from different sections.

Relational

== Equal to LA (x == y)

1= Not equal to (also <>) Lif (x 1= y)

< Less than Lif (x < 5)

<= Less than or equal to Lif (v <= 0)

> Greater than Jif (x> a)

>= Greater than or equal to Lif (x >= b)

Logical

&& Logical AND i ((x > 1)
&& (x < 10))

I Logical OR Lif ((y = x)
Il (y < 100))

© 2013-2018 Microchip Technology Inc. DS50002106D-page 47

16-Bit Assembler, Linker and Utilities User’s Guide

3.9 SPECIAL OPERATORS

The assembler provides a set of special operators for each of the following actions:
» Accessing Data in Program Memory

¢ Obtaining a Program Address of a Symbol or Constant

« Obtaining a Handle to a Program Address

« Obtaining the DMA Offset of a Symbol — PIC24H/dsPIC33F Devices Only

« Obtaining the Size of a Specific Section

« Obtaining the Starting Address of a Specific Section

» Accessing Functions in Boot or Secure Segments

TABLE 3-8: SPECIAL OPERATORS

Operators* Description Support
tblpage (nane) Get page for table read/write operations All
tbloffset (nane) Get pointer for table read/write operations All
psvpage (name) Get page for PSV data window operations All
psvoffset (nane) Get pointer for PSV data window operations All
paddr (I abel) Get 24-bit address of | abel in program memory All
handle (I abel) Get 16-bit reference to | abel in program memory All
dmapage (name) Get page suitable for DMA controller 24E/33E
dmaoffset (nane) Get offset of a symbol within DMA memory 24H/33F
.sizeof. (name) Get size of section nane in address units All
.startof. (nane) Get starting address of section nane All
boot (num Get address of access slot num in the boot segment. | All
secure (num) Get address of access slot num in the secure seg- All

ment.
edspage (nane) Get page for EDS data window operations All
edsoffset (nane) Get pointer for EDS data window operations All

* You cannot use two special operators in an expression.

All = Support for all devices

24H = Support for PIC24H MCUs; 24E = Support for PI2Z4EP MCUs

33F = Support for dsPIC33F DSCs; 33E = Support for dsPIC33EP DSCs

DS50002106D-page 48 © 2013-2018 Microchip Technology Inc.

MPLAB XC16 Assembly Language

3.9.1 Accessing Data in Program Memory

The 16-bit device modified-Harvard architecture is comprised of two separate address
spaces: one for data storage and one for program storage. Data memory is 16 bits wide
and is accessed with a 16-bit address; program memory is 24 bits wide and is accessed
with a 24-bit address.

Normally, 16-bit instructions can read or write data values only from data memory, while
program memory is reserved for instruction storage. This arrangement allows for very
fast execution, since the two memory buses can work simultaneously and inde-
pendently of each other. In other words, a 16-bit instruction can read, modify and write
a location in data memory at the same time the next instruction is being fetched from
program memory.

Occasionally, circumstances may arise when the programmer or application designer
is willing to sacrifice some execution speed in return for the ability to read constant data
directly from program memory. For example, certain DSP algorithms require large
tables of coefficients that would otherwise consume the data memory needed to buffer
real-time data. To accommodate these needs, the 16-bit device modified-Harvard
architecture permits instructions to access data stored in program memory.

There are three methods available for accessing data in program memory:

* Table Read/Write Instructions
¢ PSV Data Window
+ EDS Data Window

In any case, the programmer must compensate for the different address width between
data memory and program memory. For example, a pointer is commonly used to
access constant data tables, yet pointers for table read/write instructions can specify
an address of only 16 bits. A pointer used to access the PSV data window can specify
only 15 bits — the most significant bit must be set for an address in the data window
range (0x8000 to OxFFFF).

As explained in the “16-bit MCU and DSC Programmer’s Reference Manual”
(DS70157), SFRs can be used to specify the full flash address. For a PSV address, use
PSVPAG (or DSRPAG for devices with EDS). For a table read/write address, use
TBLPAG. For an EDS address, use DSRPAG.

3.9.1.1 TABLE READ/WRITE INSTRUCTIONS

The tblpage () and tbloffset () operators provided by the assembler can be used
with table read/write instructions. These operators may be applied to any symbol
(usually representing a table of constant data) in program memory.

Suppose a table of constant data is declared in program memory like this:

.text
fib data:
.word O, 1, 2, 3, 5, 8, 13

To access this table with table read/write instructions, use the tblpage () and
tbloffset () operators as follows:

; Set TBLPAG to the page that contains the fib data array.
mov #tblpage (fib data), w0
mov w0, TBLPAG
; Make a pointer to fib data for table instructions
mov #tbloffset (fib_data), w0
; Load the first data value
tblrdl [wO++], wl

© 2013-2018 Microchip Technology Inc. DS50002106D-page 49

16-Bit Assembler, Linker and Utilities User’s Guide

The programmer must ensure that the constant data table does not exceed the pro-
gram memory page size that is implied by the TBLPAG register. The maximum table
size implied by the TBLPAG register is 64 Kbytes. If additional constant data storage is
required, simply create additional tables each with its own symbol, and repeat the code
sequence above to load the TBLPAG register and derive a pointer.

3.9.1.2 PSV DATA WINDOW

The psvpage () andpsvoffset () operators can be used with the PSV data window.
These operators may be applied to any symbol (usually representing a table of con-
stant data) in program memory.

Suppose a table of constant data is declared in program memory like this:

.section *,psv
fib data:
.word O, 1, 2, 3, 5, 8, 13

To access this table through the PSV data window, use the psvpage () and
psvoffset () operators as follows:

; Enable Program Space Visibility (Note 1)
bset.b CORCONL, #PSV

; Set PSVPAG (Note 2) to the page that contains the fib data array.
mov #psvpage (fib_data), w0
mov w0, PSVPAG
; Make a pointer to fib data in the PSV data window
mov #psvoffset (fib data), w0
; Load the first data value
mov [wO++]1, wl

Note 1: Some devices do not need PSV to be enabled. Please check the data
sheet for your device.

2: Fordevices with EDS, use DSRPAG. Please check the data sheet for your
device.

The programmer must ensure that the constant data table does not exceed the pro-
gram memory page size that is implied by the PSVPAG register (or the DSRPAG reg-
ister for devices with EDS). The maximum table size implied by the PSVPAG or
DSRPAG register is 32 Kbytes. If additional constant data storage is required, simply
create additional tables each with its own symbol, and repeat the code sequence above
to load the PSVPAG or DSRPAG register and derive a pointer.

DS50002106D-page 50

© 2013-2018 Microchip Technology Inc.

MPLAB XC16 Assembly Language

3.9.1.3 EDS DATA WINDOW

The edspage () and edsoffset () operators can be used with the EDS data window.
The EDS data window replaces the PSV data window in certain device families.
However, these operators are supported on all devices.

The edspage () operator may be applied to any symbol in any on-chip memory space.
The operator returns a 10-bit page value. Unlike psvpage (), a value of zero is never
returned.

The edsoffset () operator may be applied to any symbol in any on-chip memory
space. The operator returns a 16-bit data space pointer. Unlike psvoffset (), the
value of this pointer may fall anywhere in the data address space (0x0 to OXFFFF).

Suppose that a table of data is located in any on-chip memory space. To access this
table through the EDS data window, use the edspage () and edsoffset () operators

as follows:
; set DSRPAG to the page that contains the glob data array
mov #edspage (glob data), w0
mov w0, DSRPAG
; make a pointer to glob data
mov #edsoffset (glob _data), w0
; Load the first data value
mov [wO++], wl

In order to access multiple items from a data table, you must ensure that the table does
not cross a page boundary. To prevent this, specify the page section directive when the
data table is defined. If additional constant storage is required, simply create additional
tables, each with its own symbol, and repeat the code sequence in Section 3.9.1.3 to
load the DSRPAG register and derive a pointer.

3.9.2 Obtaining a Program Address of a Symbol or Constant

The paddr () operator can be used to obtain the program address of a constant or
symbol. For example, if you wanted to set up an interrupt vector table without using the
default naming conventions, you could use the paddr () operator.

.section ivt, code
goto reset

.pword paddr (ivl)
.pword paddr (iv2)

3.9.3 Obtaining a Handle to a Program Address

The handle () operator can be used to obtain the 16-bit reference to a label in pro-
gram memory. If the final resolved PC address of the label fits in 16 bits, that value is
returned by the handle () operator. If the final resolved address exceeds 16 bits, the
address of a jump table entry is returned instead. The jump table entry is a GOTO
instruction containing a 24-bit absolute address. The handle jump table is created by
the linker and is always located in low program memory. Handles permit any location
in program memory to be reached via a 16-bit address and are provided to facilitate the
use of C function pointers.

The handle jump table is created by the linker and contains an entry for each unique
label that is used with the handle () operator.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 51

16-Bit Assembler, Linker and Utilities User’s Guide

3.94 Obtaining the DMA Offset of a Symbol — PIC24H/dsPIC33F

- Devices Only

The dmaoffset () operator can be used to obtain the offset of a symbol within DMA
memory. For example, to declare a buffer in DMA memory, and load its offset into a
register, you could use:

.section *,bss,dma
buf: .space 256

.text
mov #dmaoffset (buf), WO

To construct a table of DMA offsets for several symbols, you could use:

.word dmaoffset (bufl)
.word dmaoffset (buf2)
.word dmaoffset (buf3)

3.95 Obtaining the DMA Offset of a Symbol — PIC24EP/dsPIC33EP
Devices Only

The dmaoffset () and dmapage () operators can be used to obtain the offset of a
symbol within DMA memory.

.word dmaoffset (bufl), dmapage (bufl)
.word dmaoffset (buf2), dmapage (buf2)
.word dmaoffset (buf3), dmapage (buf3)

3.9.6 Obtaining the Size of a Specific Section

The .sizeof. (section name) operator can be used to obtain the size of a specific
section after the link process has occurred. For example, to find the final size of the
.data section, use:

mov #.sizeof. (.data), wO

Note: Whenthe .sizeof. (section name) operator is used on a section in
program memory, the size returned is the size in PC units. The 16-bit device
PC increments by 2 for each instruction word.

3.9.7 Obtaining the Starting Address of a Specific Section

The .startof. (section name) operator can be used to obtain the starting
address of a specific section after the link process has occurred. For example, to obtain
the starting address of the . data section, use:

mov #.startof. (.data), wl

DS50002106D-page 52 © 2013-2018 Microchip Technology Inc.

MPLAB XC16 Assembly Language

3.9.8 Accessing Functions in Boot or Secure Segments

Functions in the boot or secure segments without access entries can be referenced like
any other function:

call funcl ; call funcl

mov #handle (funcl),wl ; create 16 bit pointer to funcl (instr)
.word handle (funcl) ; create 16 bit pointer to funcl (data)
.pword funcl ; create 24 bit pointer to funcl

In order to support the separate linking of boot and secure application segments,
access entry points may be defined. Access entry points provide a way to transfer con-
trol across segments to a function that may not be defined at link time. For more infor-
mation about access entry points, see Section 4.6 “Directives that Define Symbols.”
and Section 10.14 “Boot and Secure Segments.”

The boot () and secure () operators can be used to reference boot or secure func-
tions via access entry points. These operators can be applied in both instructions and
data directives, and will return 16, 24, or 32 bits, depending on the context.

call boot (4) ; call access entry 4 in the boot segment
rcall secure (4) ; pc-relative call to secure access entry 4
mov #boot (4),wl ; load 16 bit pointer to boot entry 4

.word secure (5) ; create 16 bit pointer to secure entry 5
.pword secure (5) ; create 24 bit pointer to secure entry 5
.long boot (6) ; create 32 bit pointer to boot entry 6
goto boot (7) ; Jump to boot entry 7

bra secure(7) ; unconditional branch to secure entry 7
bra cc, boot (8) ; conditional branch to boot entry 8

© 2013-2018 Microchip Technology Inc. DS50002106D-page 53

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 54 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE

Chapter 4. Assembler Directives

4.1 INTRODUCTION

Directives are assembler commands that appear in the source code but are not usually
translated directly into opcodes. They are used to control the assembler: its input,
output, and data allocation. All 16-bit directives are preceded by a dot *.".

Note 1. Directives are not instructions (i.e., movlw, btfss, goto, etc.). For
instruction set information, consult your device data sheet.

2. Directives that are supported, but deprecated, are listed in
Appendix A. “Deprecated Features.”

Topics covered in this chapter are:

« Directives that Define Sections

« Directives that Fill Program Memory

« Directives that Initialize Constants

« Directives that Declare Symbols
 Directives that Define Symbols

« Directives that Modify Section Alignment
« Directives that Format the Output Listing
« Directives that Control Conditional Assembly
« Directives for Substitution/Expansion

« Miscellaneous Directives

« Directives for Debug Information

© 2013-2018 Microchip Technology Inc. DS50002106D-page 55

16-Bit Assembler, Linker and Utilities User’s Guide

4.2 DIRECTIVES THAT DEFINE SECTIONS

Sections are locatable blocks of code or data that will occupy contiguous locations in
the 16-bit device memory. Three sections are pre-defined: . text for executable code,
.data for initialized data, and .bss for uninitialized data. Other sections may be
defined; the linker defines several that are useful for locating data in specific areas of
16-bit memory.

Section directives are:

° .bss

°c .data

° .memory name, size(nn) [, origin(aa)]

° .pushsection name [, attr;[,...,attr,]]
° .popsection

o .section name [, “flags”] (deprecated)
°e .section name [, attry[,...,attr,]]

° .text

4.2.1 .bss

Assemble the following statements onto the end of the .bss (uninitialized data)
section.

Note: You cannot reserve all of data memory for symbols; you will need room for
the stack. See Section 10.10 “Stack Allocation.”

Example

; The following symbols (Bl and B2) will be placed in
; the uninitialized data section.

.bss

Bl: .space 4 ; 4 bytes reserved for Bl
B2: .space 1 ; 1 byte reserved for B2
4.2.2 .data

Assemble the following statements onto the end of the . data (initialized data) section.

Note: You cannot reserve all of data memory for symbols; you will need room for
the stack. See Section 10.10 “Stack Allocation.”

Example

; The following symbols (D1 and D2) will be placed in
; the initialized data section.

.data
D1: .long 0x12345678 ; 4 bytes
D2: .byte OxFF ;1 byte

The linker collects initial values for section . data (and other sections defined with the
data attribute) and creates a data initialization template. This template can be
processed during application start-up to transfer initial values into memory. For C
applications, a library function is called for this purpose automatically. Assembly proj-
ects can utilize this library by linking with the 1ibpic30 library. For more information,
see the discussion of Run-Time Library Support in Section 10.8 “Initialized Data.”

DS50002106D-page 56

© 2013-2018 Microchip Technology Inc.

Assembler Directives

4.2.3 .memory name, size(nn) [, origin(aa)]

Define an external memory region for allocation by the linker. Sections may be
assigned to region name by use of the memory section attribute.

Example

; define an external memory region
.memory memoryl, size(8192), origin(0)

; allocate a section in external memory
.section meml secl,memory(memoryl)
.global meml arrayl

~meml arrayl:
.skip 50

4.2.4 .pushsection name [, attr4[,...,attr,]]

Push the current section description onto the section stack, and assemble the following
code into a section named name. The syntax is identical to . section. Every
.pushsection should have a matching .popsection.

4.2.5 .popsection

Replace the current section description with the top section on the section stack. This
section is popped off the stack.

4.2.6 .section name [, “flags”] (deprecated)

See Section A.3.1 “.section name [, “flags”™].”

4.2.7 .section name [, attrq[,...,attr,]]

Assemble the following code into a section named nane. If the character * is specified
for nane, the assembler will generate a uniqgue name for the section based on the input
file name in the format filename. scnn, where n represents the number of
auto-generated section names.

Sections hamed * can be used to conserve memory because the assembler will not
add alignment padding to these sections. Sections that are not named * may be com-
bined across several files, so the assembler must add padding in order to guarantee
the requested alignment.

If the optional argument is not present, the section attributes depend on the section
name. A table of reserved section names with implied attributes is given in Reserved
Section Names with Implied Attributes. If the section name matches a reserved name,
the implied attributes will be assigned to that section. If the section name is not recog-
nized as a reserved name, the default attribute will be data (initialized storage in data
memory).

Implied attributes for reserved section names other than [. text, .data, .bss] are
deprecated. A warning will be issued if implied attributes for these reserved section are
used.

If the first optional argument is quoted, it is taken as one or more flags that describe the
section attributes. Quoted section flags are deprecated. (See Appendix A. “Deprecated
Features.”). A warning will be issued if quoted section flags are used.

If the first optional argument is not quoted, it is taken as the first element of an attribute
list. Attributes may be specified in any order, and are case-insensitive. Two categories
of section attributes exist: attributes that represent section types, and attributes that
modify section types.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 57

16-Bit Assembler, Linker and Utilities User’s Guide

4271 ATTRIBUTES THAT REPRESENT SECTION TYPES

Attributes that represent section types are mutually exclusive. At most, one of the
attributes listed below may be specified for a given section.

TABLE 4-1: ATTRIBUTES THAT REPRESENT SECTION TYPES
Attribute Description Support

auxflash Executable code in auxiliary program memory 24EP/33EP (some)
auxpsv Constant is in auxilliary program memory 24EP/33EP (some)
bss Uninitialized storage in data memory All

code Executable code in program memory All

data Initialized storage in data memory All

eedata Non-volatile storage in data EEPROM 30/24FxxK
heap Memory for dynamic allocation in C All
memory External or user-defined memory All
packedflash Use the upper byte of Flash via packed storage All

persist Persistent storage in data memory All

psv Constants in program memory All

stack Processor stack All

All = Supported on all devices
24X = Supported on PIC24X MCUs, where X can be EP, FxxK, FJ, FV, HJ.
30 = Supported on dsPIC30F DSCs

33X = Supported on dsPIC33X DSCs, where X can be EP, EV, FJ.

DS50002106D-page 58

© 2013-2018 Microchip Technology Inc.

Assembler Directives

4.2.7.2

ATTRIBUTES THAT MODIFY SECTION TYPES

Depending on the attribute, all or some section types may be modified by it, as below.

TABLE 4-2: ATTRIBUTES THAT MODIFY SECTION TYPES
Attribute* Description Attribute applies to**
address(a) |locate at absolute address a auxflash, bss, code, data, eedata, heap, memory, persist, psv,

stack

near locate in the first 8K of memory bss, data, persist
xmemory locate in X address space bss, data, heap, persist
ymemory locate in Y address space bss, data, heap, persist
reverse(n) |align the ending address +1 auxflash, bss, data, eedata, memory, persist, psv
align(n) align the starting address auxflash, bss, code, data, eedata, heap, memory, persist, psv,
stack
noload allocate, do not load auxflash, bss, code, data, eedata, memory, persist, psv
merge(n) mergable elements of size n*** auxflash, code, data, eedata, psv
info do not allocate or load auxflash, bss, code, data
dma locate in DMA space bss, data, persist
boot locate in boot segment bss, code, eedata, psv
secure locate in secure segment bss, code, eedata, psv
eds locate in extended data space bss, data, persist
shared use section outside of application |auxflash, bss, code, data, eedata, memory, psv, stack
preserved | preserve variables on restart bss, data, memory, persist
update initialize variables on restart bss, data, memory, persist
priority(n) | group variable initializations auxflash, bss, code, data
together.
page do not cross page boundary auxflash, bss, code, data, persist, psv

* =

*k —

Not all devices support all attributes.
See Table 4-1 for descriptions and device support.

*** = This attribute could be used by a linker to merge identical constants across input files.
If n=0, the section contains null-terminated strings of variable length.

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 59

16-Bit Assembler, Linker and Utilities User’s Guide

@ Attributes that modify section types may be used in combination. For example,
xmemory, address (a) is a valid attribute string, but
xmemory, address (a) , ymemory is not.

TABLE 4-3: COMBINING ATTRIBUTES THAT MODIFY SECTION TYPES

Attribute* Attribute can be combined with*

address near, xmemory, ymemory, noload, dma, boot, secure, eds, page

near address, xmemory, ymemory, reverse, align, noload, merge

xmemory address, near, reverse, align, noload, merge, eds, page

ymemory address, near(30,33), reverse, align, noload, merge, eds, page

reverse near, xmemory, ymemory(30/330, noload, merge, dma, boot, secure, eds,
page

align near, xmemory, ymemory(30/330, noload, merge, dma, boot, secure, eds,
page

noload address, near, xmemory, ymemory, reverse, align, dma, boot, secure, eds,
page

merge near, xmemory, ymemory, reverse, align, eds, page

info N/A

dma address, reverse, align, noload, eds, page

boot address, reverse, align, noload, eds, page

secure address, reverse, align, noload, eds, page

eds address, xmemory, ymemory, reverse, align, noload, merge, dma, boot,
secure, page

shared address, near, xmemory, ymemory, reverse, align, noload, merge, dma,
boot, secure, eds, preserved, update, priority, page

preserved address, near, xmemory, ymemory, reverse, align, noload, merge, dma,
eds, shared, priority, page

update address, near, xmemory, ymemory, reverse, align, noload, merge, dma,
eds, shared, priority, page

priority(n) address, near, xmemory, ymemory, reverse, align, dma, boot, secure, eds,
shared, preserved, update, page

page address, xmemory, ymemory(30, 33), reverse, align, noload, merge, dma,
boot, secure, eds

*= Not all devices support all attributes.

DS50002106D-page 60 © 2013-2018 Microchip Technology Inc.

Assembler Directives

4.2.7.3 RESERVED SECTION NAMES WITH IMPLIED ATTRIBUTES

The following section names are available for user applications and are recognized to
have implied attributes:

Reserved Name Implied Attribute(s) Support
.text code All
.data data All
.bss bss All
.xbss bss, xmemory 30/33
.xdata data, xmemory 30/33
.nbss bss, near All
.ndata data, near All
.ndconst data, near All
.pbss bss, persist All
.dconst data All
.ybss bss, ymemory 30/33
.ydata data, ymemory 30/33
.const psv All
.eedata eedata 30

All = Supported on all devices
30 = Supported on dsPIC30F DSCs
33 = Supported on dsPIC33F DSCs

Reserved section names may be used with explicit attributes. If the explicit attribute(s)
conflict with any implied attribute(s), an error will be reported.

Implied attributes for reserved section names other than [. text, .data, .bss] are
deprecated. A warning will be issued if these names are used without explicit attributes.

4.2.7.4 SECTION DIRECTIVE EXAMPLES

.section foo ;foo is initialized data memory.

.section bar,bss,xmemory,align(256) ;bar is uninitialized
;X data memory, aligned.

.section *,data,near ;section is near
;initialized data memory.

.section bufl,bss,address (0x800) ;bufl is uninitialized
;data memory at 0x800.

.section tabl,psv,address (0x10000) ;tabl is psv constants
;at 0x10000.

4275 SECTION DIRECTIVE EXAMPLES - BOOT/SECURE SEGMENTS

Program Memory
Attributes can be used to declare protected functions in secure segments:

.section *,code,boot
.global funcl

funcl:
return

.section *,code, secure
.global func?

func2:
return

© 2013-2018 Microchip Technology Inc. DS50002106D-page 61

16-Bit Assembler, Linker and Utilities User’s Guide

A secure function is defined by the combination of . sectionand .global directives,
and a label. It is recommended that each secure function be defined in a separate sec-
tion. If the function will be assigned an access entry point, separate sections are
required.

An optional argument to boot or secure can be used to specify a protected access
entry point:

.section *,code,boot (3)
.global func3

func3:
return

.section *,code, secure (4)
.global func4

func4:
return

The optional argument is valid only in code sections. Integers that represent access
entry slots must be in the range 0..15 or 17..31. In addition to an entry slot number, the
value unused may be used to specify an entry for all unused slots in the access entry
area:

.section *,code,boot (unused)
.global func default

func default:
return

An interrupt service routine may be specified with the value isr:

.section *,code,boot (isr)
.global func isr

func default:
retfie

A section identified with boot (isr) or secure (isr) will be assigned to access entry
slot 16, which is reserved for interrupt functions.

Data Memory

The boot and secure attributes can be used to define protected variables in boot
RAM or secure RAM:

.section *,bss,boot

.global boot dat
boot dat:

.space 32

.section *,bss,secure

.global secure dat
secure dat:

.space 32

There is no support for initialized data in protected RAM segments. Therefore boot or
secure cannot be used in combination with attribute data. A diagnostic will be
reported if initial values are specified in a section that has been designated boot or
secure.

DS50002106D-page 62 © 2013-2018 Microchip Technology Inc.

Assembler Directives

Constants in Non-Volatile Memory

Constants in non-volatile memory can be protected by using the boot or secure
attribute in combination with psv or eedata:

.section *,psv,boot
.global keyl

keyl:
.ascii "abcdefg"
.section *,eedata,boot
.global key2

key2:
.ascii "hijklm"

4.2.8 text

Assemble the following statements onto the end of the . text (executable code)
section.

Example

; The following code will be placed in the executable
; code section.
.text
.global reset
__reset:
mov BAR, wl
mov FOO, w0

LOOP:
cp0.b [w0]
bra Z, DONE
mov.b [wO++], [wl++]
bra LOOP
DONE :
.end

© 2013-2018 Microchip Technology Inc. DS50002106D-page 63

16-Bit Assembler, Linker and Utilities User’s Guide

4.3 DIRECTIVES THAT FILL PROGRAM MEMORY

These directives are only allowed in a code (executable) section. If they are not in a
code section, a warning is generated and the rest of the line is ignored.

Fill directives are:

o .fillupper [value]
o .fillvalue [value]
o .pfillvalue [value]

° Section Example

43.1 fillupper [value]

Define the upper byte (bits 16-23) to be used when this byte is skipped due to alignment
or data defining directives. If val ue is not specified, it is reset to the default 0x00. Direc-
tives that may cause an upper byte to be filled are: .align, .ascii, .asciz, .byte,
.double, .fill, .fixed, .float, .hword, .int, .long, .skip, .space,
.stringand .word. The value is persistent for a given code section, throughout the
entire source file, and may be changed to another value by issuing subsequent
.fillupper directives.

Example
See the Section Example table that follows.

4.3.2 fillvalue [value]

Define the byte value to be used as fill in a code section when the lower word (bits 0-15)
is skipped due to alignment or data defining directives. If val ue is not specified, the
default value of 0x0000 is used. Directives that may cause the lower word to filled are:
.align, .fill, .skip, .organd .space. The value is persistent for a given code
section, throughout the entire source file, and may be changed to another value by
issuing subsequent . fillvalue directives.

Example
See the Section Example table that follows.

4.3.3 pfillvalue [value]

Define the byte value to be used as fill in a code section when memory (bits 0-23) is
skipped due to an alignment or data defining p directive. If val ue is not specified, it is
reset to its default 0x000000. Directives that may cause a program word to be filled are:
.palign, .pfill, .pskip, .porg, and .pspace. The value is persistent for a given
code section, throughout the entire source file, and may be changed to another value
by issuing subsequent .pfillvalue directives.

Example
See the Section Example table that follows.

DS50002106D-page 64 © 2013-2018 Microchip Technology Inc.

Assembler Directives

4.3.4 Section Example
.section .myconst, code
.fillvalue 0x12
.fillupper 0x34
.pfillvalue 0x56
0x12 |0x12 |0x34 |.fill 4
0x12 |0x12
0x34 |.align 2 ;Align to next p-word
0x56 |0x56 |0x56 |.pfill 8
0x56 |0x56 |0x56
0x56 |[0x56
0x56 |.palign 2 ;Align to next p-word
.fillvalue ;Reset fillvalue
.pfillvalue ;Reset pfillvalue
0x00 |0x00 |[O0x34 |.fill 4
0x00 |[0x00
0x34 |.align 2 ;Align to next p-word
0x00 |0x00 |0x00 |.pfill 8
0x00 |0x00 |0x00
0x00 |[0x00
0x00 |.palign 2 ;Align to next p-word

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 65

16-Bit Assembler, Linker and Utilities User’s Guide

4.4 DIRECTIVES THAT INITIALIZE CONSTANTS

Constant initialization directives are:

° .ascii “string,” | <##>; [, ..., “string,” | <##>.]
° .pascii “string;” <##>; [, ..., “string,” | <##>.]
° .pascii “string{”

° .asciz “string;” | <##>; [, ..., “string,” | <##>.]
° .pasciz “string;” | <##>; [, ..., “string,” | <##>_.]
° .pasciz “string,”

° .byte expr,[, ..., expr,]

° .pbyte expr;[, ..., expr,]

° .double valueq [, ..., value,]

o .fixed valueq[, ..., value,]

e .float valueq[, ., value,]

° .single value [, ..., valueg]

° .hword expr [, ..., expr,]

° .int expri[, ..., expr,]

e .long exprqy[, ..., expr,]

° .short expr[, ..., expr,]

o .string “str”

° .pstring “str”

° .pstring “string,”

o .word exprq[, ..., expr,]

°e .pword expry[, ..., expr,]

4.4.1 .ascii “stringy” | <##>q [, ..., “string,” | <##>,]

Assembles each string (with no automatic trailing zero byte) or <##> into successive
bytes in the current section.<##> is a way of specifying a character by its ASCII code.
For example, given that the ASCII code for a new line character is 0xa, the following
two lines are equivalent:

.ascii "hello\n","line 2\n"
.ascii "hello",<0xa>,"line 2",<0xa>

Note: If the ## is not a number, O will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.

If in a code (executable) section, the upper program memory byte will be filled with the
last . fillupper value specified or the NOP opcode (0x00) if no . £illupper has
been specified.

4.4.2 .pascii “string,” | <##>q [, ..., “string,,” | <##>,]

Assembles each string (with no automatic trailing zero byte) or <##> into successive
bytes into program memory, including the upper byte.<##> is a way of specifying a
character by its ASCII code. For example, given that the ASCII code for a new line char-
acter is Oxa, the following two lines are equivalent:

.pascii "hello\n","line 2\n"
.pascii "hello",<0xa>,"line 2",<0xa>

Note: If the ## is not a number, O will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.

DS50002106D-page 66 © 2013-2018 Microchip Technology Inc.

Assembler Directives

4.4.3 .pascii “string,”

Stores a sequence of ASCII characters (with no automatic trailing zero byte) into
program memory, including the upper byte.

4.4.4 .asciz “stringq” | <##>1 [, ..., “string,” | <##>]

Assembles each string with an automatic trailing zero byte or <##> into successive
bytes in the current section.

Note: If the ## is not a number, O will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.

If in a code (executable) section, the upper program memory byte will be filled with the
last . fillupper value specified or the NOP opcode (0x00) if no . £illupper has
been specified.

4.4.5 .pasciz “stringy” | <##>1 [, ..., “string,” | <##>4]

Assembles each string with an automatic trailing zero byte or <##> into program mem-
ory, including the upper byte.

Note: If the ## is not a number, O will be assembled. If the ## is greater than 255,
then the value will be truncated to a byte.

4.4.6 .pasciz “string,”

Stores a sequence of ASCII characters (with an automatic trailing zero byte) into
program memory, including the upper byte.

4.4.7 byte exprq[, ..., expry]

Assembles one or more successive bytes in the current section.

If in a code (executable) section, the upper program memory byte will be filled with the
last . fillupper value specified or the NOP opcode (0x00) if no . £illupper has
been specified.

448 .pbyte exprqf, ..., expry]
Assembles one or more successive bytes in the current section. This directive will allow
you to create data in the upper byte of program memory.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

449 .double valueq][, ..., valuey]

Assembles one or more double-precision (64-bit) floating-point constants into consec-
utive addresses in little-endian format.

If in a code (executable) section, the upper program memory byte will be filled with the
last . fi1llupper value specified or the NOP opcode (0x00) if no. £fillupper has
been specified.

Floating point numbers are in IEEE format (see Section 3.5.1.2 “Floating-Point
Numbers.”).

© 2013-2018 Microchip Technology Inc. DS50002106D-page 67

16-Bit Assembler, Linker and Utilities User’s Guide

The following statements are equivalent:

.double 12345.67
.double 1.234567e4
.double 1.234567e04
.double 1.234567e+04
.double 1.234567E4
.double 1.234567E04
.double 1.234567E+04

Itis also possible to specify the hexadecimal encoding of a floating point constant. The
following statements are equivalent and encode the value 12345.67 as a 64-bit
double-precision number:

.double 0e:40C81CD5C28F5C29
.double 0f:40C81CD5C28F5C29
.double 0d:40C81CD5C28F5C29

4.4.10

Assembles one or more 2-byte fixed-point constants (range -1.0 <= f < 1.0) into con-
secutive addresses in little-endian format. Fixed-point numbers are in Q-15 format (see
Section 3.5.1.3 “Fixed-Point Numbers.”).

fixed valueq], ..., value,]

4.4.11 float valueq[, ..., value]

Assembles one or more single-precision (32-bit) floating-point constants into consecu-
tive addresses in little-endian format.

If in a code (executable) section, the upper program memory byte will be filled with the
last . fillupper value specified or the NOP opcode (0x00) if no. fillupper has
been specified.

Floating point numbers are in IEEE format (see Section 3.5.1.2 “Floating-Point
Numbers.”).

The following statements are equivalent:

12345.67
1.234567e4
.234567e04
.234567e+04
.float 1.234567E4
.float 1.234567E04
.float 1.234567E+04

.float
.float
.float

1
.float 1
1
1

Itis also possible to specify the hexadecimal encoding of a floating-point constant. The
following statements are equivalent and encode the value 12345.67 as a 32-bit
double-precision number:

.float
.float
.float

0e:4640E6AE
0f:4640E6AE
0d:4640E6AE

4.4.12 .single value,], ..., value,]

Assembles one or more single-precision (32-bit), floating-point constants into
consecutive addresses in little-endian format.

If in a code (executable) section, the upper program memory byte will be filled with the
last . fillupper value specified or the NOP opcode (0x00) if no . fillupper has
been specified.

Floating point numbers are in IEEE format.

DS50002106D-page 68

© 2013-2018 Microchip Technology Inc.

Assembler Directives

4.4.13 .hword exprq[, ..., expry]

Assembles one or more 2-byte numbers into consecutive addresses in little-endian for-
mat.

4.4.14 .intexprq[, ..., expry]

Assembles one or more 2-byte numbers into consecutive addresses in little-endian
format.

4.4.15 .long exprq][, ..., expry]

Assembles one or more 4-byte numbers into consecutive addresses in little-endian
format.

4.4.16 .shortexprq[, ..., expry]

Same as .word.

4.4.17 .string “str”

Same as .asciz.

4.4.18 .pstring “str”

Same as .pasciz.

4.4.19 .pstring “string,”
Same as .pasciz "string,".

4.420 .word exprq[, ..., expry]

Assembles one or more 2-byte numbers into consecutive addresses in little-endian
format.

4.4.21 .pword exprq[, ..., expry]

Assembles one or more 3-byte numbers into consecutive addresses in the current
section.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 69

16-Bit Assembler, Linker and Utilities User’s Guide

4.5

DIRECTIVES THAT DECLARE SYMBOLS

Declare symbol directives are:

[,
[,

° .bss symbol, length

length

algn]
o .comm symbol, algn]
° .extern symbol
° .global symbol .globl symbol
o .lcomm symbol, length

° .weak symbol

45.1

Reserve | engt h (an absolute expression) bytes for a local symbol. The addresses are
allocated in the bss section, so that at run-time the bytes start off zeroed. synbol is
declared local so it is not visible to other objects. If algn is specified, it is the address
alignment required for synbol . The bss location counter is advanced until itis a multiple
of the requested alignment. The requested alignment must be a power of 2.

.bss symbol, length [, algn]

45.2

Declares a common symbol named synbol . When linking, a common symbol in one
object file may be merged with a defined or common symbol of the same name in
another object file. If the linker does not see a definition for that symbol, then it will allo-
cate 1ength bytes of uninitialized memory. If the linker sees multiple common symbols
with the same name, and they do not all have the same size, the linker will allocate
space using the largest size.

.comm symbol, length [, algn]

If al gn is specified, it is the address alignment required for synbol . The requested
alignment must be a power of two. al gn is supported when the object file format is ELF;
otherwise, it is ignored.

4.5.3

Declares a symbol name that may be used in the current module, but it is defined as
global in a different module.

.extern symbol

45.4 .global symbol

.globl symbol

Declares a symbol synbol thatis defined in the current module and is available to other
modules.

4.5.5

Reserve | engt h bytes for a local common denoted by synbol . The section and value
of synbol are those of the new local common. The addresses are allocated in the bss
section, so that at run-time, the bytes start off zeroed. synbol is not declared global so
it is normally not visible to the linker.

.Ilcomm symbol, length

4.5.6

Marks the symbol named synmbol as weak. When a weak-defined symbol is linked with
a normal-defined symbol, the normal-defined symbol is used with no error. When a
weak-undefined symbol is linked and the symbol is not defined, the value of the weak
symbol becomes zero with no error.

.weak symbol

DS50002106D-page 70

© 2013-2018 Microchip Technology Inc.

Assembler Directives

4.6 DIRECTIVES THAT DEFINE SYMBOLS

Define symbol directives are:

° .equ symbol, expression

°o .equiv symbol, expression
o .set symbol, expression

46.1 .equ symbol, expression

Set the value of synbol to expressi on. You may set a symbol any number of times in
assembly. If you set a global symbol, the value stored in the object file is the last value
equated to it.

4.6.2 .equiv symbol, expression

Like .equ, except the assembler will signal an error if symbol is already defined.

4.6.3 .set symbol, expression

Same as .equ.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 71

16-Bit Assembler, Linker and Utilities User’s Guide

4.7 DIRECTIVES THAT MODIFY SECTION ALIGNMENT

There are two ways to modify section alignment: implicitly and explicitly. Implicit
alignment occurs first.

* Implicit Alignment in Program Memory
« Explicit Section Alignment Directives

4.7.1 Implicit Alignment in Program Memory

In addition to directives that explicitly align the location counter (such as .align,
.palign, .org, .porg, etc.), many statements cause an implicit alignment to occur
under certain conditions. Implicit alignment occurs when padding is inserted so that the
next statement begins at a valid address. Padding uses the current . fil1lvalue and
.fillupper values if specified; otherwise the value zero is used.

In data memory, a valid address is available for each byte. Since no data directives
specify memory in quantities of less than one byte, implicit alignment is not required in
data memory.

In program memory, a valid address is available for each instruction word (3 bytes).
Since data directives can specify individual bytes, implicit alignment to the next valid
address is sometimes required.

The following conditions cause implicit alignment in program memory:
1. Labels must be aligned to a valid address.
For example, the following source code:

.text
.pbyte 0x11
Ll:
.pbyte 0x22
.pbyte 0x33,0x44

generates implicit alignment as shown:

Disassembly of section .text:
00000000 <.text>:

0: 11 00 00 nop
00000002 <L1>:
2: 22 33 44 .pword 0x443322

Note: Two bytes of padding were inserted so that label 1.1 would be aligned to a
valid address.

DS50002106D-page 72

© 2013-2018 Microchip Technology Inc.

Assembler Directives

2. Instructions must be aligned to a valid address.
For example, the following source code:

.text
.pbyte 0x11
mov w2,w3

generates implicit alignment as shown:

Disassembly of section .text:
00000000 <.text>:
0: 11 00 00 nop
2: 82 01 78 mov.w w2, w3

Note: Two bytes of padding were inserted so that the mov instruction would be
aligned to a valid address.

3. Transitions between p-type data directives (. pbyte, . pspace, etc). and normal
data directives (.byte, .space, etc.), in either direction, are aligned to a valid
address.

For example, the following source code:

.text
.byte 0x11
.pbyte 0x22

.pbyte 0x33,0x44
generates implicit alignment as shown:

Disassembly of section .text:
00000000 <.text>:
0: 11 00 00 nop
2: 22 33 44 .pword 0x443322

Note: Two bytes of padding were inserted so that the transition from normal to
p-type directive would be aligned to a valid address.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 73

16-Bit Assembler, Linker and Utilities User’s Guide

4.7.2 Explicit Section Alignment Directives

Directives that explicitly modify section alignment are:

° .align algn[, fill[, max-skip]]

o .palign algn[, fill[, max-skipl]

o .fill repeat[, sizel[, fill]]

o .pfill repeat[, size[, fill]]

o .org new-lcf[, fill]

o .porg new-1lc[, fill]

o .skip size[, fill] .space sizel[, fill]

o .pskip sizel[, fill] .pspace size[, fill]

°o .struct expression

4.7.3 .align algnl, fill[, max-skip]]

Pad the location counter (in the current subsection) to a particular storage boundary.

al gn is the address alignment required. The location counter is advanced until it is a

multiple of the requested alignment. If the location counter is already a multiple of the
requested alignment, no change is heeded or made. In a code section, an alignment of
2 is required to align to the next instruction word. The requested alignment must be a
power of 2.

fill is optional. If not specified:

« In a data section, a value of 0x00 is used to fill the skipped bytes.

 In a code section, the last specified . fillvalue is used to fill the lower two
bytes of program memory and the last specified . £i1lupper is used to fill the
upper program memory byte.

max- ski p is optional. If specified, it is the maximum number of bytes that should be
skipped by this directive. If doing the alignment would require skipping more bytes than
the specified maximum, then the alignment is not done at all.

Alignment within a section is required for modulo addressing. It is worth noting that the
overall section alignment reflects the greatest alignment of any . align directives that
are included. Further, the assembler must pad out the section length to match its align-
ment. This is done in order to preserve the requested alignment in case the section is
combined with other sections of the same name during the link. To avoid unnecessary
padding of aligned sections, use the section name *, which identifies a unique section
that will never be combined.

4.7.4 palign algn], fill[, max-skip]]

Pad the location counter (in the current subsection) to a particular storage boundary.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

al gn is the address alignment required. The location counter is advanced until it is a
multiple of the requested alignment. If the location counter is already a multiple of the
requested alignment, no change is needed. In a code section, an alignment of 2 is
required to align to the next instruction word. The requested alignment must be a power
of 2.

fill is optional. If not specified, the last .pfillvalue specified is used to fill the
skipped bytes. All three bytes of the program memory word are filled.

DS50002106D-page 74

© 2013-2018 Microchip Technology Inc.

Assembler Directives

max- ski p is optional. If specified, it is the maximum number of bytes (including the
upper byte) that should be skipped by this directive. If doing the alignment would
require skipping more bytes than the specified maximum, then the alignment is not
done at all.

4.7.5 fill repeat[, sizel, fill]]

Reserve repeat copies of si ze bytes. repeat may be zero or more. size may be
zero or more, but if it is more than 8, then it is deemed to have the value 8. The content
of each r epeat bytes is taken from an 8-byte number. The highest order 4 bytes are
zero. The lowest order 4 bytes are value rendered in the little-endian byte-order. Each
si ze bytes in a repetition is taken from the lowest order si ze bytes of this number.

si ze is optional and defaults to one, if omitted.
fill is optional. If not specified:

« In a data section, a value of 0x00 is used to fill the skipped bytes.

 In a code section, the last specified . fillvalue is used to fill the lower two
bytes of program memory and the last specified . fi1lupper is used to fill the
upper program memory byte.

4.7.6 pfill repeat[, size], fill]]

Reserve r epeat copies of si ze bytes including the upper byte. r epeat may be zero or
more. si ze may be zero or more, but if it is more than 8, then it is deemed to have the
value 8. The content of each r epeat byte is taken from an 8-byte number. The highest
order 4 bytes are zero. The lowest order 4 bytes are value rendered in the little-endian
byte-order. Each si ze byte in a repetition is taken from the lowest order si ze bytes of
this number.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

si ze is optional and defaults to one, if omitted. Size is the number of bytes to reserve
(including the upper byte).

fill isoptional. If not specified, it defaults to the last . p£i11lvalue specified. All three
bytes of each instruction word are filled.

4.7.7 .org new-Ic[, fill]

Advance the location counter of the current section to new | c¢. In program memory,
new- | ¢ is specified in PC units. On the 16-bit device, the PC increments by 2 for each
instruction word. Odd values are not permitted.

Note: A location counter is not an absolute address but the offset from the start of
the section in which the . org occurs.

The bytes between the current location counter and the new location counter are filled
with £i11. new | ¢ is an absolute expression. You cannot . org backwards. You cannot
use .org to cross sections.

The new location counter is relative to the current module and is not an absolute
address.

fill is optional. If not specified:

 In a data section, a value of 0x00 is used to fill the skipped bytes.

 In a code section, the last specified . fillvalue is used to fill the lower two
bytes of program memory and the last specified . £i1lupper is used to fill the
upper program memory byte.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 75

16-Bit Assembler, Linker and Utilities User’s Guide

4.7.8 .porg new-Ic[, fill]

Advance the location counter of the current section to new | c¢. In program memory,
new- | ¢ is specified in PC units. On the 16-bit device, the PC increments by 2 for each
instruction word. Odd values are not permitted.

Note: A location counter is not an absolute address but the offset from the start of
the section in which the .porg occurs.

The bytes between the current location counter and the new location counter are filled
with £i11. new | ¢ is an absolute expression. You cannot . porg backwards. You
cannot use .porg to cross sections.

The new location counter is relative to the current module and is not an absolute
address.

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

fill isoptional. If not specified, it defaults to the last . pfi11value specified. All three
bytes of each instruction word are filled.

4.7.9 .Skip size], fill]
.space sizel, fill]

Reserve si ze bytes. Each byte is filled with the value fill .

fill is optional. If the value specified for fi I | is larger than a byte, a warning is dis-
played and the value is truncated to a byte. If not specified:

 In a data section, a value of 0x00 is used to fill the skipped bytes.

 In a code section, the last specified . fillvalue is used to fill the lower two
bytes of program memory and the last specified . £i1lupper is used to fill the
upper program memory byte.

4.7.10 .pskip sizel, fill]
.pspace size], fill]

Reserve si ze bytes (including the upper byte). Each byte is filled with the value fill .

This directive is only allowed in a code section. If not in a code section, a warning is
generated and the rest of the line is ignored.

The new location counter is relative to the current module and is not an absolute
address.

fill is optional. If the value specified for fi I | is larger than a byte, a warning is dis-
played and the value is truncated to a byte. If not specified, it defaults to the last
.pfillvalue specified. All three bytes of each instruction word are filled.

4.7.11 .struct expression

Switch to the absolute section, and set the section offset to expr essi on, which must
be an absolute expression. You might use this as follows:

.struct 0
fieldl:

.struct fieldl + 4
field2:

.struct field2 + 4
field3:

DS50002106D-page 76

© 2013-2018 Microchip Technology Inc.

Assembler Directives

This would define the symbol £ie1d1 to have the value 0, the symbol £ie1d2 to have
the value 4, and the symbol £ie1d3 to have the value 8. Assembly would be left in the
absolute section, and you would need to use a . section directive of some sort to
change to some other section before further assembly.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 77

16-Bit Assembler, Linker and Utilities User’s Guide

4.8 DIRECTIVES THAT FORMAT THE OUTPUT LISTING

Output listing format directives are:
° .eject

o .list

° .nolist

° .psize lines|[, columns]

o .sbttl “subheading”

o .title “heading”

4.8.1 .eject

Force a page break at this point when generating assembly listings.

48.2 Jist

Controls (in conjunction with . no1ist) whether assembly listings are generated. This
directive increments an internal counter (which is one initially). Assembly listings are
generated if this counter is greater than zero.

Only functional when listings are enabled with the —a command line option and forms
processing has not been disabled with the —an command line option.

4.8.3 .nolist

Controls (in conjunction with . 11 st) whether assembly listings are generated. This
directive decrements an internal counter (which is one initially). Assembly listings are
generated if this counter is greater than zero.

Only functional when listings are enabled with the —a command line option and forms
processing has not been disabled with the —an command line option.

4.8.4 .psize lines[, columns]

Declares the number of lines, and optionally, the number of columns to use for each
page when generating listings.

Only functional when listings are enabled with the —a command line option and forms
processing has not been disabled with the —an command line option.

4.8.5 .sbttl “subheading”

Use subheading as a subtitle (third line, immediately after the title line) when generat-
ing assembly listings. This directive affects subsequent pages, as well as the current
page, if it appears within ten lines of the top.

4.8.6 title “heading”

Use heading as the title (second line, immediately after the source file name and page
number) when generating assembly listings.

DS50002106D-page 78

© 2013-2018 Microchip Technology Inc.

Assembler Directives

4.9 DIRECTIVES THAT CONTROL CONDITIONAL ASSEMBLY

Conditional assembly directives are:

°o .else

o .elseif expr

°o .endif

°o .err

o .error “string”

o .if expr

o .ifdecl symbol

o .ifndecl symbol .ifnotdecl symbol
°o .ifdef symbol

o .ifndef symbol .ifnotdef symbol
49.1 .else

Used in conjunction with the . i f directive to provide an alternative path of assembly
code should the . if evaluate to false.

4.9.2 .elseif expr

Used in conjunction with the . if directive to provide an alternative path of assembly
code should the . if evaluate to false, and a second condition exists.

49.3 .endif

Marks the end of a block of code that is only assembled conditionally.

494 .err

If the assembler sees an .err directive, it will print an error message, and unless the
-7 option was used, it will not generate an object file. This can be used to signal an
error in conditionally compiled code.

4.9.5 .error “string”

Similar to . err, except that the specified string is printed.

4.9.6 Af expr

Marks the beginning of a section of code that is only considered part of the source pro-
gram being assembled if the argument expr is non-zero. The end of the conditional
section of code must be marked by an . endi f; optionally, you may include code for
the alternative condition, flagged by .else.

4.9.7 .ifdecl symbol

Assembles the following section of code if the specified symbol has been declared.

4.9.8 .ifndecl symbol
.ifnotdecl symbol

Assembles the following section of code if the specified symbol has not been declared.

4.9.9 .ifdef symbol

Assembles the following section of code if the specified symbol has been defined (i.e.,
assigned a value).

© 2013-2018 Microchip Technology Inc. DS50002106D-page 79

16-Bit Assembler, Linker and Utilities User’s Guide

49.10 .ifndef symbol
ifnotdef symbol

Assembles the following section of code if the specified symbol has not been defined
(i.e., not assigned a value).

DS50002106D-page 80 © 2013-2018 Microchip Technology Inc.

Assembler Directives

4.10 DIRECTIVES FOR SUBSTITUTION/EXPANSION

Substitution/expansion directives are:

° .exitm

o .irp symbol, value; [, ..., value,]endr

o .irpc symbol, valueendr

e .macro symbol arg;[=default] [, ..., arg, [=default]]
.endm

° .purgem “name”

° .rept countendr

4.10.1 .exitm

Exit early from the current marco definition. See .macro directive.

4.10.2 .irp symbol, value,
[, ..., valuey]

.endr
Evaluate a sequence of statements assigning different values to synbol . The
sequence of statements starts at the . i rp directive, and is terminated by a .endr
directive. For each val ue, synbol is set to val ue, and the sequence of statements is
assembled. If no value is listed, the sequence of statements is assembled once, with

symbol setto the null string. To refer to synbol within the sequence of statements, use
\synbol .

For example, assembling:

.irp req,0,1,2,3
push w\reg
.endr

is equivalent to assembling:

push w0
push wl
push w2
push w3

© 2013-2018 Microchip Technology Inc. DS50002106D-page 81

16-Bit Assembler, Linker and Utilities User’s Guide

4.10.3 .irpc symbol, value

.endr
Evaluate a sequence of statements assigning different values to synbol . The
sequence of statements starts at the . i rpc directive and is terminated by a .endr
directive. For each character in value, synbol is set to the character, and the
sequence of statements is assembled. If no val ue is listed, the sequence of statements

is assembled once, with symbo1l set to the null string. To refer to synbol within the
sequence of statements, use \synbol .

For example, assembling:

irpc reqg,0123
push w\reg
.endr

is equivalent to assembling:

push w0
push wl
push w2
push w3

4.10.4 .macro symbol arg;[=default]
[, ..., arg, [=default]]

.endm
Define macros that generate assembly output. A macro accepts optional arguments
and can call other macros or even itself recursively.

If a macro definition requires arguments, specify their names after the macro name,
separated by commas or spaces. To refer to arguments within the macro block, use
\ar g or &ar g&. The second form can be used to combine an argument with additional
characters to create a symbol name.

For example, assembling:

.macro display int sym
mov \sym, w0
rcall display

.endm

display int result
is equivalent to assembling:

mov result, w0
rcall display

In the next example, a macro is used to define HI- and LO-word constants for a 32-bit
integer.

.macro LCONST name,value

.equ \name, \value

.equ s&name&LO, (\value) & OxFFFF

.equ &name&HI, ((\value)>>16) & OxFFFF
.endm

LCONST seconds per day 60*60*24

mov #seconds_per dayLO, w0
mov #seconds_per dayHI,wl

DS50002106D-page 82

© 2013-2018 Microchip Technology Inc.

Assembler Directives

xcl6-as maintains a counter of how many macros have been executed in the
psuedo-variable \ @. This value can be copied to the assembly output, but only within
a macro definition. In the following example, a recursive macro is used to allocate an
arbitrary number of labeled buffers.

.macro make buffers num,size
BUF\@: .space \size

.if (\num - 1)

make buffers (\num - 1),\size

.endif

.endm

.bss
make buffers 4,16 ; create BUFO0..BUF3, 16 bytes each

4.10.5 .purgem “name”

Undefine the macro nane, so that later uses of the string will not be expanded. See
.macro directive.

4.10.6 .rept count

.endr
Repeat the sequence of lines between the . rept directive and the next . endr direc-
tive count times.

For example, assembling

.rept 3
.long O
.endr

is equivalent to assembling

.long O
.long O
.long O

© 2013-2018 Microchip Technology Inc. DS50002106D-page 83

16-Bit Assembler, Linker and Utilities User’s Guide

4.11 MISCELLANEOUS DIRECTIVES

Miscellaneous directives are:

°c .abort

o .appline line-number .ln line-number
° .end

o .fail expression

°o .ident “comment”

o .incbin “file”[,skip[,count]]

° .include “file”

o .loc file-number, line-number

° .pincbin “file”[,skip[,count]]

° .print “string”

o .version “string”

411.1 .abort

Prints out the message “.abort detected. Abandoning ship.” and exits the program.

4.11.2 .appline line-number
In line-number

Change the logical line number. The next line has that logical line number.

411.3 .end

End program

4.11.4 .fail expression

Generates an error or a warning. If the value of the expr essi on is 500 or more, as
will print a warning message. If the value is less than 500, xc16-as will print an error
message. The message will include the value of expr essi on. This can occasionally
be useful inside complex nested macros or conditional assembly.

4115 .ident “comment”

Appends conment to the section named . comment. This section is created if it does
not exist. The 16-bit linker will ignore this section when allocating program and data
memory, but will combine all . comment sections together, in link order.

4.11.6 .incbin “file”[,skip[,count]]

The .incbin directive includes fi | e verbatim at the current location. The file is
assumed to contain binary data. The search paths used can be specified with the -1
command-line option (see Chapter 2. “Assembler Command Line Options”). Quotation
marks are required around fi | e.

The ski p argument skips a number of bytes from the start of the file. The count argu-
ment indicates the maximum number of bytes to read. Note that the data is not aligned
in any way, so it is the user's responsibility to make sure that proper alignment is pro-
vided both before and after the . incbin directive.

When used in an executable section, . incbin fills only the lower 16 bits of each pro-
gram word.

DS50002106D-page 84 © 2013-2018 Microchip Technology Inc.

Assembler Directives

411.7 .include “file”

Provides a way to include supporting files at specified points in your source code. The
code is assembled as if it followed the point of the . include. When the end of the
included file is reached, assembly of the original file continues at the statement follow-
ing the .include.

4.11.8 .loc file-number, line-number

. loc is essentially the same as . 1n. The assembler expects that this directive occurs
in the . text section. fi | e- nunber is ignored.

4.11.9 .pincbin “file”[,skip[,count]]

The .pincbin directive includes f i | e verbatim at the current location. The file is
assumed to contain binary data. The search paths used can be specified with the -1
command-line option (see Chapter 2. “Assembler Command Line Options”). Quotation
marks are required around fi | e.

The ski p argument skips a number of bytes from the start of the file. The count argu-
ment indicates the maximum number of bytes to read. Note that the data is not aligned
in any way, so it is the user's responsibility to make sure that proper alignment is
provided both before and after the .pincbin directive.

.pincbin is supported only in executable sections, and fills all 24 bits of each program
word.

4.11.10 .print “string”

Prints st ri ng on the standard output during assembly.

4.11.11 .version “string”

This directive creates a .note section and places into it an ELF formatted note of type
NT_VERSION. The note's hame is setto string. .version is supported when the
output file format is ELF; otherwise, it is ignored.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 85

16-Bit Assembler, Linker and Utilities User’s Guide

4.12 DIRECTIVES FOR DEBUG INFORMATION

Debug information directives are:

° .def name

°o .dim

°c .endef

o .file “string”

° .line line-number

° .scl class

° .size expression

o .size name, expression

° .slebl28 expr; [, ..., expr,]
° .tag structname

° .type value

o .type name, description

o .ulebl28 exprl[,...,exprn]
° .val addr

412.1 .def name

Begin defining debugging information for a symbol nane; the definition extends until
the.endef directive is encountered.

4.12.2 .dim

Generated by compilers to include auxiliary debugging information in the symbol table.
Only permitted inside .def/.endef pairs.

412.3 .endef

Flags the end of a symbol definition begun with . def.

4.12.4 file “string”

Tells the assembler that it is about to start a new logical file. This information is placed
into the object file.

4125 .lineline-number

Generated by compilers to include auxiliary symbol information for debugging. Only
permitted inside .def/.endef pairs.

4126 .sclclass

Set the storage class value for a symbol. May only be used within .def/.endef pairs.

4.12.7 .size expression

Generated by compilers to include auxiliary debugging information in the symbol table.
Only permitted inside .def/.endef pairs.

4.12.8 .size name, expression

Generated by compilers to include auxilliary information for debugging. This variation
of . size is supported when the output file format is in Executable and Linking Format
(ELF).

DS50002106D-page 86

© 2013-2018 Microchip Technology Inc.

Assembler Directives

4.129 .sleb128 exprq [, ..., expry]

Signed little endian base 128. Compact variable length representation of numbers used
by the DWARF symbolic debugging format.

4.12.10 .tag structname

Generated by compilers to include auxiliary debugging information in the symbol table.
Only permitted inside . def/.endef pairs. Tags are used to link structure definitions in
the symbol table with instances of those structures.

4.12.11 .type value

Records the integer value as the type attribute of a symbol table entry. Only permitted
within .def/.endef pairs.

4.12.12 .type name, description

Sets the type of symbol name to be either a function symbol or an object symbol. This
variation of . type is supported when the output file format is ELF. For example,

.text

.type foo,@function
foo:

return

.data
.type dat,Qobject
dat: .word 0x1234

4.12.13 .uleb128 exprq[,....expry]

Unsigned little endian base 128. Compact variable length representation of numbers
used by the DWARF symbolic debugging format.

4.12.14 .val addr

Records the address addr as the value attribute of a symbol table entry. Only permitted
within . def/.endef pairs.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 87

16-Bit Assembler, Linker and Utilities User’s Guide

DS50002106D-page 88 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE
Chapter 5. Assembler Listing File

5.1 INTRODUCTION

The assembler has the capability to produce listing files. These listing files are not
absolute listing files, and the addresses that appear in the listing are relative to the start
of sections.

Topics covered in this chapter are:

¢ Generation
* Contents

5.2 GENERATION

To generate a listing file whether in MPLAB X IDE, in MPLAB IDE v8 or on the com-
mand line, you will need to specify an option described in Section 2.3 “Options that
Modify the Listing Output.” By default, a listing file is written to a . 1st file.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 89

16-Bit Assembler, Linker and Utilities User’s Guide

5.3 CONTENTS

The listing files produced by the assembler are composed of the several elements.
Example 5-1 shows a sample listing file.

The example listing file contains these elements:

* Header — contains the name of the assembler, the name of the file being assem-
bled, and a page number. This is not shown if the —an option is specified.

« Title Line — contains the title specified by the . title directive. This is not shown
if the —an option is specified.

« Subtitle — contains the subtitle specified by the . sbtt1 directive. This is not
shown if the —an option is specified.

» High-level source if the —ah option is given to the assembler. The format for
high-level source is:

<line #>:<filename> **kk* Jgource>
For example:
l:hello.c **** #include <stdio.h>

« Assembler source if the —al option is given to the assembler. The format for
assembler source is:

<line #> <addr> <encoded bytes> <source>

For example:
245 000004 00 OF 78 mov w0, [wl4d]

Notes:

1: Line numbers may be repeated.

2: Addresses are relative to sections in this module and are not absolute.
3: Instructions are encoded in “little endian” order.

« Symbol table if the —as option is given to the assembler. Both, a list of defined
and undefined symbols will be given. The defined symbols will have the format:

DEFINED SYMBOLS
<filename>:<line #> <section>:<addr> <symbol>

For example:
DEFINED SYMBOLS
foo.s:229 .text:00000000 main

The undefined symbols will have the format:

UNDEFINED SYMBOLS
<symbol>

For example:

UNDEFINED SYMBOLS
printf

DS50002106D-page 90

© 2013-2018 Microchip Technology Inc.

Assembler Listing File

EXAMPLE 5-1:

SAMPLE ASSEMBLER LISTING FILE

MPLAB XCl16 ASM Listing: examplel.l.s
Sample dsPIC Assembler Source Code
For illustration only.

1

O J o U bW

11 0000 48 65
11 6F 20
11 72 6C
11 0A 00
12
13
14
15
16
17 000000 00
18 000002 00
19
20
21 000004 00
22
23
24 000006 00
25
26

page 1

.title " Sample dsPIC Assembler Source Code"
.sbttl " For illustration only."

; dsPIC registers

.equ CORCONL, CORCON

.equ PSV, 2

.section .const,psv

hello:
6C 6C .ascii "Hello world!\n\O"
77 6F
64 21
.text
.global reset
___reset:
; set PSVPAG to page that contains
00 20 mov #psvpage (hello) , w0
00 88 mov w0, PSVPAG
; enable Program Space Visibility
40 A8 bset.b CORCONL, #PSV
; make a pointer to 'hello'
00 20 mov #psvoffset (hello),wO
.end
page 2

MPLAB XCl6 ASM Listing: examplel.l.s
Sample dsPIC Assembler Source Code
For illustration only.

DEFINED SYMBOLS

ABS:00000000 fake

examplel.l.s:10 .const:00000000 hello
examplel.l.s:15 .text:00000000 _ reset

.text:00000000 .text
.data:00000000 .data
.bss:00000000 .bss
.const:00000000 .const

UNDEFINED SYMBOLS

CORCON
PSVPAG

'hello'

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 91

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 92 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE
Chapter 6. Assembler ErrorsWarnings/M essages

6.1 INTRODUCTION

MPLAB XC16 Assembler may generate errors, warnings and messages. To select the
messages that are generated, see Section 2.4 “Options that Control Informational
Output.”

The following topics are covered in this appendix:

 Fatal Errors

e Errors

e Warnings

* Messages

For information on assembler limitations and known problems, see the Readme file.

6.2 FATAL ERRORS

The following errors indicate that an internal error has occurred in the assembler.
Please contact Microchip Technology for support if any of the following errors are
generated:

¢ A dummy instruction cannot be used!

* bad floating-point constant: exponent overflow, probably assembling junk

« bad floating-point constant: unknown error code=error_code

¢ C_EFCN symbol out of scope

» Can't continue

* Can't extend frag num. chars

e Can’t open a bfd on stdout name

« Case value val unexpected at line _line_ of file “_file_
» emulations not handled in this configuration

« error constructing pop_table_name pseudo-op table: err_txt

« expr.c(operand): bad atof_generic return val val

« failed sanity check.

« filename:line_num: bad return from bfd_install_relocation: val

« filename:line_num: bad return from bfd_install_relocation

* Inserting “name” into symbol table failed: error_string

¢ pic30_get_g_or_h_mode_value called with an invalid operand type

» pic30_get p_or_g_mode_value called with an invalid operand type
 pic30_insert_dsp_writeback called with an invalid operand type

« pic30_insert_dsp_x_prefetch_operation called with an invalid offset

« pic30_insert_dsp_x_prefetch_operation called with an invalid operand type
« pic30_insert_dsp_y_prefetch_operation called with an invalid offset

» pic30_insert_dsp_y_prefetch_operation called with an invalid operand type
* invalid segment “name”; segment “name” assumed

* label “temp$” redefined

¢ macros nested too deeply

© 2013-2018 Microchip Technology Inc. DS50002106D-page 93

16-Bit Assembler, Linker and Utilities User’s Guide

* missing emulation mode name

* multiple emulation names specified

« Relocation type not supported by object file format
« reloc type not supported by object file format

* rva not supported

* rva without symbol

e unrecognized emulation name ‘em’

« Unsupported BFD relocation size in bytes

6.3 ERRORS
SymbolABCDEFILMNOPRSTUW

Symbol

.abort detected. Abandoning ship.

User error invoked with the .abort directive.

.else without matching .if - ignored.

An .else directive was seen without a preceding . if directive.
“.elseif” after “.else” - ighored

An .elseif directive specified after a . else directive. Modify your code so that the
.elseif directive comes before the .else directive.

“.elseif” without matching “.if” - ignored.

An .elseif directive was seen without a preceding . if directive.
“.endif” without “.if"

An .endif directive was seen without a preceding . if directive.
.err encountered.

A user error invoked with the . err directive.

sign not valid in data allocation directive.

The # sign cannot be used within a data allocation directive (.byte, .word, .pword,
.long, etc.)

warnings, treating warnings as errors.
The --fatal-warnings command line option was specified on the command line
and warnings existed.

A

absolute address can not be specified for section ".const'.

Section . const is a C compiler resource. Although it is permissible for an application
to allocate constants in section . const explicitly, it is not permissible to assign an
absolute address for this section.

Absolute address must be greater than or equal to O.

A negative absolute address was specified as the target for the DO or BRA instruction.
The assembler does not know anything about negative addresses.

DS50002106D-page 94 © 2013-2018 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

Alignment in CODE section must be at least 2 units.

The alignment value for the . align directive must be at least 2 units. Either no align-
ment was specified or an alignment less than 2 was specified. Modify the .align
directive to have an alignment of at least 2.

Attributes for section 'name’ conflict with implied attributes.

Certain section names have implied attributes. In this case, the attributes specified in
a .section directive conflict with its implied attributes. See Section 4.2 “Directives
that Define Sections.” for more information.

B

backw. ref to unknown label “#:”, 0 assumed.

A backwards reference was made to a local label that was not seen. See
Section 3.6.1 “Reserved Names.” for more information on local labels.

bad defsym; format is --defsym name=value.

The format for the command line option --de fsym is incorrect. Most likely, you are
missing the = between the name and the value.

Bad expression.

The assembler did not recognize the expression. See Chapter 2. “Assembler Com-
mand Line Options” and Chapter 3. “MPLAB XC16 Assembly Language” for more
details on assembler syntax.

bignum invalid; zero assumed.

The big number specified in the expression is not valid.

Byte operations expect an offset between -512 and 511.

The offset specified in [Wn+offset] or [Wn-offset] exceeded the maximum or minimum
value allowed for byte instructions.

C

Cannot call a symbol (name) that is not located in an executable section.
Attempted to CALL a symbol that is not located in a CODE section.
Cannot create floating-point number.

Could not create a floating-point number because of exponent overflow or because of
a floating-point exception that prohibits the assembler from encoding the floating-point
number.

Cannot redefine executable symbol ‘'s’.

A statement label or an executable section cannot be redefined with a . set or .equ
directive.

Cannot reference executable symbol (name) in a data context.

An attempt was made to use a symbol in an executable section as a data address. To
reference an executable symbol in a data context, the psvoffset () or
tbloffset () operatoris required.

Cannot use a constant as the argument of dmaoffset.
An attempt was made to use a constant as the argument to a dmaoffset.
Can not use dmaoffset on a symbol (name) that is not located in a dma section.

For some devices, the dmaoffset () operator can only be used on symbols that are
located in dma memory.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 95

16-Bit Assembler, Linker and Utilities User’s Guide

Cannot use operator on a symbol (name) that is not located in an executable or
read-only section.

The following operators can be applied to symbols in executable or read-only sections
only: tbloffset (), psvoffset (), tblpage (), psvpage (), handle (),
paddr ().

Cannot use operator on a symbol (name) that is not located in a code, psv or
eedata section.

You cannot use one of the special operators (tbloffset, tblpage, psvoffset,
psvpage, handle or paddr) on a symbol thatis notlocated ina code, psv or eedata
section.

Cannot use operator with this directive.

An attempt was made to use a special operator (tbloffset, tblpage, psvoffset,
psvpage, handle or paddr) with a data allocation directive that does not allocate
enough bytes to store the requested data.

Cannot write to output file.

For some reason, the output file could not be written to. Ensure that you have write
permission to the file and that there is enough disk space.

Can’t open file_name for reading.

The specified input source file could not be opened. Ensure that the file exists and that
you have permission to access the file.

D

directive directive not supported in pic30 target.

The pic30 target does not support this directive. This directive is available in other ver-
sions of the assembler, but the pic30 target does not support it for one reason or
another. Please check Chapter 4. “Assembler Directives” for a complete list of sup-
ported directives.

duplicate “else” -ignored.
Two .else directives were specified for the same . i f directive.

E

end of file inside conditional.
The file ends without terminating the current conditional. Add a .endif to your code.
end of macro inside conditional.

A conditional is unterminated inside a macro. The . endi £ directive to end the current
conditional was not specified before seeing the . endm directive.

Expected comma after symbol-name: rest of line ignored.
Missing comma from the . comm directive after the symbol name.
Expected constant expression for fill argument.

The fillargument forthe . £i11, .pfill, .skip, .pskip, .space Or .pspace direc-
tive must be a constant value. Attempted to use a symbol. Replace symbol with a
constant value.

Expected constant expression for new-Ic argument.

The new location counter argument for the . org directive must be a constant value.
Attempted to use a symbol. Replace symbol with a constant value.

DS50002106D-page 96

© 2013-2018 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

Expected constant expression for repeat argument.

The repeat argument for the . £fi11, .pfill, .skip, .pskip, .space Of .pspace
directive must be a constant value. Attempted to use a symbol. Replace symbol with a
constant value.

Expected constant expression for size argument.

The size argument for the .£i11 or .pfil1 directive must be a constant value.
Attempted to use a symbol. Replace symbol with a constant value.

Expression too complex.
An expression is too complex for the assembler to process.

F

floating point number invalid; zero assumed.
The floating-point number specified in the expression is not valid.

Ignoring attempt to re-define symbol ‘symbol’.

The symbol that you are attempting to define with . comm or . 1comm has already been
defined and is not a common symbol.

Invalid expression (expr) contained inside of the brackets.
Assembler did not recognize the expression between the brackets.
invalid identifier for “.ifdef”.

The identifier specified after the . i fde f must be a symbol. See
Section 3.6.1 “Reserved Names.” and Section 4.9 “Directives that Control Conditional
Assembly.” for more details.

Invalid mnemonic: ‘token’.

The token being parsed is not a valid mnemonic for the instruction set.

invalid listing option ‘optarg’.

The sub-option specified is not valid. Acceptable suboptions are c, d, h, 1, m, n, v and

Invalid operands specified (‘insn’). Check operand #n.

The operands specified were invalid. The assembler was able to match n-1 operands
successfully. Although there is no assurance that operand #n is the culprit, it is a
general idea of where you should begin looking.

Invalid operand syntax (‘insn’).

This message usually comes hand-in-hand with one of the previous operand syntax
errors.

Invalid post increment value. Must be +/- 2, 4 or 6.

Assembler saw [Wn]+=value, Where value is expectedto be a +/- 2, 4 or 6. value
was not correct. Specify a value of +/- 2, 4 or 6.

Invalid post decrement value. Must be +/- 2, 4 or 6.

Assembler saw [Wn] -=value, where value is expected to be a +/- 2, 4 or 6. value
was not correct. Specify a value of +/- 2, 4 or 6.

Invalid register in operand expression.

Assembler was attempting to find either pre- or post-increment or decrement. The
operand did not contain a register. Specify one of the registers w0-w16 or W0-W16.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 97

16-Bit Assembler, Linker and Utilities User’s Guide

Invalid register in expression reg.

Assembler saw [junk] or [junk]+=n or [junk]-=n.Was expecting a register
between the brackets. Specify one of the registers w0-w16 or W0-W16 between the
brackets.

Invalid use of ++ in operand expression.

Assembler was attempting to find either pre- or post-increment. The operand specified
was neither pre-increment [++Wn] nor post-increment [Wn++]. Make sure that you
are not using the old syntax of [Wn] ++.

Invalid use of -- in operand expression.

Assembler was attempting to find either pre- or post-decrement. The operand specified
was neither pre-decrement [--Wn] nor post-decrement [Wn--]. Make sure that you
are not using the old syntax of [Wn]--.

Invalid value (#) for relocation name.

The final value of the relocation is not a valid value for the operand associated with the
given relocation.

‘name’ is not a valid attribute name.
While processing a . section directive, the assembler found an identifier that is not a
valid section attribute.

L

Length of .comm “sym” is already #. Not changed to #.
An attempt was made to redefine the length of a common symbol.

M

misplaced)

Missing parenthesis when expanding a macro. The syntax \(...) will literally substitute
the text between the parenthesis into the macro. The trailing parenthesis was missing
from this syntax.

Missing model parameter.

Missing symbol in the .irp or . irpc directive.

Missing right bracket.

The assembler did not see the terminating bracket .

Missing size expression.

The . 1comm directive is missing the length expression.

Missing ‘)’ after formals.

Missing trailing parenthesis when listing the macro formals inside of parenthesis.
Missing ‘)’ assumed.

Expected a terminating parenthesis ‘)’ while parsing the expression. Did not see one
where expected so assumes where you wanted the trailing parenthesis.

Missing ‘]’ assumed.

Expected a terminating brace ‘]’ while parsing the expression. Did not see one where
expected so assumes where you wanted the trailing brace.

Mnemonic not found.
The assembler was expecting to parse an instruction and could not find a mnemonic.

DS50002106D-page 98

© 2013-2018 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

N

Negative of non-absolute symbol name.

Attempted to take the negative of a symbol name that is non-absolute. For example,
.word -sym where symis external.

New line in title.
The .title heading is missing a terminating quote.
non-constant expression in “.elseif” statement.

The argument of the .elseif directive must be a constant value able to be resolved
on the first pass of the directive. Ensure that any . equ of a symbol used in this
argument is located before the directive. See Section 4.9 “Directives that Control
Conditional Assembly.” for more details.

non-constant expression in “.if” statement.

The argument of the . i f directive must be a constant value able to be resolved on the
first pass of the directive. Ensure that any .equ of a symbol used in this argument is
located before the directive. See Section 4.9 “Directives that Control Conditional
Assembly.” for more details.

Number of operands exceeds maximum number of 8.

Too many operands were specified in the instruction. The largest number of operands
accepted by any of the 16-bit device instructions is 8.

O

Only support plus register displacement (i.e., [Wb+Wn]).
Assembler found [Wb-Wn]. The syntax only supports a plus register displacement.
Operands share encoding bits. The operands must encode identically.

Two operands are register with displacement addressing mode [Wb+Wn]. The two
operands share encoding bits so the Wn portion must match or be able to be switched
to match the Wb of the other operand.

operation combines symbols in different segments.

The left-hand side of the expression and the right-hand side of the expression are
located in two different sections. The assembler does not know how to handle this
expression.

operator modifier must be preceded by a #.

The modifier (tbloffset, tblpage, psvoffset, psvpage, handle) was specified
inside of an instruction, but was not preceded by a #. Include the # to represent that
this is a literal.

P

paddr modifier not allowed in instruction.

The paddr operator was specified in an instruction. This operator can only be specified
ina .pword or . long directive as those are the only two locations that are wide
enough to store all 24 bits of the program address.

PC relative expression is not a valid GOTO target.

The assembler does not support expressions which modify the PC of a GOTO
destination such as “. + 4” or “sym + 100".

© 2013-2018 Microchip Technology Inc. DS50002106D-page 99

16-Bit Assembler, Linker and Utilities User’s Guide

R

Register expected as first operand of expression expr.

Assembler found [junk+anything] or [junk-anything]. The only valid expression
contained in brackets with a + or a - requires that the first operand be a register.

Register or constant literal expected as second operand of expression expr.

Assembler found [Wn+junk] or [Wn-junk]. The only valid operand for this format is a
register with plus or minus literal offset or a register with displacement.

Requested alignment 'n' is greater than alignment of absolute section 'name’

When the address () attribute is used to specify an absolute address for a section, it
constrains the ability of the assembler to align objects within the section. The alignment
specified ina .align or .palign directive must not be greater than the alignment
implied by the section address.

S

section alignment must be a power of two.
The argumentto an align () or reverse () section attribute was invalid.

section address Oxnnnn exceeds near data range.
section address must be even.
section address must be in range [0..0x7ffffe].

The argument to an address () section attribute was invalid.
Symbol ‘name’ can not be both weak and common.

Both the . weak directive and . comm directive were used on the same symbol within
the same source file.

syntax error in .startof. or .sizeof.

The assembler found either .startof. or .sizeof., butdid not find the beginning
parenthesis ‘(' or ending parenthesis *)’. See Section 3.9.6 “Obtaining the Size of a Spe-
cific Section.” and Section 3.9.7 “Obtaining the Starting Address of a Specific Section.”
for details on the .startof. and .sizeof. operators.

T

This expression is not a valid GOTO target.

The assembler does not support expressions that include unresolved symbols as a
GOTO destination.

Too few operands (‘insn’).

Too few operands were specified for this instruction.
Too many operands (‘insn’).

Too many operands were specified for this instruction.

U

unexpected end of file in irp or irpc.

The end of the file was seen before the terminating . endr directive.
unexpected end of file in macro definition.

The end of the file was seen before the terminating . endm directive.

DS50002106D-page 100 © 2013-2018 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

Unknown pseudo-op: ‘directive’.

The assembler does not recognize the specified directive. Check to see that you have
spelled the directive correctly.

Note: the assembler expects that anything that is preceded by a dot (.) is a directive.

w

WAR hazard detected.

The assembler found a Write After Read hazard in the instruction. A WAR hazard
occurs when a common W register is used for both the source and destination given
that the source register uses pre/post-increment/decrement.

Word operations expect even offset.

An attempt was made to specify [Wn+offset] or [Wn-offset] where offset is even with a
word instruction.

Word operations expect an even offset between -1024 and 1022.

The offset specified in [Wn+offset] or [Wn-offset] was even, but exceeded the
maximum or minimum value allowed for word instructions.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 101

16-Bit Assembler, Linker and Utilities User’s Guide

6.4 WARNINGS

The assembler generates warnings when an assumption is made so that the assem-
bler could continue assembling a flawed program. Warnings should not be ignored.
Each warning should be specifically looked at and corrected to ensure that the
assembler understands what was intended. Warning messages can sometimes point
out bugs in your program.

Symbol

.def pseudo-op used inside of .def/.endef: ignored.

The specified directive is not allowed within a .def/.endef pair. .def/.endef
directives are used for specifying debugging information and normally are only gener-
ated by the compiler. If you are attempting to specify debugging information for your
assembly language program, note the following:

1. you wantto use the . 1ine directive to specify the line number information for
the symbol, and
2. you cannot nest .def/.endef directives.

.dim pseudo-op used outside of .def/.endef: ignored.

The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a . def directive before specifying this
directive.

.endef pseudo-op used outside of .def/.endef: ignored.

The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a . def directive before specifying this
directive.

fill size clamped to 8.

The size argument (second argument) of the . £111 directive specified was greater
then eight. The maximum size allowed is eight.

fillupper expects a constant positive byte value. 0xXX assumed.

The . fillupper directive was specified with an argument that is not a constant
positive byte value. The last . fi1lupper value that was specified will be used.

fillupper not specified in a code section. .fillupper ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

fillvalue expects a constant positive byte value. OxXX assumed.

The . fillvalue directive was specified with an argument that is not a constant
positive byte value. The last . fi11value value that was specified will be used.

fillvalue not specified in a code section. .fillvalue ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

DS50002106D-page 102 © 2013-2018 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

.In pseudo-op inside .def/.endef: ignored.

The specified directive is not allowed within a .def/.endef pair. .def/.endef
directives are used for specifying debugging information and normally are only gener-
ated by the compiler. If you are attempting to specify debugging information for your
assembly language program, note the following:

1. you wantto use the . 1ine directive to specify the line number information for
the symbol, and

2. you cannot nest .def/.endef directives.
loc outside of .text.

The . 1oc directive must be specified in a . text section. The assembler has seen this
directive in a non-. text section. The directive has no effect.

.loc pseudo-op inside .def/.endef: ignored.

The specified directive is not allowed within a .def/.endef pair. .def/.endef
directives are used for specifying debugging information and normally are only gener-
ated by the compiler. If you are attempting to specify debugging information for your
assembly language program, note the following:

1. you wantto use the . 1ine directive to specify the line number information for
the symbol, and

2. you cannot nest .def/.endef directives.
.palign not specified in a code section. .palign ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

.pbyte not specified in a code section. .pbyte ignhored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

.pfill not specified in a code section. .pfill ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

.pfill size clamped to 8.

The size argument (second argument) of the . £111 directive specified was greater
then eight. The maximum size allowed is eight.

.pfillvalue expects a constant positive byte value. 0xXX assumed.

The .pfillvalue directive was specified with an argument that is not a constant pos-
itive byte value. The last .pfillvalue value that was specified will be used as if this
directive did not exist.

.pfillvalue not specified in a code section. .pfillvalue ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

.pword not specified in a code section. .pword ignored.

The specified directive must be specified in a code section. The assembler has seen
this directive in a data section. This warning probably indicates that you forgot to
change sections to a code section.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 103

16-Bit Assembler, Linker and Utilities User’s Guide

.size pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a .def directive before specifying this
directive.

.scl pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a . def directive before specifying this
directive.

.tag pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a . def directive before specifying this
directive.

.type pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a . def directive before specifying this
directive.

.val pseudo-op used outside of .def/.endef ignored.

The specified directive is only allowed within a .def/.endef pair. These directives
are used to specify debugging information and normally are only generated by the com-
piler. If you are attempting to specify debugging information for your assembly
language program, you must first specify a . def directive before specifying this
directive.

DS50002106D-page 104

© 2013-2018 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

A

Alignment too large: 2215 assumed.

An alignment greater than 2*15 was requested. 2715 is the largest alignment request
that can be made.

B

badly formed .dim directive ignored

The arguments for the . dim directive were unable to be parsed. This directive is used
to specify debugging information and normally is only generated by the compiler. If you
are attempting to specify debugging information for your assembly language program,
the arguments for the . dim directive are constant integers separated by a comma.

D

Directive not specified in a code section. Directive ignored.

The directive on the indicated line must be specified in a code section. The assembler
has seen this directive in a data section. This warning probably indicates that you forgot
to change sections to a code section.

E

error setting flags for “section_name”: error_message.

If this warning is displayed, then the GNU code has changed as the if statement always
evaluates false.

Expecting even address. Address will be rounded.

The absolute address specified for a CALL or GOTO instruction was odd. The address
is rounded up. You will want to ensure that this is the intended result.

Expecting even offset. Offset will be rounded.
The PC-relative instruction at this line contained an odd offset. The offset is rounded
up to ensure that the PC-relative instruction is working with even addresses.

Ignoring changed section attributes for section_name.

This section’s attributes have already been set, and the new attributes do not match
those previously set.

Ignoring fill value in absolute section.

A fill argument cannot be specified for either the . org or .porg directive when the
current section is absolute.

Implied attributes for section 'name' are deprecated.

Certain section names have implied attributes. In this case, a section was defined with-
out listing its implied attributes. For clarity and future compatibility, section attributes
should be listed explicitly. See Section 4.2 “Directives that Define Sections.” for more
information.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 105

16-Bit Assembler, Linker and Utilities User’s Guide

L

Line numbers must be positive integers.

The line number argument of the . 1n or . 1oc directive was less than or equal to zero
after specifying debugging information for a function. These directives are used to
specify debugging information and normally are only generated by the compiler. If you
are attempting to specify debugging information for your assembly language program,
note that function symbols can only exist on positive line numbers.

M

Macro ‘name’ has a previous definition.

A macro has been redefined without removing the previous definition with the . purgem
directive.

mismatched .eb

The assembler has seen a . eb directive without first seeing a matching . bb directive.
The .bb and . eb directives are the begin block and end block directives and must
always be specified in pairs.

@)

Overflow/underflow for .long may lose significant bits.

A constant value specified in a . 1ong directive is too large and will lose significant bits
when encoded.

Q

Quoted section flags are deprecated, use attributes instead.

Previous versions of the assembler recommended the use of single character section
flags. For clarity and future compatibility, attribute names should be used instead.

R

Repeat argument < 0. .fill ignored.

The repeat argument (first argument) of the . £i11 directive specified was less than
zero. The repeat argument must be an integer that is greater than or equal to zero.

Repeat argument < 0. .pfill ignored.
The repeat argument (first argument) of the .p£i11 directive specified was less than
zero. The repeat argument must be an integer that is greater than or equal to zero.

S

Size argument < 0. .fill ignored.

The size argument (second argument) of the . £i111 directive specified was less than
zero. The size argument must be an integer that is between zero and eight, inclusive.
If the size argument is greater than eight, it is deemed to have a value of eight.

Size argument < 0. .pfill ignored

The size argument (second argument) of the .pfi11 directive specified was less than
zero. The size argument must be an integer that is between zero and eight, inclusive.
If the size argument is greater than eight, it is deemed to have a value of eight.

DS50002106D-page 106 © 2013-2018 Microchip Technology Inc.

Assembler Errors/Warnings/Messages

‘symbol_name’ symbol without preceding function.

A .Dbf directive was seen without the preceding debugging information for the function
symbol. This directive is used to specify debugging information and normally is only
generated by the compiler. If you are attempting to specify debugging information for
your assembly language program, you must first . de £ the function symbol and give it
a . type of function (C_FCN = 101).

T

tag not found for .tag symbol_name.

This warning should not be seen unless the assembler was unable to create the given
symbol name. Check your code for errors. If you still receive this warning, contact tech-
nical support.

U

unexpected storage class sclass.

The assembler is processing the . endef directive and has either seen a storage class
that it does not recognize or has not seen a storage class. This directive is used to
specify debugging information and normally is only generated by the compiler. If you
are attempting to specify debugging information for your assembly language program,
you must specify a storage class using the . sc1 directive, and that storage class can-
not be one of the following:

1. Undefined static (C_USTATIC = 14)

External definition (C_EXTDEF = 5)

Undefined label (C_ULABEL =7)

Dummy entry (end of block) (C_LASTENT = 20)

Line # reformatted as symbol table entry (C_LINE = 104)

Duplicate tag (C_ALIAS = 105)

External symbol in dmert public library (C_HIDDEN = 106)

Weak symbol - GNU extension to COFF (C_WEAKEXT = 127)

unknown section attribute ‘flag’.

© N kLD

The . section directive does not recognize the specified section flag. Please see
Section 4.2 “Directives that Define Sections.”, for the supported section flags.

unsupported section attribute ‘i’.

The . section directive does not support the “i” section flag for COFF. Please see
Section 4.2 “Directives that Define Sections.”, for the supported section flags.

unsupported section attribute ‘I'.

The . section directive does not support the “1” section flag for COFF. Please see
Section 4.2 “Directives that Define Sections.”, for the supported section flags.

unsupported section attribute ‘o’.

The . section directive does not support the “o” section flag for COFF. Please see
Section 4.2 “Directives that Define Sections.”, for the supported section flags.

\Y,

Value get truncated to use.

The fill value specified for either the .skip, .pskip, .space, .pspace, .org or
.porg directive was larger than a single byte. The value has been truncated to a byte.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 107

16-Bit Assembler, Linker and Utilities User’s Guide

6.5 MESSAGES

The assembler generates messages when a non-critical assumption is made so that
the assembler could continue assembling a flawed program. Messages may be
ignored. However, messages can sometimes point out bugs in your program.

DS50002106D-page 108 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE
Part 2—MPLAB XC16 Object Linker

Chapter 7. LINKEr OVEIVIEWuiiiii i e eeee et e e e e e e e e e e e s e e e e e e e aeaeeeees 111
Chapter 8. Linker Command Line OPtioNScccceiiiiieiiiiiiiieeeeeere e 115
Chapter 9. LINKer SCIiPTS .uuuuiiiii i et e e et e e e e e e e aeeeaes 135
Chapter 10. LinKer ProCeSSING ...ccccieeiiiiiiieeei s e e e e e e e e e e eees 173
Chapter 11. LinkKer EXAmMPIESoiiiiiii et e e e e 205
Chapter 12. Linker Map File ... 215
Chapter 13. Linker ErrorS/WarningSc.ovvvviiiiiiiiiiie e eeeeee e eee et e e e e e aaeeeaeas 223

© 2013-2018 Microchip Technology Inc. DS50002106D-page 109

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 110 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER'’S GUIDE
Chapter 7. Linker Overview

7.1 INTRODUCTION

MPLAB XC16 Obiject Linker produces binary code from relocatable object code, and
any archive/library files, for the dsPIC® DSC and PIC24 MCU families of devices. The
16-bit linker is an application that provides a platform for developing executable code.
The linker is a part of the GNU linker from the Free Software Foundation.

Topics covered in this chapter are:
» Feature Set

« Linker Usage
* Input/Output Files

7.2 FEATURE SET

Notable features of the linker include:

« Automatic or user-defined stack allocation

Supports 16-bit Program Space Visibility (PSV) window
 Available for Windows, Linux and Mac OS

e Command Line Interface

* Linker scripts for all 16-bit devices

« Available for MPLAB® X IDE and MPLAB IDE v8

7.3 LINKER USAGE

The MPLAB XC16 Object Linker translates object files from the MPLAB XC16 assem-
bler, and archive/library files from the MPLAB XC16 archiver/librarian, into an execut-
able file. See the “MPLAB XC16 C Compiler User’s Guide” (DS50002071) for an
overview of the tools process flow.

In most instances it will not be necessary to invoke the linker directly, as the compiler
driver, xc16-gcc, will automatically execute the linker with all necessary arguments.
Using the linker directly is not simple, and should be attempted only by those with a
sound knowledge of the compiler and linking in general. The compiler often makes
assumptions about the way in which the program will be linked. If the linker sections
are not linked correctly, code failure may result.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 111

16-Bit Assembler, Linker and Utilities User’s Guide

7.4 INPUT/OUTPUT FILES

Linker input and output files are listed below.

TABLE 7-1: LINKER FILES

Extension Description
Input
.0 object file
.a library file
.gld linker script file
Output
.exe, .out binary file
.map map file

Unlike the MPLINK linker, the MPLAB XC16 linker does not generate absolute listing
files. The 16-bit linker is capable of creating a map file and a binary file (that may or
may not contain debugging information).

7.4.1 Object Files

Relocatable code produced from source files. The linker accepts ELF format object files
by default. To specify ELF or COFF object format explicitly, use the —omf command line
option, as shown:

xcl6-1d -omf=elf ...

Alternatively, the environment variable XC16 OMF may be used to specify object file
format for the 16-bit language tools.

7.4.2 Library Files

A collection of object files grouped together for convenience.

7.4.3 Linker Script File

Linker scripts, or command files:

« Instruct the linker where to locate sections
« Specify memory ranges for a given part
« Can be customized to locate user-defined sections at specific addresses

For more on linker script files, see Chapter 9. “Linker Scripts.”

DS50002106D-page 112

© 2013-2018 Microchip Technology Inc.

Linker Overview

EXAMPLE 7-1: LINKER SCRIPT

OUTPUT_FORMAT ("coff-pic30")

OUTPUT_ARCH ("pic30")

MEMORY

{
data (a!xr) : ORIGIN =
program (xr) : ORIGIN =

}

SECTIONS

{

.text

{

* (.vector);

* (.handle) ;
*(.text);
} >program

.bss (NOLOAD) :
{
*(.bss);
} >data

.data :
{
* (.data) ;
} >data
} /* SECTIONS */

WREGO = 0x00;
WREG1 0x02;

7.4.4 Linker Output File

0x800,
0,

1024
(8K * 2)

By default, the name of the linker output binary file is a. out. You can override the
default name by specifying the -o option on the command line. The format of the binary
file is an executable ELF file by default. To specify a ELF or COFF executable file, use
the —omf option as shown in Section 7.4.1 “Object Files.”

7.4.5 Map File

The linker has the capability to produce map files. For details on how to generate a map
file and the components of that file, see Chapter 12. “Linker Map File.”

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 113

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 114 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE
Chapter 8. Linker Command Line Options

8.1 INTRODUCTION

MPLAB XC16 Object Linker may be used on the command line interface as well as with
an IDE.

8.2 HIGHLIGHTS

Topics covered in this chapter are:

e Syntax

» Options that Control Output File Creation

» Options that Control Run-time Initialization

« Options that Control Informational Output

« Options that Modify the Link Map Output

» Options that Specify CodeGuard™ Security Features
« Options that Control the Preprocessor

8.3 SYNTAX

The linker supports many command line options, but in actual practice few of them are
used in any particular context.

xclo-1d [options] file...

Note: Command line options are case sensitive. I

For example, xc16-1d links object files and archives to produce a binary file. To link a
file hello.o:

xcl6-1d -o output hello.o -1pic30

This tells xc16-1d to produce a file called output as the result of linking the file
hello.o with the archive 1ibpic30.a.

When linking a C application, there are typically several archives (also known as “librar-
ies”) which are included in the link command. The list of archives may be specified
within --start-group, ——end-group options to help resolve circular references:

xcl6-1d -o output hello.o --start-group -1lpic30 -1lm -1lc --end-group

The command line options to xc16-1d may be specified in any order, and may be
repeated at will. Repeating most options with a different argument will either have no
further effect, or override prior occurrences (i.e., those farther to the left on the com-
mand line) of that option. Options that may be meaningfully specified more than once
are noted in the descriptions below.

Non-option arguments are object files that are to be linked together. They may follow,
precede or be mixed in with command line options, except that an object file argument
may not be placed between an option and its argument.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 115

16-Bit Assembler, Linker and Utilities User’s Guide

Usually the linker is invoked with at least one object file, but you can specify other forms
of binary input files using -1 (lowercase L) and the script command language. If no
binary input files are specified, the linker does not produce any output, and issues the
message ‘No input files’.

If the linker cannot recognize the format of an object file, it will assume that it is a linker
script. A script specified in this way augments the main linker script used for the link
(either the default linker script or the one specified by using -T). This feature permits
the linker to link against a file that appears to be an object or an archive; but, actually,
merely defines some symbol values, or uses INPUT or GROUP to load other objects.

For options with names that are a single letter, option arguments must either follow the
option letter without intervening white space, or be given as separate arguments
immediately following the option that requires them.

For options with names that are multiple letters, either one dash or two can precede the
option name; for example, -trace-symbol and --trace-symbol are equivalent.
There is one exception to this rule. Multiple-letter options that begin with the letter o can
only be preceded by two dashes.

Arguments to multiple-letter options must either be separated from the option name
by an equal sign, or be given as separate arguments immediately following the
option that requires them. For example, --trace-symbol srec and
--trace-symbol=srec are equivalent. Unique abbreviations of the names of
multiple-letter options are accepted.

DS50002106D-page 116

© 2013-2018 Microchip Technology Inc.

Linker Command Line Options

8.4 OPTIONS THAT CONTROL OUTPUT FILE CREATION

Output file creation options are:

Option ‘No’ Option

--application-id=name

-—architecture arch (-A arch)

-(archives -), —--start-group
archives, --end-group
--coresident

-d, -dc, -dp
--defsym sym=expr

—-—-discard-all (-x)

—-—discard-locals (-X)

--fill=option

--fill-upper value

-—force-exe-suffix

-—-force-1link --no-force-link

--gc-sections

--isr --no-isr

-—-ivt --no-ivt

-legacy-libc

--library libname (-1 libname)
--library-path <dir> (-L <dir>)

—-mreserve

--no-keep-memory

--noinhibit-exec

-omf=format

--output file (-o file)

--pad-flash=size

--preserve=executable

--preserve-all

-p, ——processor PROC

--relocatable (-r, -i, -Ur)

--reserve-const=size

--retain-symbols-file file

--script file (-T file)

--select-objects --no-select-objects

--smart-io --no-smart-io

--strip-all (-s)

--strip-debug (-3)

-Tbss address
-Tdata address
-Ttext address
--undefined symbol (-u symbol) --no-undefined

--wrap symbol

© 2013-2018 Microchip Technology Inc. DS50002106D-page 117

16-Bit Assembler, Linker and Utilities User’s Guide

8.4.1 --application-id=nane

Used for co-residency. Specify an application ID for the application code being com-
piled. This will define extra symbols using the application ID symbol name. For
example:

xcl6-gcc -DVERSION=1 foo.c -o foo.exe -Wl,--application-id=foo

where symbol _version would be mapped to _foo_version.

8.4.2 —--architecture arch (-A arch)

Set architecture.

The architecture argument identifies the particular architecture in the 16-bit devices,
enabling some safeguards and modifying the archive-library search path.

8.4.3 -(archives -), --start-group archives, --end-group

Start and end a group.

The archives should be a list of archive files. They may be either explicit file names, or
-1 options. The specified archives are searched repeatedly until no new undefined ref-
erences are created. Normally, an archive is searched only once in the order that it is
specified on the command line. If a symbol in that archive is needed to resolve an unde-
fined symbol referred to by an object in an archive that appears later on the command
line, the linker would not be able to resolve that reference. By grouping the archives,
they will all be searched repeatedly until all possible references are resolved. Using this
option has a significant performance cost. It is best to use it only when there are
unavoidable circular references between two or more archives.

8.4.4 --coresident
Co-residency Linking.

Inform the linker that a coresident link is being performed and to omit the Reset vector
from a link. Used with ——-no-isr.

Example:

$ xcl6-gcc example.c -mcpu=30f6014 -T p30F6014.gld -o
example.exe -Wl,--no-isr,--coresident

8.4.5 -d, -dc, -dp

Force common symbols to be defined.

Assign space to common symbols even when a relocatable output file is specified (i.e.,
with -r).

8.4.6 --defsym sym=expr

Define a symbol.

Create a global symbol in the output file that contains the absolute address given by
expr. You may use this option as many times as necessary to define multiple symbols
in the command line. A limited form of arithmetic is supported for the expr in this con-
text: you may give a hexadecimal constant or the name of an existing symbol, or use
+ and - to add or subtract hexadecimal constants or symbols.

Note: There should be no white space between sym the equals sign (“=") and
expr.

DS50002106D-page 118 © 2013-2018 Microchip Technology Inc.

Linker Command Line Options

8.4.7 --discard-all (-x)

Discard all local symbols.

8.4.8 -—-discard-locals (-X)

Discard temporary local symbols.

8.4.9 --fill=option
Fill unused program memory. The format is:

--fill=[wn:]expressi on[Raddress[:end_address] | unused]

addr ess and end_addr ess will specify the range of program memory addresses to
fill. If end_addr ess is not provided, then the expr essi on will be written to the spe-
cific memory location at address addr ess. The optional literal value unused may be
specified to indicate that all unused memory will be filled. If none of the location param-
eters are provided, all unused memory will be filled. expr essi on will describe how to
fill the specified memory. The following options are available:

Single value

xcl6-1d --£fi11=0x12345678@unused
Range of values

xclé-1d --£fi11=1,2,3,4,097@0x9d000650:0x9d000750
Incrementing value

xcl6-1d --fil1l1=7+=911Q@unused

By default, the linker will fill using data that is instruction-word length. For 16-bit
devices, the default fill width is 24 bits. However, you may specify the value width using
[wnh:], where wis the fill value's width and n belongs to [1, 3].

Multiple fill options may be specified on the command line; the linker will always
process fill options at specific locations first.

8.4.10 --fill-upper val ue

Set fill value for upper byte of data.

Use val ue as the upper byte (bits 16-23) when encoding data into program memory.
This option affects the encoding of sections created with the psv or eedata attribute,
and also the data initialization template if the --no-pack-data option is enabled. If
this option is not specified, a default value of 0 will be used.

8.4.11 --force-exe-suffix

Force generation of file with . exe suffix.

8.4.12 --force-link

Force linking of objects that may not be compatible.

If a target processor has been specified with the -p, --processor option, the linker
will compare it to information contained in the objects combined during the link. If a pos-
sible conflict is detected, an error (i.e., in the case of a possible instruction set incom-
patibility) or a warning (i.e., in the case of possible register incompatibility) will be
reported. Specify this option to override such errors or warnings.

8.4.13 --no-force-link

Do not force linking of objects that may not be compatible. (This is the default.)

© 2013-2018 Microchip Technology Inc. DS50002106D-page 119

16-Bit Assembler, Linker and Utilities User’s Guide

8.4.14 --gc-sections

Remove unused (dead) functions from code at link time.

Support is for ELF projects only. In order to make the best use of this feature, add the
-ffunction-sections option to the compiler command line.

8.4.15 --isr

Create an interrupt function for unused vectors. (This is the default.)

Ifafunctionnamed DefaultInterrupt is defined by an application, the linker will
insert its address into unused slots in the primary and alternate vector tables. If this
function is not defined, create a function that consists of a single reset instruction and
insert the address of this function.

8416 --no-isr

Do not create an interrupt function for vectors unused by the application.
Do not create a default interrupt function if an application does not provide one.

The unused vector slots will remain unfilled and can be defined in a future link (as in
co-resident applications).

8.4.17 --ivt

The linker is instructed to generate an IVT or AIVT, unless one is explicitly created in
the linker script or by other means.

8.4.18 --no-ivt

The linker is instructed not to generate an IVT or AIVT, unless one is explicitly created
in the linker script or by other means.

8.4.19 -legacy-libc

Use legacy include files and libraries (those distributed with v3.24 and before).

The content of include file and libraries changed in v3.25 to be compatible with the
HI-TECH C compiler.

8.4.20 --library libname (-1 |ibnane)

Search for library | i bnarme.

Add archivefile | i bnane to the list of files to link. This option may be used any number
of times. xc16-1d will search its path-list for occurrences of 1ibl i bnane . a for every
I i bnane specified. The linker will search an archive only once, at the location where
it is specified on the command line. If the archive defines a symbol that was undefined
in some object that appeared before the archive on the command line, the linker will
include the appropriate file(s) from the archive. However, an undefined symbol in an
object appearing later on the command line will not cause the linker to search the
archive again. See the - (option for a way to force the linker to search archives multiple
times. You may list the same archive multiple times on the command line.

If the format of the archive file is not recognized, the linker will ignore it. Therefore, a
version mismatch between libraries and the linker may result in “undefined symbol”
errors.

If file 1ibl i bnane. a is not found, the linker will search for an omf-specific version of
the library with name 1ibl i bname-coff.a or 1ibl i bnane-elf.a.

DS50002106D-page 120 © 2013-2018 Microchip Technology Inc.

Linker Command Line Options

8.4.21 --library-path <dir> (-L <dir>)

Add <di r > to library search path.

Add path <di r > to the list of paths that xc16-1d will search for archive libraries and
xc16-1d control scripts. You may use this option any number of times. The directories
are searched in the order in which they are specified on the command line. All -L
options apply to all -1 options, regardless of the order in which the options appear. The
library paths can also be specified in a link script with the SEARCH_DIR command.
Directories specified this way are searched at the point in which the linker script
appears in the command line.

8.4.22 -mreserve
The link shell will process this option by creating atemporary linker script that will define
a section to reserve a certain range of memory:
[start _address: end_address].
Syntax:
-mreserve=Menory_regi on@t art _addr ess: end_addr ess
The section created will have the name pattern:
reserve Menory_region_ start_address
The address of the section will be: st art _addr ess
The length of the section will be: end_addr ess -start_address +1
Example:
-mreserve=data@0x1000:0x1050
A temporary linker script with the following content will be created:

SECTIONS {
reserve data 0x1000 0x1000: ({
SHORT (0x0) ;
. = 0x51;
}

}

Multiple -mreserve options can be passed to the linker to reserve multiple ranges.

8.4.23 --no-keep-memory

Use less memory and more disk 1/O.

xc16-1d normally optimizes for speed over memory usage by caching the symbol
tables of input files in memory. This option tells xc16-1d to instead optimize for mem-
ory usage by rereading the symbol tables, as necessary. This may be required if
xc16-1d runs out of memory space while linking a large executable.

8.4.24 --noinhibit-exec

Create an output file even if errors occur.

Retain the executable output file whenever it is still usable. Normally, when the linker
encounters an error during the link process, it will exit without writing an output file.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 121

16-Bit Assembler, Linker and Utilities User’s Guide

8.4.25 -omf=f or mat

xc16-1d produces ELF format output binary files by default. Use this option to specify
ELF or COFF format explicitly. Alternatively, the environment variable XC16 OMF may
be used to specify object file format for the 16-bit language tools.

Note: The inputand output file formats must match. The —omf option can be used
to specify both input and output file formats.

8.4.26 --output file (-o file)

Set output file name.
Use fi | e as the name for the program produced by xc16-1d; if this option is not
specified, the name a. out is used by default.

8.4.27 --pad-flash=Si ze

Ensure that the linked output section is padded to a size byte boundary.
Used with co-resident applications.

8.4.28 --preserve=execut abl e

Use a previously-compiled executable to identify where to allocate preserved variables.

8.4.29 --preserve-all

Preserve all variables unless explicitly marked with update.

8.4.30 -p,--processor PROC

Specify the target processor (e.g., 30F2010).

Specify a target processor for the link. This information will be used to detect possible
incompatibility between objects during the link. See --force-1ink for more
information.

8431 --relocatable (-r, -i, -Ur)

Generate relocatable output.
Thatis, generate an output file that can, in turn, serve as inputto xc16-1d. Thisis often
called partial linking. If this option is not specified, an absolute file is produced.

8.4.32 --reserve-const=Si ze

Reserve the specified amount of const data (size). If no value is specified, the
maximum is reserved.

Used with co-resident applications.

8.4.33 --retain-symbols-file file

Keep only symbols listedinfil e.

Retain only the symbols listed in the file f i | e, discarding all others. fi | e is simply a
flat file, with one symbol name per line. This option is especially useful in environments
where a large global symbol table is accumulated gradually, to conserve run-time mem-
ory. --retain-symbols-file does not discard undefined symbols, or symbols
needed for relocations. You may only specify --retain-symbols-file once in the
command line. It overrides -s and -s.

DS50002106D-page 122

© 2013-2018 Microchip Technology Inc.

Linker Command Line Options

8.4.34 --script file (-T file)

Read linker script.

Read link commands from the file f i | e. These commands replace the default link
script of xc16-1d (rather than adding to it), so f i | e must specify everything neces-
sary to describe the target format. If f i | e does not exist, xc16-1d looks for it in the
directories specified by any preceding -1. options. Multiple -T options accumulate.

8.4.35 --select-objects

Select library objects based on options. (This is the default.)

Some compiler options, such as -mlarge-arrays, must be set consistently across
all objects in an application. In order to maintain full compatibility, pre-compiled libraries
must contain multiple versions of each object. Library objects are selected based on a
signature which is created by the compiler and reflects the options used to create the
object. Objects from older libraries that lack a signature are considered to be
compatible if the restrictive compiler options have not been set.

8.4.36 --no-select-objects

Don't select library objects based on options.

This option causes the linker to load the first instance of a library object, regardless of
the options signature. This option can be used to force library compatibility with
restrictive compiler options, even if the library lacks a signature.

8.4.37 --smart-io

Merge I/O library functions when possible. (This is the default.)

Several I/O functions in the standard C library exist in multiple versions. For example,
there are separate output conversion functions for integers, short doubles and long
doubles. If this option is enabled, the linker will merge function calls to reduce memory
usage whenever possible. Library function merging will not result in a loss of
functionality.

8.4.38 --no-smart-io

Don't merge /O library functions.
Do not attempt to conserve memory by merging 1/O library function calls. In some
instances, the use of this option will increase memory usage.

8.4.39 --strip-all (-s)

Strip all symbols.
Omit all symbol information from the output file.

8.4.40 --strip-debug (-S)

Strip debugging symbols.
Omit debugger symbol information (but not all symbols) from the output file.

8.4.41 -Tbss address

Set address of .bss section.

Use addr ess as the starting address for the bss segment of the output file. addr ess
must be a single hexadecimal integer. For compatibility with other linkers, you may omit
the leading 0x usually associated with hexadecimal values.

Normally the address of this section is specified in a linker script.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 123

16-Bit Assembler, Linker and Utilities User’s Guide

8.4.42 -Tdata address

Set address of . data section.

Use addr ess as the starting address for the data segment of the output file. addr ess
must be a single hexadecimal integer. For compatibility with other linkers, you may omit
the leading 0x usually associated with hexadecimal values.

Normally the address of this section is specified in a linker script.

8.4.43 -Ttext address

Set address of . text section.

Use addr ess as the starting address for the text segment of the output file. addr ess
must be a single hexadecimal integer. For compatibility with other linkers, you may omit
the leading 0x usually associated with hexadecimal values.

Normally the address of this section is specified in a linker script.

8.4.44 --undefined symbol (-u symbol)

Start with undefined reference to synbol .

Force synbol to be entered into the output file as an undefined symbol. Doing this
may, for example, trigger linking of additional modules from standard libraries. -u may
be repeated with different option arguments to enter additional undefined symbols.

8.4.45 --no-undefined

Allow no undefined symbols.

8.4.46 --wrap symbol

Use wrapper functions for synbol .

Any undefined reference to synbol will be resolvedto wrap synbol . Any unde-
fined reference to real synbol will be resolved to symbol. This can be used to
provide a wrapper for a system function. The wrapper function should be called
__wrap_synbol . If it wishes to call the system function, it should call

__real symbol.

Here is a trivial example:

void * wrap malloc (int c)

{
printf ("malloc called with %1d\n", c);
return real malloc (c);

}

If you link other code with this file using --wrap malloc, then all calls to malloc will
call the function wrap malloc instead. Thecallto real mallocin

__wrap malloc will call the real malloc function. You may wish to provide a
__real malloc function as well, so that links without the --wrap option will suc-
ceed. If you do this, you should not put the definition of real malloc inthe same
fleas wrap malloc;ifyou do, the assembler may resolve the call before the linker
has a chance towrap ittomalloc.

The --wrap option can be used to intercept a precompiled library call. Be aware that
this option requires an assembly level symbol name. For example, in order to wrap the
C symbol foo, you must specify --wrap _foo, since all C symbols will be given a
leading underscore by the C compiler.

DS50002106D-page 124

© 2013-2018 Microchip Technology Inc.

Linker Command Line Options

8.5 OPTIONS THAT CONTROL RUN-TIME INITIALIZATION

Run-time initialization options are:

Option ‘No’ Option
--data-init --no-data-init
--handles --no-handles
--heap size
--local-stack --no-local-stack
--pack-data -—-no-pack-data
--stack size
--stackguard size

8.5.1 --data-init

Support initialized data. (This is the default.)

Create a special output section named .dinit as atemplate for the run-time initializa-
tion of data. The C start-up module in 1ibpic30. a interprets this template and copies
initial data values into initialized data sections. Other data sections (such as .bss) are
cleared before the main () function is called. Note that the persistent data section
(.pbss) is not affected by this option.

8.5.2 --no-data-init

Don't support initialized data.

Suppress the template which is normally created to support run-time initialization of
data. When this option is specified, the linker will select a shorter form of the C start-up
module in 1ibpic30. a. If the application includes data sections which require initial-
ization, a warning message will be generated and the initial data values discarded.
Storage for the data sections will be allocated as usual.

8.5.3 --handles

Support far code pointers. (This is the default.)

Create a special output section named .handles as a jump table for accessing far
code pointers. Entries in the jump table are used only when the address of a code
pointer exceeds 16 bits. The jump table must be loaded in the lowest range of program
memory (as defined in the linker scripts).

8.5.4 --no-handles

Don't support far code pointers.

Suppress the handle jump table which is normally created to access far code pointers.
The programmer is responsible for making certain that all code pointers can be reached
with a 16 bit address. If this option is specified and the address of a code pointer
exceeds 16 bits, an error is reported.

8.55 --heap size

Set heap to si ze bytes.

Allocate a run-time heap of si ze bytes for use by C programs. The heap is allocated
from unused data memory. If sufficient memory is unavailable, an error is reported.

8.5.6 --local-stack

Prevent allocating the stack in extended data space memory. (This is the default.)

© 2013-2018 Microchip Technology Inc. DS50002106D-page 125

16-Bit Assembler, Linker and Utilities User’s Guide

8.5.7 --no-local-stack

Allow allocating the stack in extended data space memory.

8.5.8 --pack-data

Pack initial data values. (This is the default.)

Fill the upper byte of each instruction word in the data initialization template with data.
This option conserves program memory and causes the template to appear as random,
and possibly invalid instructions, if viewed in the disassembler.

8.5.9 --no-pack-data

Don't pack initial data values.

Fill the upper byte of each instruction word in the data initialization template with OxO0 or
another value specified with --£i11-upper. This option consumes additional pro-
gram memory and causes the template to appear as NOP instructions if viewed in the
disassembler (and will be executed as such by the 16-bit device).

8510 --stack size

Set minimum stack to si ze bytes (default=16).

By default, the linker allocates all unused data memory for the run-time stack. Alterna-
tively, the programmer may allocate the stack by defining a section with the stack attri-
bute. Use this option to ensure that at least a minimum-sized stack is available. The
actual stack size is reported in the link map output file. If the minimum size is not avail-
able, an error is reported. The default minimum stack size does not include a stack
guardband, as described in the next section.

8.5.11 --stackguard Size

Set stack guardband to size bytes (default=16).
By default a portion of the physical stack is reserved for a guardband.

The stack guardband ensures that enough stack space is available to process a stack
overflow exception. The default value (16 bytes) was chosen to handle the worst-case
scenario, and guarantees that an exception handler can be invoked. This option can
be used to reserve additional stack space for exception processing, or to reduce the
guardband size, freeing up additional memory for the stack.

DS50002106D-page 126

© 2013-2018 Microchip Technology Inc.

Linker Command Line Options

OPTIONS THAT CONTROL INFORMATIONAL OUTPUT

Information output options are:

Option ‘No’ Option

--check-sections --no-check-sections

--help

--memory-usage

-—-no-psrd-psrd-check

—-—report-mem

-—-trace (-t)

-—trace-symbol symbol (-y symbol)
-V

--verbose

--version (-v)

——warn—-common

--no-warn-mismatch

——warn—-once

--warn-section-align

8.6.1 --check-sections

Check section addresses for overlaps. (This is the default.)

8.6.2 --no-check-sections

Do not check section addresses for overlaps.

8.6.3 --help

Print option help.
Print a summary of the command line options on the standard output and exit.

8.6.4 --memory-usage

Specify FLASH and Data memory usage. Useful for co-resident applications.

Enables the writing of two data tables, one for FLASH and one for data memory. Each
table is NULL terminated. Each ROW contains a pair of values in FLASH, the firstis the
start address of the consumed memory and the second is the last address.

The FLASH table can be accessed via the global symbol ROM USAGE and the RAM
table can be accessed with the global symbol RAM USAGE. The symbols can be
accessed using tblrd instructions or any other access method that can read the
upper byte of FLASH.

8.6.5 --no-psrd-psrd-check

This is a linker option that can be used to disable the automatic check for PSRD PSRD
violations (back-to-back data flash reads). In general, it is not recommended that this
option be used.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 127

16-Bit Assembler, Linker and Utilities User’s Guide

8.6.6 --no-warn-mismatch

Do not warn about mismatched input files.

Normally xc16-1d will give an error if you try to link together input files that are mis-
matched for some reason, perhaps because they have been compiled for different pro-
cessors or for different endiannesses. This option tells xc16-1d that it should silently
permit such possible errors. This option should only be used with care in cases when
you have taken some special action that ensures that the linker errors are
inappropriate.

Note: This option does not apply to library files specified with -1.

8.6.7 —--report-mem

Print a memory usage report.
Print a summary of memory usage to standard output during the link. This report also
appears in the link map.

8.6.8 -—-trace (-t)

Trace file.
Print the names of the input files as xc16-1d processes them.

8.6.9 —-—trace-symbol symbol (-y symbol)

Trace mentions of synbol .

Print the name of each linked file in which synbol appears. This option may be given
any number of times. On many systems, it is necessary to prep-end an underscore to
the synmbol . This option is useful when you have an undefined symbol in your link but
do not know where the reference is coming from.

8.6.10 -v

Print version and other information.

8.6.11 --verbose

Output lots of information during link.

Display the version number for xc16-1d. Display the input files that can and cannot be
opened. Display the linker script if using a default built-in script.

8.6.12 --version (-v)

Print version information.

8.6.13 --warn-common

Warn about duplicate common symbols.

Warn when a common symbol is combined with another common symbol or with a
symbol definition. Unix linkers allow this somewhat sloppy practice, but linkers on some
other operating systems do not. This option allows you to find potential problems from
combining global symbols. Unfortunately, some C libraries use this practice, so you
may get some warnings about symbols in the libraries as well as in your programs.

There are three kinds of global symbols, illustrated here with C examples:
A definition, which goes in the initialized data section of the output file.

int i = 1;

DS50002106D-page 128 © 2013-2018 Microchip Technology Inc.

Linker Command Line Options

An undefined reference, which does not allocate space. There must be either a
definition or a common symbol for the variable somewhere.

extern int 1i;

A common symbol. If there are only (one or more) common symbols for a variable, it
goes in the uninitialized data area of the output file.

int 1i;

The linker merges multiple common symbols for the same variable into a single sym-

bol. If they are of different sizes, it picks the largest size. The linker turns a common
symbol into a declaration if there is a definition of the same variable.

The --warn-common option can produce five kinds of warnings. Each warning con-

sists of a pair of lines: the first describes the symbol just encountered, and the second
describes the previous symbol encountered with the same name. One or both of the

two symbols will be a common symbol.

Turning a common symbol into a reference, because there is already a definition for the
symbol.

file(section): warning: common of ‘symbol’ overridden by definition
file(section): warning: defined here

Turning a common symbol into a reference, because a later definition for the symbol is
encountered. This is the same as the previous case, except that the symbols are
encountered in a different order.

file(section): warning: definition of ‘symbol’ overriding common
file(section): warning: common is here

Merging a common symbol with a previous same-sized common symbol.

file(section): warning: multiple common of ‘symbol’
file(section): warning: previous common is here

Merging a common symbol with a previous larger common symbol.

file(section): warning: common of ‘symbol’ overridden by larger common
file(section): warning: larger common is here

Merging a common symbol with a previous smaller common symbol. This is the same
as the previous case, except that the symbols are encountered in a different order.
file(section): warning: common of ‘symbol’ overriding smaller common

file(section): warning: smaller common is here

8.6.14 --warn-once

Warn only once per undefined symbol.

Only warn once for each undefined symbol, rather than once per module that refers to
it.

8.6.15 --warn-section-align

Warn if start of section changes due to alignment.

Warn if the address of an output section is changed because of alignment. This means
a gap has been introduced into the (normally sequential) allocation of memory.

Typically, an input section will set the alignment. The address will only be changed if it
is not explicitly specified; that is, if the SECTIONS command does not specify a start
address for the section.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 129

16-Bit Assembler, Linker and Utilities User’s Guide

8.7 OPTIONS THAT MODIFY THE LINK MAP OUTPUT

Link map output modifying options are:
-—-cref
--print-map (-M)
-Map file

8.7.1 --cref

Output cross-reference table.

If a linker map file is being generated, the cross-reference table is printed to the map
file. Otherwise, it is printed on the standard output. The format of the table is intention-
ally simple, so that a script may easily process it, if necessary. The symbols are printed
out, sorted by name. For each symbol, a list of file names is given. If the symbol is
defined, the first file listed is the location of the definition. The remaining files contain
references to the symbol.

8.7.2 —--print-map (-M)

Print map file on standard output.

Print a link map to the standard output. A link map provides information about the link,
including the following:

Where object files and symbols are mapped into memory.

How common symbols are allocated.

All archive members included in the link, with a mention of the symbol which caused
the archive member to be brought in.

8.7.3 -Map file

Write a map file.
Print a link map to the fi | e. See the description of the --print-map (-M) option.

DS50002106D-page 130

© 2013-2018 Microchip Technology Inc.

Linker Command Line Options

8.8 OPTIONS THAT SPECIFY CODEGUARD™ SECURITY FEATURES

Three linker options are related to CodeGuard Security:

--boot LI ST — Specify options for the boot segment
--secure LI ST — Specify options for the secure segment
--general LI ST — Specify options for the general segment

LI ST may include a single segment option or several segment options separated by
colons. Multiple instances of boot, secure, or general options are accepted and will
be combined. An optional equals sign (=) may precede LI ST.

8.8.1 CodeGuard Security Segment Options

The following segment options correspond to specific CodeGuard Security settings as
described in the CodeGuard Security documentation. The linker will validate that any
CodeGuard Security option(s) specified are supported by the target device. An error

will be reported if the target device does not support a particular option. Valid options
settings will be encoded as configuration words for the target device.

For MPLAB X IDE, these options will appear in the Project Properties window under
xc16-ld options. For MPLAB IDE v8, these options will appear in the Build Options dia-
log as a sub-category of the XC16 LINK tab. They will be passed to the linker via
command line.

TABLE 8-1: CODEGUARD™ SECURITY SEGMENT OPTIONS
Segment(s) Supported

Option
boot secure general

x

no_ram **

small ram

medium ram

large ram
no flash **

small flash std

medium_ flash std
large flash std
small flash high

medium_ flash high

large flash high

X| X[X| X[X| X| X| X| X| X[X|X

no_eeprom **

X| X[X[X X| X| X| X]| X[X]| X|X

eeprom

small eeprom

medium eeprom

large eeprom

no write protect ** X

X | X | X| X[X

write protect X

no_code protect **

code protect std

X | X | X| X[X

code protect high

** default setting

© 2013-2018 Microchip Technology Inc. DS50002106D-page 131

16-Bit Assembler, Linker and Utilities User’s Guide

EXAMPLE 8-1: CODEGUARD SECURITY SEGMENT OPTIONS

-—boot small flash std
--boot=small ram:medium flash std:eeprom

--secure no ram:small flash std
--secure=medium ram:large flash high

--general write protect

--general=no_write protect:code protect high

8.8.2 User-Defined Segment Options

The following segment options are supported for any device. They enable the program-
mer to take advantage of special language features created for CodeGuard Security,
including separately linked application segments and access entry branch tables.
These options do not require CodeGuard Security support in hardware and will not be
encoded as configuration word settings.

Note: User-defined segment options should not be combined with CodeGuard
Security options. They are intended for debugging and/or special
bootloader applications.

TABLE 8-2: USER-DEFINED SEGMENT OPTIONS

Segment(s) Supported

Option
boot secure general
ram_size=nn X X
flash size=nn X X

nn is a positive integer in decimal or hex format

EXAMPLE 8-2: USER-DEFINED SEGMENT OPTIONS

--boot flash size=128

--boot=ram size=64:flash size=256

--secure flash size=2

56

--secure=ram size=64:flash size=256

DS50002106D-page 132

© 2013-2018 Microchip Technology Inc.

Linker Command Line Options

8.9

OPTIONS THAT CONTROL THE PREPROCESSOR

Linker scripts are passed to the C preprocessor before actual linking begins. This pro-
vides an opportunity to substitute macro definitions and to include conditional blocks of
code. The C preprocessor is well-known by programmers and documentation is widely
available.

Linker preprocessor options are listed in the sections below.
-D<macro>[=value]
—-—no-cpp

--save-gld

8.9.1 -D<macro>[=val ue]

Define a macro (with optional value) to the preprocessor.

Macros can be used to substitute literal values into a script, such as for the origin or
length of memory regions. They can also be used to select conditional blocks of code
using directives such as #1ifdef, #endif.

8.9.2 --no-cpp

Do not preprocess linker scripts.

Linker script preprocessing is enabled by default. This option can be used to disable
preprocessing.

Care should be used in selecting this option. If a linker script requires preprocessing
(such as for conditional blocks of text), using this option will cause a processing error.

8.9.3 --save-gld

Save preprocessed linker scripts.

By default the result of preprocessing is a temporary file. This option can be used to
save the preprocessed linker script. A filename is automatically generated based on
the linker script filename.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 133

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 134 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE
Chapter 9. Linker Scripts

9.1 INTRODUCTION

Linker scripts are used to control MPLAB XC16 Object Linker functions. You can cus-
tomize your linker script for specialized control of the linker.

9.2 HIGHLIGHTS

Topics covered in this chapter are:

« Overview of Linker Scripts

e Command Line Information

» Contents of a Linker Script

e Creating a Custom Linker Script

« Linker Script Command Language
« Expressions in Linker Scripts

9.3 OVERVIEW OF LINKER SCRIPTS

Linker scripts control all aspects of the link process, including:

« allocation of data memory and program memory

* mapping of sections from input files into the output file

« construction of special data structures (such as interrupt vector tables)
« assignment of absolute SFR addresses for the target device

9.3.1 Contents

Linker scripts are text files that contain a series of commands. Each command is either
a keyword, possibly followed by arguments, or an assignment to a symbol. Comments
may be included just as in C, delimited by /* and */. As in C, comments are syntacti-
cally equivalent to white space. Unlike C, white space is significant and is often not
permitted between syntax elements.

9.3.2 File Names and Locations

The 16-bit Language Tools include a set of standard linker scripts: device-specific linker
scripts (e.g., p30£3014.g1d) and one generic linker script (p30sim.gld).

Standard linker script files are provided for each device and are located under:
Install _Dir /support/Devi ceFam |y/gld

where I nstal | _Di r in the installation directory for the MPLAB XC16 C compiler and
Devi ceFami | y is be the name of the device family (e.g., dsPIC33EP) or generic.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 135

16-Bit Assembler, Linker and Utilities User’s Guide

9.4 COMMAND LINE INFORMATION

Linker scripts are specified on the command line using either the —T option or the
--script option (see Section 8.4 “Options that Control Output File Creation.”):

xcl6-1d -o output.cof output.o --script
. .\support\dsPIC30F\gld\p30£3014.gld

If the linker is invoked through xc16-gcc, add the -w1, prefix to allow the option to be
passed to the linker:

xcl6-gcc -o output.cof output.s -Wl,--script,
. .\support\dsPIC30F\gld\p30£3014.gld

If no linker script is specified, the linker will use an internal version known as the default
linker script. The default linker script has memory range information and SFR defini-
tions that are appropriate for the command line simulator (mdb). The default linker
script can be examined by invoking the linker with the --verbose option:

xcl6-1d —--verbose

Note: The default linker script is functionally equivalent to the generic linker script
p30sim.gld.

Linker scripts are located by using the library search path which, by default, includes
the standard directories provided with the install.

9.5 CONTENTS OF A LINKER SCRIPT

In the next several sections, a device-specific linker script for the dsPIC30F3014 will be
examined. The linker script contains the following categories of information:

* Processor and Startup Modules

* Memory Region Information

« Base Memory Addresses

« Input/Output Section Map

« Interrupt Vector Tables

e SFR Addresses

95.1 Processor and Startup Modules

The first several lines of a linker script define the processor and startup modules:
/*

** Linker Script for 30£3014

*/

OUTPUTiARCH("3OF3014")
CRTO_STARTUP (crt0_standard.o)
CRT1 STARTUP (crtl standard.o)

OPTIONAL (-1p30F3014)

The OUTPUT ARCH command specifies the target processor. The CRTn_STARTUP
commands specify two C run-time startup modules to be loaded from archives. The
linker will select one of these based on whether data initialization has been enabled.
The OPTIONAL command specifies a device-specific library that should be opened if
available. If the library file cannot be found, the link will continue without error unless
there are unresolved references in the application.

DS50002106D-page 136 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.5.2 Memory Region Information

The next section of a linker script defines the various memory regions for the target
device using the MEMORY command.

For the dsPIC30F3014, several memory regions are defined:

/*

** Memory Regions

*/

MEMORY

{
data : ORIGIN = 0x800, LENGTH = 2048
program : ORIGIN = 0x100, LENGTH = ((8K * 2) - 0x100)
reset : ORIGIN = 0, LENGTH = (4)
ivt : ORIGIN = 0x04, LENGTH = (62 * 2)
aivt : ORIGIN = 0x84, LENGTH = (62 * 2)
__FOSC : ORIGIN = 0xF80000, LENGTH = (2)
__FWDT : ORIGIN = 0xF80002, LENGTH = (2)
__FBORPOR : ORIGIN = 0xF80004, LENGTH = (2)
__CONFIG4 : ORIGIN = 0xF80006, LENGTH = (2)
__CONFIGS : ORIGIN = 0xF80008, LENGTH = (2)
__FGS : ORIGIN = 0xF8000A, LENGTH = (2)
__FUIDO : ORIGIN = 0x8005C0, LENGTH = (2)
__FUIDI : ORIGIN = 0x8005C2, LENGTH = (2)
__FUIDZ : ORIGIN = 0x8005C4, LENGTH = (2)
__FUID3 : ORIGIN = 0x8005C6, LENGTH = (2)
eedata : ORIGIN = 0x7FFC00, LENGTH = (1024)

}

Each memory region is range-checked as sections are added during the link process.
If any region overflows, a link error is reported.

MEMORY regions are:

» Data Region

* Program Region

* Reset, Ivt and Aivt Regions
* Fuse Configuration Regions
¢ Unit ID Regions

« EEDATA Memory Region

9.5.2.1 DATA REGION

data : ORIGIN = 0x800, LENGTH = 2048

The data region corresponds to the RAM memory of the dsPIC30F3014 device, and is
used for both initialized and uninitialized variables. The starting address of region data
is 0x800. This is the first usable location in RAM, after the space reserved for
memory-mapped SFRs.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 137

16-Bit Assembler, Linker and Utilities User’s Guide

9.5.2.2 PROGRAM REGION

program : ORIGIN = 0x100, LENGTH = ((8K * 2) - 0x100)

The program region corresponds to the Flash memory of the dsPIC30F3014 device
that is available for user code, library code and constants. The starting address of
region program is 0x100. This is the first location in Flash that is available for general
use. Addresses below 0x100 are reserved for the Reset instruction and the two vector
tables.

The length specification of the program region deserves particular emphasis. The
(8K * 2) portion indicates that the dsPIC30F3014 has 8K instruction words of Flash
memory, and that each instruction word is 2 address units wide. The - 0x100 portion
reflects the fact that some of the Flash is reserved for the Reset instruction and vector
tables.

Note: Instruction words in the 16-bit devices are 24 bits, or 3 bytes, wide. How-
ever, the PC increments by 2 for each instruction word for compatibility with
data memory. Address and lengths in program memory are expressed in
PC units.

9.5.2.3 RESET, IVT AND AIVT REGIONS

reset : ORIGIN = O, LENGTH = (4)

The Reset region corresponds to the 16-bit Reset instruction at address 0 in program
memory. The Reset region is 4 address units, or 2 instruction words, long. This region
always contains a GOTO instruction that is executed upon device reset. The GOTO
instruction is encoded by data commands in the section map (see Section 9.5.4.1).

ivt : ORIGIN = 0x04, LENGTH = (62 * 2)
aivt : ORIGIN = 0x84, LENGTH = (62 * 2)

The ivt and aivt regions correspond to the interrupt vector table and alternate inter-
rupt vector table, respectively. Each interrupt vector table contains 62 entries, each is
2 address units in length. Each entry represents a word of program memory, which con-
tains a 24-bit address. The linker initializes the vector tables with appropriate data,
according to standard naming conventions.

Regions reset, ivt and aivt comprise the low address portion of Flash memory that
is not available for user programs.

9.5.24 FUSE CONFIGURATION REGIONS

__FOSC : ORIGIN = 0xF80000, LENGTH = (2)
__FWDT : ORIGIN = 0xF80002, LENGTH = (2)
__FBORPOR : ORIGIN = 0xF80004, LENGTH = (2)
__CONFIG4 : ORIGIN = 0xF80006, LENGTH = (2)
__CONFIGS : ORIGIN = 0xF80008, LENGTH = (2)

FGS : ORIGIN = 0xF8000A, LENGTH = (2)

These regions correspond to the dsPIC30F3014 configuration registers.

Each fuse configuration region is exactly one instruction word long. If sections are
defined in the application source code with the standard naming convention, the sec-
tion contents will be written into the appropriate configuration register(s). Otherwise,
the registers are left uninitialized. If more than one value is defined for any configuration
region, a link error will be reported.

DS50002106D-page 138 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.5.25 UNIT ID REGIONS

__FUIDO : ORIGIN = 0x8005C0, LENGTH = (2)
__FUID1 : ORIGIN = 0x8005C2, LENGTH = (2)
__FUID2 : ORIGIN = 0x8005C4, LENGTH = (2)
__FUID3 : ORIGIN = 0x8005C6, LENGTH = (2)

The unit ID regions correspond to locations in program memory that may be
programmed with application-specific information.

9.5.2.6 EEDATA MEMORY REGION

eedata : ORIGIN = 0x7FFC00, LENGTH = (1024)

The eedata region corresponds to non-volatile data flash memory located in high
memory. Although located in program memory space, the data flash is organized like
data memory. The total length is 1024 bytes.

9.5.3 Base Memory Addresses

This portion of the linker script defines the base addresses of several output sections
in the application. Each base address is defined as a symbol with the following syntax:
name = value;

The symbols are used to specify load addresses in the section map. For the
dsPIC30F3014, several base memory addresses are defined. Not all of these symbols
are referenced in the section map; some are included for informational purposes.

/*
** Base Memory Addresses - Program Memory

*/

__RESET BASE = 0; /* Reset Instruction */
__IVT BASE = 0x04; /* Interrupt Vector Table */
__AIVT BASE = 0x84; /* Alternate Interrupt Vector Table */
__CODE_BASE = 0x100; /* Handles, User Code, Library Code */
/*

** Base Memory Addresses - Data Memory

*/

__SFR_BASE = 0; /* Memory-mapped SFRs */
__DATA BASE = 0x800; /* X and General Purpose Data Memory */
___YDATA BASE = 0x0CO00; /* Y Data Memory for DSP Instructions */

© 2013-2018 Microchip Technology Inc. DS50002106D-page 139

16-Bit Assembler, Linker and Utilities User’s Guide

954 Input/Output Section Map

The section map is the heart of the linker script. It defines how input sections are
mapped to output sections. Note that input sections are portions of an application that
are defined in source code, while output sections are created by the linker. Generally,
several input sections may be combined into a single output section.

For example, suppose that an application is comprised of five different functions, and
each function is defined in a separate source file. Together, these source files will pro-
duce five input sections. The linker will combine these input sections into a single out-
put section. Only the output section has an absolute address.

If any input or output sections are empty, there is no penalty or storage cost for the
linked application. Most applications will use only a few of the many sections that
appear in the section map.

¢ Output Section .reset

< Output Section .text

» User-Defined Section in Program Memory

¢ Output Sections in Configuration Memory

» User-Defined Section in Data Flash Memory
« In-Circuit Debugger Memory

» User-Defined Section in Data Memory

954.1 OUTPUT SECTION . r eset

Section . r eset contains a GOTO instruction, created at link time, from output section
data commands:
/*
** Reset Instruction
*/
.reset = RESET BASE :
{
SHORT (ABSOLUTE (reset));
SHORT (0x04) ;
SHORT ((ABSOLUTE (__reset) >> 16) & 0x7F);
SHORT (0) ; o
} >reset

Each SHORT () data command causes a 2 byte value to be included. There are two
expressions which include the symbol reset, which by convention is the first func-
tion invoked after a device reset. Each expression calculates a portion of the address
of the Reset function. These declarations encode a 24-bit GOTO instruction, which is
two instruction words long.

The ABSOLUTE () function specifies the final value of a program symbol after linking.
If this function were omitted, a relative (before-linking) value of the program symbol
would be used.

The >reset portion of this definition indicates that this section should be allocated in
the Reset memory region.

DS50002106D-page 140 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.54.2 OUTPUT SECTION . t ext

Section . text collects executable code from all of the application’s input files.
/*

** User Code and Library Code

*/

.text

{
*(.init);
*(.user init);
keep (* (.handle)) ;
keep (* (.1isr));
*(.1libc) *(.libm)
(.1lib¥) ;

} >program

(.libdsp); / keep together in this order */

Several different input sections are collected into one output section. This was done to
ensure the order in which the input sections are loaded.

TABLE 9-1: SECTION TYPES AND NAMES
Section Type | Section Name Description
input .init Contains the startup code that is executed immediately
after device reset. It is positioned first so that its address
may be readily available.
input .user_init Contains a call table for user initialization functions.
input .handle Used for function pointers and is loaded first at low
addresses. keep is required to prevent -gcc-sections
from deleting this code.
input .isr Used for interrupt service functions. Again, keep is used
to preserve the code.
library .libc These sections must be grouped together to ensure local-
.libm ity of reference.
.libdsp
library .1lib* Collects other libraries, such as the peripheral libraries
(which are allocated in section . libperi).

The input section . text is not explicitly mapped so that the linker may distribute code
around PSV sections in order to more successfully satisfy PSV address requirements.

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 141

16-Bit Assembler, Linker and Utilities User’s Guide

9.54.3 USER-DEFINED SECTION IN PROGRAM MEMORY

A stub is included for user-defined output sections in program memory. This stub may
be edited as needed to support the application requirements. Once a standard linker
script has been modified, it is called a “custom linker script.” In practice, it is often sim-
pler to use section attributes in source code to locate user-defined sections in program
memory. See Chapter 11. “Linker Examples.” for more information.

/*

** User-Defined Section in Program Memory

* %

** note: can specify an address using

xx the following syntax:
* %

*x usercode 0x1234 :

* * {

*x * (usercode) ;

* % } >program

*/

usercode :

{
* (usercode) ;

} >program
An exact, absolute starting address can be specified, if necessary. If the address is
greater than the current location counter, the intervening memory space will be skipped
and filled with zeros. If the address is less than the current location counter, a section
overlap will occur. Whenever two output sections occupy the same address range, a
link error will be reported. Overlapping sections in program memory can not be
supported.

Note: Each memory region has its own location counter. I

DS50002106D-page 142 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.5.44 USER-DEFINED CONSTANTS IN PROGRAM MEMORY

A comment block is included that describes how to define sections that will be
accessed via the PSV window or the EDS window. Such sections are defined with the
psv attribute. The syntax used to represent a PSV section address is different from
other type sections. In particular, the Load Memory Address (LMA) should be defined,
not the Virtual Memory Address (VMA). The LMA is unique and describes where the
section is located in program memory. The VMA describes a location in the data win-
dow that may be shared by multiple pages of program memory, and is therefore not
unique.

/ *

** User-Defined Constants in Program Memory

* %

** For PSV-type sections, the Load Memory Address (LMA)

** should be specified as follows:
* %

el userconst : AT (0x1234)
* % {

*x * (userconst) ;

*x } >program

* K

** Note that mapping PSV sections in linker scripts
** is not generally recommended.

* %

** Because of page alignment restrictions, memory is
** often used more efficiently when PSV sections

** do not appear in the linker script.

* K

** For more information on memory allocation,

** please refer to chapter 10, "Linker Processing"
** in the Assembler, Linker manual (DS51317).
*/

As noted, defining PSV-type sections in the linker script is not generally recommended.
This is because sections that appear in the linker script are allocated sequentially, and
PSV sections have significant page alignment restrictions. For more information on
memory allocation and PSV sections, see Chapter 10. “Linker Processing.”

© 2013-2018 Microchip Technology Inc. DS50002106D-page 143

16-Bit Assembler, Linker and Utilities User’s Guide

9.54.5 OUTPUT SECTIONS IN CONFIGURATION MEMORY

Several sections are defined that match the Fuse Configuration memory regions:

/*
** Configuration Fuses
*/
__FOSC :

{ *(__FOSC.sec) } > FOSC
__FWDT :

{ *(__FWDT.sec) } > FWDT
__FBORPOR :

{ *(__FBORPOR.sec) } > FBORPOR
__CONFIG4

{ *(__CONFIG4.sec) } > CONFIGA4
__CONFIGS5 :

{ *(__CONFIG5.sec) } > CONFIG5
__FGS :

{ *(_ _FGS.sec) } > FGS
__FICD :

{ *(__FICD.sec) } > FICD
__FUIDO

{ *(__FUIDO.sec) } > FUIDO
__FUID1

{ *(__FUIDl.sec) } > FUID1
__FUID2

{ *(__FUID2.sec) } > FUID2
__FUID3

{ *(__FUID3.sec) } > FUID3

The Configuration Fuse sections are supported by macros defined in the 16-bit
device-specific include files in support/inc and the C header files in support/h.

For example, to disable the Watchdog Timer in assembly language:

.include "p30£f6014.inc"
config FWDT, WDT OFF

The equivalent operation in C would be:

#include "p30£f6014.h"
_FWDT (WDT_OFF) ;

Configuration macros have the effect of changing the current section. In C, the macro
should be used outside of any function. In assembly language, the macro should be
followed by a . section directive.

DS50002106D-page 144

© 2013-2018 Microchip Technology Inc.

Linker Scripts

9.54.6 USER-DEFINED SECTION IN DATA FLASH MEMORY

A stub is included for user-defined output sections in EEDATA memory. This stub may
be edited as needed to support the application requirements. Once a standard linker
script has been modified, it is called a “custom linker script.” In practice, it is often sim-
pler to use section attributes in source code to locate user-defined sections in data flash
memory. See Chapter 11. “Linker Examples.” for more information.

/*

** User-Defined Section in Data Flash Memory

* *

** note: can specify an address using

xx the following syntax:
* %
el eedata Ox7FF100 :
* * {
*x * (eedata) ;
* x } >eedata
*/
eedata :
{
* (eedata) ;
} >eedata

An exact, absolute starting address can be specified, if necessary. If the address is
greater than the current location counter, the intervening memory will be skipped and
filled with zeros. If the address is less than the current location counter, a section over-
lap will occur. Whenever two output sections occupy the same address range, a link
error will reported. Overlapping sections in EEDATA memory can not be supported.

Note: Each memory region has its own location counter.

9.5.4.7 IN-CIRCUIT DEBUGGER MEMORY

An in-circuit debugger/emulator requires a portion of data memory for its variables and
stack. Since the debugger is linked separately and in advance of user applications, the
block of memory must be located at a fixed address and dedicated for use by the
debugger.

/*

** ICD Debug Exec

* %

** This section provides optional storage for

** the in-circuit debugger. Define a global symbol

** named ICD2RAM to enable the debugger. This section
** must be loaded at data address 0x800.

*/

.icd __ DATA BASE (NOLOAD) :

{
. += (DEFINED (_ ICD2RAM) ? 0x50 : 0);
} > data

Section . icd is designed to optionally reserve memory for the in-circuit debug-
ger/femulator. If global symbol ICD2RaAM is defined at link time, 0x50 bytes of mem-
ory at address 0x800 will be reserved. The (NOLOAD) attribute indicates that no initial
values need to be loaded for this section. The name for this symbol was created when
there was only one in-circuit debugger, the MPLAB ICD 2.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 145

16-Bit Assembler, Linker and Utilities User’s Guide

9.54.8 USER-DEFINED SECTION IN DATA MEMORY

A stub is included for user-defined output sections in data memory. This stub may be
edited as needed to support the application requirements. Once a standard linker script
has been modified, it is called a “custom linker script.” In practice, it is often simpler to
use section attributes in source code to locate user-defined sections in data memory.
See Chapter 11. “Linker Examples.” for more information.

/*

** User-Defined Section in Data Memory

* *

** note: can specify an address using

xx the following syntax:
* %

*x userdata 0x1234 :

* * {

*x * (userdata) ;

* x } >data

*/

userdata :

{
* (userdata) ;
} >data

An exact, absolute starting address can be specified, if necessary. If the address is
greater than the current location counter, the intervening memory space will be skipped
and filled with zeros. If the address is less than the current location counter, a section
overlap will occur. Whenever two output sections occupy the same address range, a
link error will be reported. Overlapping sections in data memory cannot be supported.

DS50002106D-page 146

© 2013-2018 Microchip Technology Inc.

Linker Scripts

955 Interrupt Vector Tables

The primary and alternate interrupt vector tables are defined in a second section map,
near the end of the standard linker script:

/*

** Section Map for Interrupt Vector Tables

*/

SECTIONS

{

/%
** Primary Interrupt Vector Table
*/
.ivt _ IVT BASE :
{
LONG (DEFINED (_ ReservedTrapO) ? ABSOLUTE (__ReservedTrap0)
ABSOLUTE (_ DefaultInterrupt));
LONG (DEFINED(_OscillatorFail) ? ABSOLUTE(_ OscillatorFail)
ABSOLUTE (_ DefaultInterrupt));
LONG (DEFINED (AddressError) ? ABSOLUTE (__AddressError)
ABSOLUTE (_ DefaultInterrupt));

LONG (DEFINED(_ Interrupt53) ? ABSOLUTE(_ Interrupt53)

ABSOLUTE (. DefaultInterrupt));
} >ivt
The vector table is defined as a series of LONG () data commands. Each vector table
entry is 4 bytes in length (3 bytes for a program memory address plus an unused phan-
tom byte). The data commands include an expression using the DEFINED () function
and the ? operator. A typical entry may be interpreted as follows:

If symbol * OscillatorFail” is defined, insert the absolute address of that symbol. Oth-
erwise, insert the absolute address of symbol “ Defaultinterrupt”.

By convention, a function that will be installed as the second interrupt vector should
have the name _ OscillatorFail. If such a function is included in the link, its
address is loaded into the entry. If the function is not included, the address of the default
interrupt handler is loaded instead. If the application has not provided a default interrupt
handler (i.e., a function with the name _ DefaultInterrupt), the linker will gener-
ate one automatically. The simplest default interrupt handler is a Reset instruction.

Note: The programmer must insure that functions installed in interrupt vector
tables conform to the architectural requirements of interrupt service rou-
tines.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 147

16-Bit Assembler, Linker and Utilities User’s Guide

The contents of the alternate interrupt vector table are defined as follows:

/*
** Alternate Interrupt Vector Table
*/
.aivt __ AIVT BASE

{

LONG(DEFINED(__AltReservedTrapO) ? ABSOLUTE(__AltReservedTrapO)

(DEFINED(ReservedTrapO0) ? ABSOLUTE (_ ReservedTrapO0)

ABSOLUTE (__ DefaultInterrupt)));
LONG (DEFINED (__AltOscillatorFail) ? ABSOLUTE(_AltOscillatorFail)

(DEFINED(_ OscillatorFail) ? ABSOLUTE (. OscillatorFail)

ABSOLUTE (_ DefaultInterrupt)));
LONG (DEFINED(AltAddressError) ? ABSOLUTE (_ AltAddressError)

(DEFINED(_ AddressError) ? ABSOLUTE (_ AddressError)

ABSOLUTE (_ DefaultInterrupt)));

LONG(DEFINED(__AltInterrupt53) ? ABSOLUTE(__AltInterrupt53)
(DEFINED(Interrupt53) ? ABSOLUTE (_ Interrupt53)

ABSOLUTE (_ DefaultInterrupt)));
} >aivt

The syntax of the alternate interrupt vector table is similar to the primary, except for an
additional expression that causes each alternate table entry to default to the corre-
sponding primary table entry.

9.5.6 SFR Addresses

Absolute addresses for the SFRs are defined as a series of symbol definitions:

* *

* %
xx dsPIC Core Register Definitions
* *

* * *

/
WREGO = 0x0000;
_WREGO = 0x0000;
WREGL = 0x0002;
_WREG1 = 0x0002;

Note: If identifiers in a C or assembly program are defined with the same names
as SFRs, multiple definition linker errors will result.

Two versions of each SFR address are included, with and without a leading under-
score. This is to enable both C and assembly language programmers to refer to the
SFR using the same name. By convention, the C compiler adds a leading underscore
to every identifier.

DS50002106D-page 148 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.6 CREATING A CUSTOM LINKER SCRIPT

The standard 16-bit linker scripts are general purpose and will satisfy the demands of
most applications. However, occasions may arise where a custom linker script is
required.

To create a custom linker script, start with a copy of the standard linker script that is
appropriate for the target device. For example, to customize a linker script for the
dsPIC30F3014 device, start with a copy of p30£3014.g1d.

Customizing a standard linker script will usually involve editing sections or commands
that are already present. For example, stubs for user-defined sections in both data
memory and program memory are included. These stubs may be renamed and/or cus-
tomized with absolute addresses if required.

It is recommended that unused sections be retained in a custom linker script, since
unused sections will not impact application memory usage. If a section must be
removed for a custom script, C style comments can be used to disable it.

9.7 LINKER SCRIPT COMMAND LANGUAGE

Linker scripts are text files that contain a series of commands. Each command is either
a keyword (possibly followed by arguments) or an assignment to a symbol. Multiple
commands may be separated using semicolons. White space is generally ignored.

Strings such as file or format names can normally be entered directly. If the file name
contains a character, such as a comma, which would otherwise serve to separate file
names, the file name may be specified in double quotes. There is no way to use a dou-
ble quote character in a file name.

Comments may be included just as in C, delimited by /* and */. As in C, comments
are syntactically equivalent to white space.

« Basic Linker Script Concepts

« Commands Dealing with Files
 Assigning Values to Symbols

¢ MEMORY Command

* SECTIONS Command

e Other Linker Script Commands

9.7.1 Basic Linker Script Concepts

The linker combines input files into a single output file. The output file and each input
file are in a special data format known as an object file format. Each file is called an
object file. Each object file has, among other things, a list of sections. A section in an
input file is called an input section; similarly, a section in the output file is an output sec-
tion.

Each section in an object file has a name and a size. Most sections also have an asso-
ciated block of data, known as the section contents. A section may be marked as load-
able, which means that the contents should be loaded into memory when the output file
is run. A section with no contents may be allocatable (which means that an area in
memory should be set aside), but nothing in particular should be loaded there (in some
cases, this memory must be zeroed out).

© 2013-2018 Microchip Technology Inc. DS50002106D-page 149

16-Bit Assembler, Linker and Utilities User’s Guide

Every loadable or allocatable output section has two addresses. The first is the VMA,
or virtual memory address. This is the address the section will have when the output
file is run. The second is the LMA, or load memory address. This is the address at
which the section will be loaded. In most cases, the two addresses will be the same.
An example of when they might be different is when a section is intended for use in the
PSV window. In this case, the program memory address would be the LMA, and the
data memory address would be the VMA.

The sections in an object file can be viewed by using the xc1 6-o0bjdump program with
the -h option.

Every object file also has a list of symbols, known as the symbol table. A symbol may
be defined or undefined. Each symbol has a name, and each defined symbol has an
address, among other information. If a C or C++ program is compiled into an object file,
a defined symbol will be created for every defined function and global or static variable.
Every undefined function or global variable which is referenced in the input file will
become an undefined symbol.

Symbols in an object file can be viewed by using the xc16-nm program, or by using
the xc16-objdump program with the -t option.

9.7.2 Commands Dealing with Files

Several linker script commands deal with files.
CRTO_STARTUP(obj ect file)

This command identifies which primary startup module should be loaded from the com-
piler libraries. The primary startup module defines reserved symbol resetPRI and
is responsible for initializing the C runtime environment. Multiple versions of this mod-
ule existin order to support architectural differences between device families. Although
the linker expects to find this command in every linker script, a default startup module
will be selected if the command is missing (as might be the case with custom linker
scripts in legacy projects.)

CRT1_STARTUP(obj ect file)

This command identifies which alternate startup module should be loaded from the
compiler libraries. The alternate startup module defines reserved symbol resetALT
and is responsible for initializing the C runtime environment without data initialization.
Multiple versions of this module exist in order to support architectural differences
between device families. Although the linker expects to find this command in every
linker script, a default startup module will be selected if the command is missing (as
might be the case with custom linker scripts in legacy projects.)

| NCLUDE fil enane

Include the linker script filename at this point. The file will be searched for in the current
directory, and in any directory specified with the -1 option. Calls to INCLUDE may be
nested up to 10 levels deep.

INPUT(file, file, ...)

INPUT(file file ...)

The INPUT command directs the linker to include the named files in the link, as though
they were named on the command line. The linker will first try to open the file in the
current directory. If it is not found, the linker will search through the archive library
search path. See the description of -1 in Section 8.4.21 “~--1ibrary-path <dir>
(-L <dir>).".

If INPUT (-1file) isused, xc16-1d will transformthe nameto libfile.a, as with
the command line argument -1.

DS50002106D-page 150 © 2013-2018 Microchip Technology Inc.

Linker Scripts

When the INPUT command appears in an implicit linker script, the files will be included
in the link at the point at which the linker script file is included. This can affect archive
searching.

GROUP(file, file, ...)

GROUP(file file ...)

The GROUP command is like INPUT, except that the named files should all be archives,
and they are searched repeatedly until no new undefined references are created. See

the description of - (in Section 8.4.3 “- (archives -), --start-group
archives, --end-group.”.
OPTI ONAL(file, file, ...)

OPTI ONAL(file file ...)

The OPTIONAL command is analogous to the INPUT command, except that the named
files are not required for the link to succeed. This is particularly useful for specifying
archives (or libraries) that may or may not be installed with the compiler.

QUTPUT(fi | enane)

The oUTPUT command names the output file. Using OUTPUT (filename) inthe linker
script is exactly like using -o filename on the command line (see

Section 8.4.26 “--output file (-o file).”). If both are used, the command line
option takes precedence.

SEARCH DI R(pat h)

The SEARCH DIR command adds path to the list of paths where the linker looks for
archive libraries. Using SEARCH_DIR (path) is exactly like using -L path on the
command line (see Section 8.4.21 “~--1ibrary-path <dir> (-L <dir>).”).[fboth
are used, then the linker will search both paths. Paths specified using the

command line option are searched first.

STARTUP(fi | enane)

The STARTUP command is just like the INPUT command, except that filename will
become the first input file to be linked, as though it were specified first on the command
line.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 151

16-Bit Assembler, Linker and Utilities User’s Guide

9.7.3 Assigning Values to Symbols

A value may be assigned to a symbol in a linker script. This will define the symbol as a
global symbol.

» Simple Assignments
e PROVIDE Command

9.7.3.1 SIMPLE ASSIGNMENTS

A symbol may be assigned using any of the C assignment operators:

symbol = expression ;
symbol += expression ;
symbol -= expression ;

symbol *= expression ;
symbol /= expression ;
symbol <<= expression ;
symbol >>= expression ;
symbol &= expression ;
symbol |= expression ;

The first case will define symbol to the value of expression. In the other cases, symbol
must already be defined, and the value will be adjusted accordingly.

The special symbol name ‘. indicates the location counter. This symbol may only be
used within a SECTIONS command.

The semicolon after expression is required.
Expressions are defined in Section 9.8 “Expressions in Linker Scripts.”.

Symbol assignments may appear as commands in their own right, or as statements
within a SECTIONS command, or as part of an output section description in a
SECTIONS command.

The section of the symbol will be set from the section of the expression; for more
information, see Section 9.8.6 “The Section of an Expression.”.

Here is an example showing the three different places that symbol assignments may
be used:

floating point = 0;
SECTIONS

{
.text

{
*(.text)
_etext = .;
}
_bdata = (. + 3) & ~ 4;
.data : { *(.data) }
}

In this example, the symbol floating point will be defined as zero. The symbol
_etext will be defined as the address following the last . text input section. The sym-
bol bdata will be defined as the address following the . text output section aligned
upward to a 4-byte boundary.

DS50002106D-page 152 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.7.3.2 PROVIDE COMMAND

In some cases, it is desirable for a linker script to define a symbol only if it is referenced
and is not defined by any object included in the link. For example, traditional linkers
defined the symbol etext. However, ANSI C requires that etext may be used as a
function name without encountering an error. The PROVIDE keyword may be used to
define a symbol, such as etext, only if it is referenced but not defined. The syntax is
PROVIDE (symbol = expression).

Here is an example of using PROVIDE to define etext:
SECTIONS

.text

{
*(.text)
_etext = .;
PROVIDE (etext = .);

}

In this example, if the program defines _etext (with a leading underscore), the linker
will give a multiple definition error. If, on the other hand, the program defines etext
(with no leading underscore), the linker will silently use the definition in the program. If
the program references etext but does not define it, the linker will use the definition
in the linker script.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 153

16-Bit Assembler, Linker and Utilities User’s Guide

9.7.4 MEMORY Command

The linker’s default configuration permits allocation of all available memory. This can
be overridden by using the MEMORY command.

The MEMORY command describes the location and size of blocks of memory in the tar-
get. It can be used to describe which memory regions may be used by the linker and
which memory regions it must avoid. Sections may then be assigned to particular mem-
ory regions. The linker will set section addresses based on the memory regions and will
warn about regions that become too full. The linker will not shuffle sections around to
fit into the available regions.

The syntax of the MEMORY command is:

MEMORY

{
name [(attr)] : ORIGIN = origin, LENGTH = len

}

The name is a name used in the linker script to refer to the region. The region name
has no meaning outside of the linker script. Region names are stored in a separate
name space, and will not conflict with symbol names, file names or section names.
Each memory region must have a distinct name.

The at t r string is an optional list of attributes associated with the memory region. His-
torically it was used to determine where unmapped sections should be located by the
sequential memory allocator. This capability is no longer used because unmapped sec-
tions are now located by the best-fit allocator. For more information see

Section 10.5 “Linker Allocation.”.

The origin is an expression for the start address of the memory region. The expression
must evaluate to a constant before memory allocation is performed, which means that
section relative symbols may not be used. The keyword ORIGIN may be abbreviated
to org or o (but not, for example, ORG).

The len is an expression for the size in bytes of the memory region. As with the origin
expression, the expression must evaluate to a constant before memory allocation is
performed. The keyword LENGTH may be abbreviated to 1en or 1.

Note: Itis possible to use a preprocessor macro instead of a literal value for the
origin and/or length of a memory region.

Once a memory region is defined, the linker can be directed to place specific output
sections into that memory region by using the >region output section attribute. For
example, to specify a memory region named mem, use >memn in the output section defi-
nition. If no address was specified for the output section, the linker will set the address
to the next available address within the memory region. If the combined output sections
directed to a memory region are too large for the region, the linker will issue an error
message.

DS50002106D-page 154 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.7.5 SECTIONS Command

The SECTIONS command tells the linker how to map input sections into output sections
and how to place the output sections in memory.
The format of the SECTIONS command is:

SECTIONS
{

sections-command
sections-command

}
Each sECcTIONS command may be one of the following:

e an ENTRY command (see Section 9.7.6 “Other Linker Script Commands.”)

« a symbol assignment (see Section 9.7.3 “Assigning Values to Symbols.”)

* an output section description

* an overlay description

The ENTRY command and symbol assignments are permitted inside the SECTIONS
command for convenience in using the location counter in those commands. This can

also make the linker script easier to understand because those commands can be used
at meaningful points in the layout of the output file.

Output section descriptions and overlay descriptions are described below.

If a SECTIONS command does not appear in the linker script, the linker will place each
input section into an identically named output section in the order that the sections are
first encountered in the input files. If all input sections are present in the first file, for
example, the order of sections in the output file will match the order in the first input file.
The first section will be at address zero.

* Input Section Description

* Input Section Wildcard Patterns

* Input Section for Common Symbols

 Input Section Example

« Output Section Description

¢ Output Section Address

« Output Section Data

« Output Section Discarding

« Output Section Attributes

¢ Output Section LMA

« Output Section Region

« Output Section Fill

« Overlay Description

© 2013-2018 Microchip Technology Inc. DS50002106D-page 155

16-Bit Assembler, Linker and Utilities User’s Guide

9.7.5.1 INPUT SECTION DESCRIPTION

The most common output section command is an input section description.

The input section description is the most basic linker script operation. Output sections
tell the linker how to lay out the program in memory. Input section descriptions tell the
linker how to map the input files into the memory layout.

An input section description consists of a file name optionally followed by a list of
section names in parentheses.

The file name and the section name may be wildcard patterns, which are described
further below.

The most common input section description is to include all input sections with a par-
ticular name in the output section. For example, to include all input . text sections,
one would write:

*(.text)

Here the * is a wildcard which matches any file name. To exclude a list of files from
matching the file name wildcard, EXCLUDE FILE may be used to match all files except
the ones specified in the EXCLUDE_FILE list. For example:

* (EXCLUDE FILE (*crtend.o *otherfile.o) .ctors)

will cause all . ctors sections from all files except crtend.o and otherfile.oto
be included.

There are two ways to include more than one section:

*(.text .rdata)
*(.text) *(.rdata)

The difference between these is the order in which the . text and . rdata input sec-
tions will appear in the output section. In the first example, they will be intermingled. In
the second example, all . text input sections will appear first, followed by all . rdata
input sections.

A file name can be specified to include sections from a particular file. This would be
useful if one of the files contain special data that needs to be at a particular location in
memory. For example:

data.o(.data)

If a file name is specified without a list of sections, then all sections in the input file will
be included in the output section. This is not commonly done, but it may be useful on
occasion. For example:

data.o

When a file name is specified which does not contain any wild card characters, the
linker will first see if the file name was also specified on the linker command line or in
an INPUT command. If not, the linker will attempt to open the file as an input file, as
though it appeared on the command line. This differs from an INPUT command
because the linker will not search for the file in the archive search path.

DS50002106D-page 156 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.7.5.2 INPUT SECTION WILDCARD PATTERNS

In an input section description, either the file name or the section name or both may be
wildcard patterns.

The file name of * seen in many examples is a simple wildcard pattern for the file name.
The wildcard patterns are like those used by the UNIX shell.

* matches any number of characters

? matches any single character

[chars] matches a single instance of any of the char s; the - character may be
used to specify a range of characters, as in [a-z] to match any lower
case letter

\ quotes the following character

When a file name is matched with a wildcard, the wildcard characters will not match a
/ character (used to separate directory names on UNIX). A pattern consisting of a sin-
gle * character is an exception; it will always match any file name, whether it contains
a / or not. In a section name, the wildcard characters will match a / character.

File name wildcard patterns only match files which are explicitly specified on the com-
mand line or in an INPUT command. The linker does not search directories to expand
wild cards.

If a file name matches more than one wildcard pattern, or if a file name appears explic-
itly and is also matched by a wildcard pattern, the linker will use the first match in the
linker script. For example, this sequence of input section descriptions is probably in
error, because the data. o rule will not be used:

.data : { *(.data) }
.datal : { data.o(.data) }

Normally, the linker will place files and sections matched by wild cards in the order in
which they are seen during the link. This can be changed by using the SORT keyword,
which appears before a wildcard pattern in parentheses (e.g., SORT (. text*)). When
the SORT keyword is used, the linker will sort the files or sections into ascending order
by name before placing them in the output file.

To verify where the input sections are going, use the -M linker option to generate a map
file. The map file shows precisely how input sections are mapped to output sections.

This example shows how wildcard patterns might be used to partition files. This linker
script directs the linker to place all . text sectionsin .text and all .bss sections in
.bss. The linker will place the . data section from all files beginning with an upper
case character in . DATA; for all other files, the linker will place the . data section in

.data.
SECTIONS {
.text : { *(.text) }
.DATA : { [A-Z]*(.data) }
.data : { *(.data) }
.bss : { *(.bss) }

© 2013-2018 Microchip Technology Inc. DS50002106D-page 157

16-Bit Assembler, Linker and Utilities User’s Guide

9.7.5.3 INPUT SECTION FOR COMMON SYMBOLS

A special notation is needed for common symbols, because common symbols do not
have a particular input section. The linker treats common symbols as though they are
in an input section named COMMON.

File names may be used with the COMMON section just as with any other input sections.
This will place common symbols from a particular input file in one section, while
common symbols from other input files are placed in another section.

In most cases, common symbols in input files will be placed in the .bss section in the
output file. For example:

.bss { *(.bss) *(COMMON) }

If not otherwise specified, common symbols will be assigned to section .bss.

9.7.5.4 INPUT SECTION EXAMPLE

The following example is a complete linker script. It tells the linker to read all of the sec-
tions from file a11 . o and place them at the start of output section outputa which
starts at location 0x10000. All of section . input1 from file foo. o follows immedi-
ately, in the same output section. All of section . input2 from foo. o goes into output
section outputb, followed by section . inputl from fool.o. All of the remaining
.inputl and . input2 sections from any files are written to output section outputc.

SECTIONS {
outputa 0x10000
{

all.o
foo.o (.inputl)
}

outputb :
{
foo.o (.input2)
fool.o (.inputl)
}

outputc :
{
*(.inputl)
*(.input?2)
}

DS50002106D-page 158

© 2013-2018 Microchip Technology Inc.

Linker Scripts

9.7.5.5 OUTPUT SECTION DESCRIPTION

The full description of an output section looks like this:

nane [address] [(type)] : [AT(lm)]
{

output-section-command
output-section-command

} [>region] [AT>I ma_region] [=fillexp]
Most output sections do not use most of the optional section attributes.

The white space around nane and addr ess is required. The colon and the curly
braces are also required. The line breaks and other white space are optional.

A section name may consist of any sequence of characters, but a name which contains
any unusual characters such as commas must be quoted.

Each output-section-command may be one of the following:

« a symbol assignment (see Section 9.7.3 “Assigning Values to Symbols.”)
¢ an input section description (see Section 9.7.5.1 “Input Section Description.”)
« data values to include directly (see Section 9.7.5.7 “Output Section Data.”)

9.7.5.6 OUTPUT SECTION ADDRESS

The addr ess is an expression for the VMA (the virtual memory address) of the output
section. If address is not provided, the linker will set it based on region if present, or
otherwise based on the current value of the location counter.

If addr ess is provided, the address of the output section will be set to precisely that.
If neither addr ess norr egi on is provided, then the address of the output section will
be set to the current value of the location counter aligned to the alignment requirements
of the output section. The alignment requirement of the output section is the strictest
alignment of any input section contained within the output section.

For example,

text . { *(.text) }
and

.text ¢ { *(.text) }

are subtly different. The first will set the address of the . text output section to the cur-
rent value of the location counter. The second will set it to the current value of the loca-
tion counter aligned to the strictest alignment of a . text input section.

The address may be an arbitrary expression (see Section 9.8 “Expressions in Linker
Scripts.”). For example, to align the section on a 0x10 byte boundary, so that the lowest
four bits of the section address are zero, the command could look like this:

.text ALIGN (0x10) : { *(.text) }

This works because ALTIGN returns the current location counter aligned upward to the
specified value.

Specifying addr ess for a section will change the value of the location counter.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 159

16-Bit Assembler, Linker and Utilities User’s Guide

9.7.5.7 OUTPUT SECTION DATA

Explicit bytes of data may be inserted into an output section by using BYTE, SHORT, or
LONG as an output section command. Each keyword is followed by an expression in
parentheses providing the value to store. The value of the expression is stored at the
current value of the location counter.

The BYTE, SHORT, or LONG commands store one, two, or four bytes (respectively). For
example, this command will store the four byte value of the symbol addr:

LONG (addr)

After storing the bytes, the location counter is incremented by the number of bytes
stored. When using data commands in a program memory section, it is important to
note that the linker considers program memory to be 32-bits wide, even though only 24
bits are physically implemented. Therefore, the most significant 8 bits of a LONG data
value are not loaded into device memory.

Data commands only work inside a section description and not between them, so the
following will produce an error from the linker:

SECTIONS { .text : { *(.text) } LONG(l) .data : { *(.data) } }
whereas this will work:
SECTIONS { .text : { *(.text) ; LONG(l) } .data : { *(.data) } }

The FILL command may be used to set the fill pattern for the current section. It is fol-
lowed by an expression in parentheses. Any otherwise unspecified regions of memory
within the section (for example, gaps left due to the required alignment of input sec-
tions) are filled with the two least significant bytes of the expression, repeated as nec-
essary. A FILL statement covers memory locations after the point at which it occurs in
the section definition; by including more than one F1LL statement, different fill patterns
may be used in different parts of an output section.

This example shows how to fill unspecified regions of memory with the value 0x9090:
FILL (0x9090)

The FILL command is similar to the =fi11exp output section attribute (see

Section 9.7.5.9 “Output Section Attributes.”), but it only affects the part of the section

following the FI1.. command, rather than the entire section. If both are used, the FILL
command takes precedence.

9.7.5.8 OUTPUT SECTION DISCARDING

The linker will not create an output section which does not have any contents. This is
for convenience when referring to input sections that may or may not be present in any
of the input files. For example:

.foo { *(.foo) }
will only create a . foo section in the output file if there is a . foo section in at least one
input file.

If anything other than an input section description is used as an output section com-
mand, such as a symbol assignment, then the output section will always be created,
even if there are no matching input sections.

The special output section name /DISCARD/ may be used to discard input sections.
Any input sections which are assigned to an output section named /DISCARD/ are not
included in the output file.

DS50002106D-page 160 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.7.5.9 OUTPUT SECTION ATTRIBUTES

To review, the full description of an output section is:

nane [address] [(type)] : [AT (I m)]
{
output-section-command
output-section-command

} [>region] [AT>l ma_region] [:phdr :phdr ...] [=fillexp]

name, addr ess and ocutput-section-command have already been described. In
the following sections, the remaining section attributes will be described.

9.7.5.10 OUTPUT SECTION TYPE

Each output section may have a type. The type is a keyword in parentheses. The fol-
lowing types are defined:

NOLOAD

The section should be marked as not loadable, so that it will not be loaded into memory
when the program is run.

DSECT, COPY, INFO, OVERLAY

These type names are supported for backward compatibility, and are rarely used. They
all have the same effect: the section should be marked as not allocatable, so that no
memory is allocated for the section when the program is run.

The linker normally sets the attributes of an output section based on the input sections
which map into it. This can be overridden by using the section type. For example, in the
script sample below, the ROM section is addressed at memory location 0 and does not
need to be loaded when the program is run. The contents of the ROM section will appear
in the linker output file as usual.

SECTIONS {
ROM O (NOLOAD) : { ... }

© 2013-2018 Microchip Technology Inc. DS50002106D-page 161

16-Bit Assembler, Linker and Utilities User’s Guide

9.7.5.11 OUTPUT SECTION LMA

Every section has a virtual address (VMA) and a load address (LMA). The address
expression which may appear in an output section description sets the VMA.

The linker will normally set the LMA equal to the VMA. This can be changed by using
the AT keyword. The expression Ima that follows the AT keyword specifies the load
address of the section. Alternatively, with AT>1ma region expression, a memory
region may be specified for the section’s load address. See Section 9.7.4 “MEMORY
Command.”

This feature is designed to make it easy to build a ROM image. For example, the fol-
lowing linker script creates three output sections: one called . text, which starts at
0x1000, one called .mdata, which is loaded at the end of the . text section even
though its VMA is 0x2000, and one called .bss to hold uninitialized data at address
0x3000. The symbol data is defined with the value 0x2000, which shows that the
location counter holds the VMA value, not the LMA value.

SECTIONS
{
.text 0x1000 : { *(.text) etext = . ; }
.mdata 0x2000 :
AT (ADDR (.text) + SIZEOF (.text))

{ data = . ; *(.data); _edata = . ; }
.bss 0x3000 :
{ bstart = . ; *(.bss) *(COMMON) ; bend = . ;}

}

The run-time initialization code for use with a program generated with this linker script
would include a function to copy the initialized data from the ROM image to its run-time
address. The initialization function could take advantage of the symbols defined by the
linker script.

It would rarely be necessary to write such a function, however. The 16-bit linker
includes automatic support for the initialization of BSS-type and data-type sections.
Instead of mapping a data section into both program memory and data memory (as this
example implies), the linker creates a special template in program memory which
includes all of the relevant information. See Section 10.8 “Initialized Data.” for details.

9.7.5.12 OUTPUT SECTION REGION

A section can be assigned to a previously defined region of memory by using >region.
See Section 9.7.4 “MEMORY Command.”

Here is a simple example:

MEMORY { rom : ORIGIN = 0x1000, LENGTH = 0x1000 }

SECTIONS { ROM : { *(.text) } >rom }

9.7.5.13 OUTPUT SECTION FILL

A fill pattern can be set for an entire section by using =fillexp. fillexp as an
expression. Any otherwise unspecified regions of memory within the output section (for
example, gaps left due to the required alignment of input sections) will be filled with the
two least significant bytes of the value, repeated as necessary.

The fill value can also be changed with a FILL command in the output section
commands; see Section 9.7.5.7 “Output Section Data.”

Here is a simple example:
SECTIONS { .text : { *(.text) } =0x9090 }

DS50002106D-page 162 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.7.5.14 OVERLAY DESCRIPTION

An overlay description provides an easy way to describe sections which are to be
loaded as part of a single memory image but are to be run at the same memory
address. At run time, some sort of overlay manager will copy the overlaid sections in
and out of the run-time memory address as required, perhaps by simply manipulating
addressing bits.

This approach is not suitable for defining sections that will be used with the PSV win-
dow, because the OVERLAY command does not permit individual load addresses to be
specified for each section. Instead, the 16-bit linker provides automatic support for

read-only sections in the PSV window. See Section 10.9 “Read-only Data.” for details.

Overlays are described using the OVERLAY command. The OVERLAY command is
used within a SECTIONS command, like an output section description. The full syntax
of the OVERLAY command is as follows:

OVERLAY [start] : [NOCROSSREFS] [AT (|daddr)]
{

secnamel

{
output-section-command
output-section-command

} [:phdr...] [=fill]
secname?2

{
output-section-command
output-section-command

} [:phdr...] [=fill]

} [>region] [:phdr...] [=fill]

Everything is optional except OVERLAY (a keyword), and each section must have a
name (secnamel and secname?2 above). The section definitions within the OVERLAY
construct are identical to those within the general SECTIONS construct, except that no
addresses and no memory regions may be defined for sections within an OVERLAY.

The sections are all defined with the same starting address. The load addresses of the
sections are arranged such that they are consecutive in memory starting at the load
address used for the OVERLAY as a whole (as with normal section definitions, the load
address is optional, and defaults to the start address; the start address is also optional,
and defaults to the current value of the location counter).

If the NOCROSSREF'S keyword is used, and there are any references among the sec-
tions, the linker will report an error. Since the sections all run at the same address, it
normally does not make sense for one section to refer directly to another.

For each section within the OVERLAY, the linker automatically defines two symbols. The
symbol load start secname is defined as the starting load address of the sec-
tion. The symbol load stop secname is defined as the final load address of the
section. Any characters within secname which are not legal within C identifiers are
removed. C (or assembler) code may use these symbols to move the overlaid sections
around as necessary.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 163

16-Bit Assembler, Linker and Utilities User’s Guide

At the end of the overlay, the value of the location counter is set to the start address of
the overlay plus the size of the largest section.

Here is an example. Remember that this would appear inside a SECTIONS construct.

OVERLAY 0x1000 : AT (0x4000)

.text0 { ol/*.o(.text) }
.textl { o2/*.o(.text) }
}

This will define both . text0 and . text1 to start at address 0x1000. . text0 will be
loaded at address 0x4000, and . text1 will be loaded immediately after . text0. The
following symbols will be defined: ~ load start textO, load stop text0,
__load start textl, load stop_ textl.

C code to copy overlay . text1 into the overlay area might look like the following:

extern char load start textl, load stop textl;
memcpy ((char *) 0x1000, & load start textl,

& load stop textl - & load start textl);

The OVERLAY command is a convenience, since everything it does can be done using
the more basic commands. The previous example could have been written identically
as follows.

.text0 0x1000 : AT
__load start textO

(0x4000) { ol/*.o(.text) }
LOADADDR (.textO);

__load_stop_text0 = LOADADDR (.text0) + SIZEOF (.textO);
.textl 0x1000 : AT (0x4000 + SIZEOF (.text0)) { o2/*.o(.text) }
~_load start textl = LOADADDR (.textl);
~_load stop textl = LOADADDR (.textl) + SIZEOF (.textl);
= 0x1000 + MAX (SIZEOF (.text0), SIZEOF (.textl));

DS50002106D-page 164

© 2013-2018 Microchip Technology Inc.

Linker Scripts

9.7.6 Other Linker Script Commands

There are several other linker script commands, which are described briefly:
ENTRY(synbol)

Specify synbol as the first instruction to execute in the program. The linker will record
the address of this symbol in the output object file header. This does not affect the
Reset instruction at address zero, which must be generated in some other way. By con-
vention, the 16-bit linker scripts construct a GOTO __ reset instruction at address
zero.

EXTERN(synbol synbol ...)

Force synbol to be entered in the output file as an undefined symbol. Doing this may,
for example, trigger linking of additional modules from standard libraries. Several sym-
bols may be listed for each EXTERN, and EXTERN may appear multiple times. This
command has the same effect as the —u command line option.

FORCE_COMMON_ALLOCATI ON

This command has the same effect as the -d command line option: to make 16-bit
linker assign space to common symbols even if a relocatable output file is specified
(-x).

NOCROSSREFS(section section ...)

This command may be used to tell 16-bit linker to issue an error about any references
among certain output sections. In certain types of programs, when one section is
loaded into memory, another section will not be. Any direct references between the two
sections would be errors.

The NOCROSSREFS command takes a list of output section names. If the linker detects
any cross references between the sections, it reports an error and returns a non-zero
exit status. The NOCROSSREF'S command uses output section names, not input section
names.

OUTPUT_ARCH(pr ocessor _nane)

Specify a target processor for the link. This command has the same effect as the
-p,—-processor command line option. If both are specified, the command line option
takes precedence. The processor name should appear in quotes; for example
“30F6014", “24FJ128GA010", or “33FJ128GP706".

QUTPUT_FORMAT(f or mat _nane)
The OUTPUT FORMAT command names the object file format to use for the output file.
TARCET(bf dnane)

The TARGET command names the object file format to use when reading input files. It
affects subsequent INPUT and GROUP commands.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 165

16-Bit Assembler, Linker and Utilities User’s Guide

9.8 EXPRESSIONS IN LINKER SCRIPTS

The syntax for expressions in the linker script language is identical to that of C expres-
sions. All expressions are evaluated as 32-bit integers.

You can use and set symbol values in expressions.

The linker defines several special purpose built-in functions for use in expressions.
¢ Constants

* Symbol Names

* The Location Counter

e Operators

« Evaluation

» The Section of an Expression

 Built-in Functions

9.8.1 Constants

All constants are integers.

As in C, the linker considers an integer beginning with O to be octal, and an integer
beginning with 0x or 0X to be hexadecimal. The linker considers other integers to be
decimal.

In addition, you can use the suffixes K and M to scale a constant by 1024 or 1024*1024
respectively. For example, the following all refer to the same quantity:

_fourk 1 = 4K;

_fourk 2 4096;

_fourk 3 = 0x1000;

9.8.2 Symbol Names

Unless quoted, symbol names start with a letter, underscore, or period and may include
letters, digits, underscores, periods and hyphens. Unquoted symbol names must not

conflict with any keywords. You can specify a symbol which contains odd characters or
has the same name as a keyword by surrounding the symbol name in double quotes:

"SECTION" = 9;
"with a space" = "also with a space" + 10;

Since symbols can contain many non-alphabetic characters, it is safest to delimit sym-

bols with spaces. For example, 2-B is one symbol, whereas 2 - B is an expression
involving subtraction.

DS50002106D-page 166

© 2013-2018 Microchip Technology Inc.

Linker Scripts

9.8.3 The Location Counter

The special linker variable dot ‘.’ always contains the current output location counter.
Since the ‘.’. always refers to a location in an output section, it may only appear in an
expression within a SECTIONS command. The ‘.’ symbol may appear anywhere that
an ordinary symbol is allowed in an expression.

Assigning a value to ‘. " will cause the location counter to be moved. This may be used
to create holes in the output section. The location counter may never be moved
backwards.

SECTIONS

{
output :

{
filel (.text)
.= . + 1000;
file2 (.text)
. += 1000;
file3 (.text)

} = 0x1234;

}

In the previous example, the . text section from £ilel is located at the beginning of
the output section output. Itis followed by a 1000 byte gap. Then the . text section
from £ile2 appears, also with a 1000 byte gap following before the . text section
from £ile3. The notation = 0x1234 specifies what data to write in the gaps.

‘.” actually refers to the byte offset from the start of the current containing object. Nor-
mally this is the SECTIONS statement, whose start address is 0, hence ‘.’ can be used
as an absolute address. If *." is used inside a section description, however, it refers to
the byte offset from the start of that section, not an absolute address, as shown in the
following script:

SECTIONS
{
. = 0x100
.text: {
*(.text)
. = 0x200

The . text section will be assigned a starting address of 0x100 and a size of exactly
0x200 bytes, even if there is not enough data in the . text input sections to fill this
area. (If there is too much data, an error will be produced because this would be an
attempt to move ‘.’ backwards). The . data section will start at 0x500 and it will have
an extra 0x600 bytes worth of space after the end of the values from the . data input
sections and before the end of the . data output section itself.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 167

16-Bit Assembler, Linker and Utilities User’s Guide

9.8.4 Operators

The linker recognizes the standard C set of arithmetic operators, with the following
standard bindings and precedence levels:

TABLE 9-2: PRECEDENCE OF OPERATORS

Precedence | Associativity Operators Description
1 (highest) left -~ Prefix operators
2 left * /% multiply, divide, modulo
3 left + - add, subtract
4 left >> << bit shift right, left
5 left == I!= > < <= >= |[Relational
6 left & bitwise and
7 left | bitwise or
8 left && logical and
9 left [logical or
10 right ? Conditional
11 (lowest) right &= += -= *= /= Symbol assignments

9.8.5 Evaluation

The linker evaluates expressions lazily. It only computes the value of an expression
when absolutely necessary.

The linker needs some information, such as the value of the start address of the first
section, and the origins and lengths of memory regions, in order to do any linking at all.
These values are computed as soon as possible when the linker reads in the linker
script.

However, other values (such as symbol values) are not known or needed until after
storage allocation. Such values are evaluated later, when other information (such as
the sizes of output sections) is available for use in the symbol assignment expression.

The sizes of sections cannot be known until after allocation, so assignments dependent
upon these are not performed until after allocation.

Some expressions, such as those depending upon the location counter ‘.’, must be
evaluated during section allocation.

If the result of an expression is required, but the value is not available, then an error
results. For example, a script like the following:

SECTIONS
{
.text 9+this isnt constant :
{ *(.text) }
}

will cause the error message “non-constant expression for initial address”.

DS50002106D-page 168 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.8.6 The Section of an Expression

When the linker evaluates an expression, the result is either absolute or relative to
some section. A relative expression is expressed as a fixed offset from the base of a
section.

The position of the expression within the linker script determines whether it is absolute
or relative. An expression which appears within an output section definition is relative
to the base of the output section. An expression which appears elsewhere will be
absolute.

A symbol set to a relative expression will be relocatable if you request relocatable out-
put using the -r option. That means that a further link operation may change the value
of the symbol. The symbol’s section will be the section of the relative expression.

A symbol set to an absolute expression will retain the same value through any further
link operation. The symbol will be absolute, and will not have any particular associated
section.

You can use the built-in function ABSOLUTE to force an expression to be absolute when
it would otherwise be relative. For example, to create an absolute symbol set to the
address of the end of the output section .data:

SECTIONS

{
.data : { *(.data) _edata = ABSOLUTE(.); }
}

If ABSOLUTE were not used, edata would be relative to the . data section.

9.8.7 Built-in Functions

The linker script language includes a number of built-in functions for use in linker script
expressions.
ABSOLUTE (exp)
ADDR (section)
ALIGN (exp)
ASSERT (exp, message)
BLOCK (exp)
DEFINED (symbol)
LOADADDR (section)
MAX (expl, exp2)
MIN (expl, exp2)
NEXT (exp)
SIZEOF (section)

9.8.7.1 ABSOLUTE (exp)

Return the absolute (non-relocatable, as opposed to non-negative) value of the expres-
sion exp. Primarily useful to assign an absolute value to a symbol within a section defi-
nition, where symbol values are normally section relative. See Section 9.8.6 “The
Section of an Expression.”

© 2013-2018 Microchip Technology Inc. DS50002106D-page 169

16-Bit Assembler, Linker and Utilities User’s Guide

9.8.7.2 ADDR(section)

Return the absolute address (the VMA) of the named section. Your script must previ-
ously have defined the location of that section. In the following example, symbol 1
and symbol 2 are assigned identical values:

SECTIONS {
.outputl :

{
start of output 1 = ABSOLUTE(.);

}
.output :

{

symbol 1 ADDR (.outputl) ;
symbol 2 = start of output 1;
}

}

9.8.7.3 ALIGN (exp)

Return the location counter (.) aligned to the next exp boundary. exp must be an
expression whose value is a power of two. This is equivalent to:

(. + exp - 1) & ~(exp - 1)

ALIGN doesn’t change the value of the location counter; it just does arithmetic on it.
Here is an example which aligns the output . data section to the next 0x2000 byte

boundary after the preceding section and sets a variable within the section to the next
0x8000 boundary after the input sections:

SECTIONS {
.data ALIGN (0x2000) : {
*(.data)
variable = ALIGN (0x8000) ;

}

The first use of ALIGN in this example specifies the location of a section because it is
used as the optional address attribute of a section definition, see

Section 9.7.5 “SECTIONS Command.” The second use of ALIGN is used to define the
value of a symbol.

The built-in function NEXT is closely related to ALIGN.
9.8.74 ASSERT (exp, nessage)

Ensure that exp is non-zero. Ifitis zero, then exit the linker with an error code, and print
nessage. E.g.,

___CHECK = ASSERT (1, "OK");
9.8.7.5 BLOCK (exp)

This is a synonym for ALIGN, for compatibility with older linker scripts. It is most often
seen when setting the address of an output section.

DS50002106D-page 170 © 2013-2018 Microchip Technology Inc.

Linker Scripts

9.8.7.6 DEFINED (symbol)

Return 1 if symbol is in the linker global symbol table and is defined; otherwise return
0. You can use this function to provide default values for symbols. For example, the fol-
lowing script fragment shows how to set a global symbol begin to the first location in
the . text section, but if a symbol called begin already existed, its value is preserved:

SECTIONS {
.text ¢ {
begin = DEFINED (begin) ? begin : . ;

}

9.8.7.7 LOADADDR (secti on)

Return the absolute LMA of the named section. This is normally the same as ADDR, but
it may be different if the AT attribute is used in the output section definition, see
Section 9.7.5 “SECTIONS Command.”

9.8.7.8 MAX (expl, exp2)

Returns the maximum of expl and exp2.

9.8.7.9 MIN(expl, exp2)

Returns the minimum of expl and exp2.

9.8.7.10 NEXT (exp)

Return the next unallocated address that is a multiple of exp. This function is
equivalent to ALIGN (exp).

9.8.7.11 SIZEOF (section)

Return the size in bytes of the named section, if that section has been allocated. If the
section has not been allocated when this is evaluated, the linker will report an error. In
the following example, symbol 1 and symbol 2 are assigned identical values:

SECTIONS {
.output {
.start = . ;
.end = . ;
}
symbol 1
symbol 2

.end - .start ;
SIZEOF (.output) ;

© 2013-2018 Microchip Technology Inc. DS50002106D-page 171

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 172 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE

Chapter 10. Linker Processing

10.1 INTRODUCTION

How the MPLAB XC16 Object Linker builds an application from input files and the linker
script is discussed here.

10.2 HIGHLIGHTS

Topics covered in this chapter are:

« Overview of Linker Processing
* Memory Addressing

« Linker Allocation

¢ Global and Weak Symbols

« Handles

« Initialized Data

¢ Read-only Data

« Stack Allocation

« Heap Allocation

« Interrupt Vector Tables

« Optimizing Memory Usage

* Boot and Secure Segments

» Co-resident Application Linking
* Notable Symbols

10.3 OVERVIEW OF LINKER PROCESSING

A linker combines one or more object files, with optional archive files, into a single exe-
cutable output file. The object files contain relocatable sections of code and data which
the linker will allocate into target memory. The entire process is controlled by a linker
script, also known as a link command file. A linker script is required for every link.

The link process may be broken down into 6 steps:

Loading Input Files

Allocating Memory

Resolving Symbols

Creating Special Sections
Computing Absolute Addresses
Building the Output File

o0k wbhPE

© 2013-2018 Microchip Technology Inc. DS50002106D-page 173

16-Bit Assembler, Linker and Utilities User’s Guide

10.3.1 Loading Input Files

The initial task of the linker is to interpret link command options and load input files. If
a linker script is specified, that file is opened and interpreted. Otherwise an internal
default linker script is used. In either case, the linker script provides a description of the
target device, including specific memory region information and SFR addresses. See
Chapter 9. “Linker Scripts” for more details.

Next the linker opens all of the input object files. Each input file is checked to make sure
the object format is compatible. If the object format is not compatible, an error is gen-
erated. The contents of each input file are then loaded into internal data structures. Typ-
ically each input file will contain multiple sections of code or data. Each section contains
a list of relocation entries which associate locations in a section’s raw data with
relocatable symbols.

10.3.2 Allocating Memory

After all of the input files have been loaded, the linker allocates memory. This is accom-
plished by assigning each input section to an output section. The relation between input
and output sections is defined by a section map in the linker script. An output section

may or may not have the same name as an input section. Each output section is then

assigned to a memory region in the target device.

Note: Input sections are derived from source code by the compiler or the
assembler. Output sections are created by the linker.

If an input section is not explicitly assigned to an output section, the linker will allocate
the unassigned section according to section attributes. For more information about
linker allocation, see Section 10.5 “Linker Allocation.”

10.3.3 Resolving Symbols

Once memory has been allocated, the linker begins the process of resolving symbols.
Symbols defined in each input section have offsets that are relative to the beginning of
the section. The linker converts these values into output section offsets.

Next, the linker attempts to match all external symbol references with a corresponding
symbol definition. Multiple definitions of the same external symbol result in an error. If
an external symbol is not found, an attempt is made to locate the symbol definition in
an archive file. If the symbol definition is found in an archive, the corresponding archive
module is loaded.

Modules loaded from archives may contain additional symbol references, so the pro-
cess continues until all external symbol references have matching definitions. External
symbols that are defined as “weak” receive special processing, as explained in
Section 10.6 “Global and Weak Symbols.” If any external symbol reference remains
undefined, an error is generated.

References to redundant functions in archive files will be merged in order to conserve
memory. For example, both integer and floating-point versions of the standard C for-
matted I/O functions are included in 1ibc.a. The 16-bit compiler will generate refer-
ences to the appropriate function, based on a static analysis of format strings. When
multiple object files are combined by the linker, both versions of a particular 1/0 function
may be referenced. In such cases the integer functions are redundant, since they rep-
resent a subset of the floating-point functionality. The linker will detect this situation,
and merge the I/O functions together to conserve memory. This optimization may be
disabled with the --no-smart-io option.

DS50002106D-page 174 © 2013-2018 Microchip Technology Inc.

Linker Processing

10.3.4 Creating Special Sections

After the symbols have been resolved, the linker constructs any special input or output
sections that are required. For example, the compiler or assembler may have created
function pointers using the handle () operator. The linker then builds a special input
section named .handle to implement a jump table. For more information about
handles, see Section 10.7 “Handles.”

The linker also constructs a special input section named .dinit to support initialized
data. Section.dinit is an initialization template that is interpreted by the C run-time
library. For more information about initialized data, see Section 10.8 “Initialized Data.”

If the application has not defined a default interrupt handler, the linker will create one

automatically in a special input section named . i sr. Unused slots in the interrupt vec-
tor tables are populated with the address of this function. For more information on the
default interrupt handler, see section Section 10.12 “Interrupt Vector Tables.”

10.3.5 Computing Absolute Addresses

After the special sections have been created, the final sizes of all output sections are
known. The linker then computes absolute addresses for all output sections and exter-
nal symbols. Each output section is checked to make sure it falls within its assigned
memory regions. If any section falls outside of its memory region, an error is generated.
Any symbols defined in the linker script are also computed.

Boundaries of the stack and heap are calculated, based on the extent of unused data
memory. If insufficient memory is available, an error is generated. For more information
about the stack and heap, see Section 10.10 “Stack Allocation.” and

Section 10.11 “Heap Allocation.”

10.3.6 Building the Output File

Finally, the linker builds the output file. Relocation entries in each section are patched
using absolute addresses. If the address computed for a symbol does not fit in the relo-
cation entry, a link error results. This can occur, for example, if a function pointer is

referenced without the handle () operator and its address is too large to fit in 16 bits.

A link map is also generated if requested with the appropriate option. The link map

includes a memory usage report, which shows the starting address and length of all
sections in data memory and program memory. For more information about the link
map, see Section 9.5.4 “Input/Output Section Map.”

© 2013-2018 Microchip Technology Inc. DS50002106D-page 175

16-Bit Assembler, Linker and Utilities User’s Guide

10.4 MEMORY ADDRESSING

The 16-bit devices use a modified Harvard architecture with separate data and pro-
gram memory spaces. Data memory is both byte-oriented (8 bits wide) and word-ori-
ented (16 bits wide). Bytes are assigned sequential addresses, starting with 0, 1, 2, 3
and so on. Words are assigned sequential even addresses, starting with 0, 2, 4, 6 and
S0 on.

Program memory is word-oriented, where each instruction word is 24 bits wide. Instruc-
tion words are assigned sequential even addresses, starting with 0, 2, 4, 6 and so on.
The PC indicates the next instruction to be executed, and increments by 2 for each
instruction word. Individual bytes in a program memory word are not addressable.

While a traditional Harvard architecture does not permit access to data stored in
program memory, the 16-bit architecture provides three ways to accomplish this task:

» Table Access Instructions
« Program Space Visibility (PSV) Window
« Extended Data Space (EDS) Window

10.4.1 Table Access Instructions

The table access instructions tblrdl, tblrdh, tblwtl and tblwth can be used to
access data stored in program memory. Data is addressed through a 16-bit data regis-
ter pointer in combination with the 8-bit TBLPAG register. The special operators

tbloffset () and tblpage () facilitate table access in assembly language. See the
16-bit assembler documentation, “Table Read/Write Instructions”, for more information.

The linker resolves symbolic references to labels in program memory for use with the
table access instructions. Although data in program memory can be specified one byte
at a time, only the least-significant byte in each instruction word has a unique address.
For example, consider the following assembly source code example:

.section prog,code

Ll: .pbyte 1
L2: .pbyte 2
L3: .pbyte 3
L4: .pbyte 4
.pbyte 5
.pbyte 6

.pbyte 7,8,9

In this example, the code section attribute designates a section to be allocated in pro-
gram memory, and the . pbyte directives define individual byte constants. Since labels
must resolve to a valid PC address, the assembler adds padding after each of the first
three constants. Subsequent constants do not require padding. The following assembly
listing excerpt illustrates the organization of these constants in program memory:

1 .section prog,code
2 000000 01 00 00 Ll:.pbyte 1

3 000002 02 00 00 L2:.pbyte 2

4 000004 03 00 00 L3:.pbyte 3

5 000006 04 L4:.pbyte 4

6 05 .pbyte 5

7 06 .pbyte 6

8 000008 07 08 09 .pbyte 7,8,9

Constants 1, 2, 3 are padded out to a full instruction word and have unique PC
addresses. Constants 4, 5, 6 are packed into a single instruction word and share the
same address.

DS50002106D-page 176 © 2013-2018 Microchip Technology Inc.

Linker Processing

10.4.2 Program Space Visibility (PSV) Window

The Program Space Visibility window can be used to access data stored in the least
significant 16 bits of program memory. When PSV is enabled, the upper 32K of data
memory space (0x8000-0xFFFF) functions as a window into program memory. Data is
addressed through a 16-bit data register pointer in combination with the 8-bit PSVPAG
register. The special operators psvoffset () and psvpage () are provided to facili-
tate PSV access in assembly language. Built-in functions builtin psvoffset ()
and builtin psvpage () are provided to facilitate PSV access in C.

The linker supports PSV window operations through the use of read-only data sections.
For a detailed discussion of read-only sections, see Section 10.9 “Read-only Data.”

10.4.3 Extended Data Space (EDS) Window

Some device families support a new data memory architecture called Extended Data
Space (EDS). EDS extends the functionality of the PSV window to access additional
pages of RAM as well as memory-mapped peripherals. On an EDS device, the
PSVPAG register has been replaced by two registers:

* DSRPAG for reading from Flash, RAM, etc.

* DSWPAG for writing to RAM

The operation of the EDS window is analogous to the PSV window. When the page reg-
isters are set appropriately, a portion of program memory (or extended data memory)
can be accessed in the data address range 0x8000 to OxFFFF. Unlike the PSV window,
the EDS window is always enabled. Another difference is that certain page number
ranges imply different address spaces:

EDS Page Range Description
0x001 to Ox1FF read/write access to RAM
0x200 to Ox2FF read-only access to lower 16 bits of program memory
0x300 to Ox3FF read-only access to upper 8 bits of program memory

Note: EDS page 0 is undefined. Application code should not attempt to access
the EDS window with a page value of zero. Such access is prohibited and
a hardware exception will occur.

The special operators edsoffset () and edspage () are provided to facilitate EDS
access from assembly language. Built-in functions builtin edsoffset () and
__builtin edspage () are provided to facilitate EDS access from C.

The EDS special operators may be used to access any object in on-chip memory,
including local RAM (i.e., RAM located within the first 32K of data address space). Con-
sequently, edsoffset () may return a pointer in the range 0x0 to OxFFFF.

edspage () will return a page value in the range 0x001 to Ox2FF. Page values greater
that 0x300 are not currently supported.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 177

16-Bit Assembler, Linker and Utilities User’s Guide

10.5 LINKER ALLOCATION

Linker allocation is controlled by the linker script, and proceeds in three steps:

1. Mapping Input Sections to Output Sections
2. Assigning Output Sections to Regions
3. Allocating Unmapped Sections

Steps 1 and 2 are performed by a sequential memory allocator. Input sections which
appear in the linker script are assigned to specific memory regions in the target
devices. Addresses within a memory region are allocated sequentially, beginning with
the lowest address and growing upwards.

Step 3 is performed by a best-fit memory allocator. Input sections which do not appear
in the linker script are assigned to memory regions according to their attributes. The
best-fit allocator makes efficient use of any remaining memory, including gaps between
output sections that may have been left by the sequential allocator.

If memory has been reserved for the boot and/or secure segments, it will be allocated
by the best-fit allocator in step 3. The sequential allocator will avoid these segments,
S0 sections designated with the boot or secure attributes should not appear in the
linker script.

10.5.1 Mapping Input Sections to Output Sections

Input sections are grouped and mapped into output sections, according to the section
map. When an output section contains several different input sections, the exact order-
ing of input sections may be important. For example, consider the following output sec-
tion definition:

/*

** User Code and Library Code

*/

.text :

*(.init);
*(.user init);
* (.handle) ;
*(.1libc) *(.libm) *(.libdsp); /* keep together in this order */
(.1ib) ;

} >program
Here the output section named . text is defined. Notice that the contents of this sec-
tion are specified within curly braces {}. After the closing brace, >program indicates
that this output section should be assigned to memory region program.

The contents of output section . text may be interpreted as follows:

« Input sections named . init are collected and mapped into the output section. By
convention, there is only one . init section, and it contains the startup code for
an application. It appears first in the output section (i.e., at the lowest address) so
that its address is readily available if necessary.

* Input sections named .user init are collected and mapped into the output
section. These sections are created by the compiler and refer to functions that
have been decorated with the user init attribute. Their position within the out-
put section is not critical, but since they are associated with section. init, they
are located immediately after.

« Allinput sections named .handle are collected and mapped into the output
section. .handle sections occupy a relatively low address range, which is a
requirement for code handles.

DS50002106D-page 178

© 2013-2018 Microchip Technology Inc.

Linker Processing

 Input sections named .1ibc, .1ibmand .1ibdsp are collected and mapped
into the output section. Grouping these sections ensures locality of reference for
the run-time library functions, so that PC-relative instructions can be used for
maximum efficiency.

« Input sections which match the wildcard pattern . 1ib* are collected and mapped
into the output section. This includes libraries such as the peripheral libraries
(which are allocated in section .1ibperi).

10.5.2 Assigning Output Sections to Regions

Once the sizes of all output sections are known, they are assigned to memory regions.
Normally a region is specified in the output section definition. If a region is not specified,
the first defined memory region will be used.

Memory regions are filled sequentially, from lower to higher addresses, in the same
order that sections appear in the section map. Memory reserved for boot or secure
segments will be avoided, as well as sections that have been marked with the address
attribute in source code. A location counter, unique to each region, keeps track of the
next available memory location. There are two conditions which may cause gaps in the
allocation of memory within a region:

1. The section map specifies an absolute address for an output section, or
2. The output section has a particular alignment requirement.

In either case, any intervening memory between the current location counter and the
absolute (or aligned) address is skipped. Once a range of memory has been skipped,
it is available for use by the best-fit allocator. The exact address of all items allocated
in memory may be determined from the link map file.

Section alignment requirements typically arise in DSP programming. To utilize modulo
addressing, it is necessary to align a block of memory to a particular storage boundary.
This can be accomplished with the aligned attribute in C, or with the .align direc-
tive in assembly language. The section containing an aligned memory block must also
be aligned, to the same (or greater) power of 2. If two or more input sections have dif-
ferent alignment requirements, the largest alignment is used for the output section.

Another restriction on memory allocation is associated with read-only data sections.
Read-only data sections are identified with the psv section attribute and are dedicated
for use in the PSV window or the Extended Data Space (EDS) window. The C compiler
creates a read-only data section named . const to store constants when the
--mconst-in-code option is selected.

To allow efficient access of constant tables in the PSV or EDS window, the linker
ensures that a read-only section will not cross a page boundary. Therefore a single set-
ting of the page register can be used to access the entire section. If necessary, output
sections in program memory will be re-sorted after the sequential allocation pass to
accommodate this restriction. If an absolute address has been specified in the linker
script for a particular section, it will not be moved. In general, fully relocatable sections
provide the most flexibility for efficient memory allocation.

Note: Sections with specific alignment requirements, such as psv sections or
sections intended for modulo addressing, may be allocated most efficiently
by the best-fit allocator. For best-fit allocation, these sections should not
appear in the linker script.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 179

16-Bit Assembler, Linker and Utilities User’s Guide

10.5.3 Allocating Unmapped Sections

After all sections that appear in the section map are allocated, any remaining sections
are considered to be unmapped. Unmapped sections are allocated according to sec-
tion attributes. The linker uses a best-fit memory allocator to determine the most effi-
cient arrangement in memory. The primary emphasis of the best-fit allocator is the
reduction or elimination of memory gaps due to address alignment restrictions.

Since data memory is limited on many 16-bit devices, and several architectural fea-
tures imply address alignment restrictions, efficient allocation of data memory is partic-
ularly important. By convention, data memory sections are not explicitly mapped in
linker scripts, thus providing maximum flexibility for the best-fit memory allocator.

Section attributes affect memory allocation as described below. For a general discus-
sion of section attributes, see Section 4.2 “Directives that Define Sections.”.

code

The code attribute specifies that a section should be allocated in program memory, as
defined by region program in the linker script. The following attributes may be used in
conjunction with code and will further specify the allocation:

e address () specifies an absolute address

* align () specifies alignment of the section starting address

* boot specifies the boot segment

* secure specifies the secure segment

data

The data attribute specifies that a section should be allocated as initialized storage in
data memory, as defined by region data in the linker script. The following attributes
may be used in conjunction with data and will further specify the allocation:

address () specifies an absolute address

near specifies the first 8K of data memory

xmemory specifies X address space, which includes all of region data below the
address _ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
ymemory specifies Y address space, which includes all of region data above the
address YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
align () specifies alignment of the section starting address

reverse () specifies alignment of the section ending address + 1

dma specifies dma address space, which includes the portion of region data
between addresses DMA_BASE and _ DMA_END as defined in the linker
script (for PIC24H MCUs and dsPIC33F DSCs only).

DS50002106D-page 180

© 2013-2018 Microchip Technology Inc.

Linker Processing

bss

The bss attribute specifies that a section should be allocated as uninitialized storage in
data memory, as defined by region data in the linker script. The following attributes
may be used in conjunction with bss and will further specify the allocation:

address () specifies an absolute address

near specifies the first 8K of data memory

xmemory specifies X address space, which includes all of region data below the
address YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)

ymemory specifies Y address space, which includes all of region data above the
address _ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
align () specifies alignment of the section starting address

reverse () specifies alignment of the section ending address + 1

dma specifies dma address space, which includes the portion of region data
between addresses DMA_BASE and DMA_END as defined in the linker
script (for PIC24H MCUs and dsPIC33F DSCs only).

boot specifies the boot segment
secure specifies the secure segment

persist

The persist attribute specifies that a section should be allocated as persistent storage
in data memory, as defined by region data in the linker script. Persistent storage is not
cleared or initialized by the C run-time library. The following attributes may be used in
conjunction with persist and will further specify the allocation:

address () specifies an absolute address
near specifies the first 8K of data memory

xmemory specifies X address space, which includes all of region data below the
address _ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)

ymemory specifies Y address space, which includes all of region data above the
address _ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs
only)
align () specifies alignment of the section starting address
reverse () specifies alignment of the section ending address + 1

dma specifies dma address space, which includes the portion of region data
between addresses DMA_BASE and DMA_END as defined in the linker
script (for PIC24H MCUs and dsPIC33F DSCs only).

© 2013-2018 Microchip Technology Inc. DS50002106D-page 181

16-Bit Assembler, Linker and Utilities User’s Guide

psv

The psv attribute specifies that a section should be allocated in program memory, as
defined by region program in the linker script. psv sections are intended for use with
the Program Space Visibility window or the Extended Data Space (EDS) window, and
will be located so that the entire contents may be accessed using a single setting of the
page register. This allocation rule implies that the total size of a psv section can not
exceed 32K. The following attributes may be used in conjunction with psv and will
further specify the allocation:

address () specifies an absolute address

align () specifies alignment of the section starting address

reverse () specifies alignment of the section ending address + 1

boot specifies the boot segment

secure specifies the secure segment

memory

The memory attribute specifies that a section should be allocated in external or
user-defined memory. The following attributes may be used in conjunction with memory
and will further specify the allocation:

address () specifies an absolute address

align () specifies alignment of the section starting address

reverse () specifies alignment of the section ending address + 1

noload specifies that the section should not be loaded with the primary
application

Note: Sections allocated in external or user-defined memory cannot be accessed
by the PSV window or the EDS window.

eedata — dsPIC30F DSCs only

The eedata attribute specifies that a section should be allocated in data EEPROM
memory, as defined by region eedata in the linker script. The following attributes may
be used in conjunction with eedata and will further specify the allocation:

address () specifies an absolute address

align () specifies alignment of the section starting address

reverse () specifies alignment of the section ending address + 1

boot specifies the boot segment

secure specifies the secure segment

heap

The heap attribute specifies that a section should be designated for use by the C
run-time library for dynamic memory allocation. The heap must always be allocated in
local data memory (address range 0x0 to 0x7FFE). The following attributes may be
used in conjunction with heap and will further specify the allocation:

address () specifies an absolute address

xmemory specifies X address space, which includes all of region data below the
address _ YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
ymemory specifies Y address space, which includes all of region data above the
address YDATA_BASE as defined in the linker script (dsPIC30F/33F DSCs

only)
align () specifies alignment of the section starting address

DS50002106D-page 182

© 2013-2018 Microchip Technology Inc.

Linker Processing

stack

The stack attribute specifies that a section should be designated for use as the proces-
sor stack. On most devices, the stack must always be allocated in local data memory

(address range 0x0 to Ox7FFE). On some devices, the stack may be located anywhere
in EDS page 1 (address range 0x0 to OXFFFE). The following attributes may be used

in conjunction with stack and will further specify the allocation:

address () specifies an absolute address
align () specifies alignment of the section starting address

© 2013-2018 Microchip Technology Inc. DS50002106D-page 183

16-Bit Assembler, Linker and Utilities User’s Guide

10.6 GLOBAL

AND WEAK SYMBOLS

When a symbol reference appears in an object file without a corresponding definition,
the symbol is declared external. By default, external symbols have global binding and
are referred to as global symbols. External symbols may be explicitly declared with
weak binding, using the weak _ attribute in C or the .weak directive in assembly
language.

As the name implies, global symbols are visible to all input files involved in the link.
There must be one (and only one) definition for every global symbol referenced. If a
global definition is not found among the input files, archives will be searched and the
first archive module found that contains the needed definition will be loaded. If no
definition is found for a global symbol a link error is reported.

Weak symbols share the same name space as global symbols, but are handled differ-
ently. Multiple definitions of a weak symbol are permitted. If a weak definition is not
found among the input files, archives are not searched and a value of 0 is assumed for
all references to the weak symbol. A global symbol definition of the same name will take
precedence over a weak definition (or the lack of one). In essence, weak symbols are
considered optional and may be replaced by global symbols, or ignored entirely.

DS50002106D-page 184

© 2013-2018 Microchip Technology Inc.

Linker Processing

10.7 HANDLES

The modified Harvard architecture of dsPIC30F devices supports two memory spaces
of unequal size. Data memory space can be fully addressed with 16 bits while program
memory space requires 24 bits. Since the native integer data type (register width) is
only 16 bits, there is an inherent difficulty in the allocation and manipulation of function
pointers that require a full 24 bits. Reserving a pair of 16-bit registers to represent every
function pointer is inefficient in terms of code space and execution speed, since many
programs will fit in 64K words of program space or less. However, the linker must
accommodate function pointers throughout the full 24-bit range of addressable
program memory.

Note: Future versions of the compiler may define function pointers to be 24 bits
or larger. In such cases, handles will not be used.

In order to ensure a valid 16-bit pointer for any function in the full program memory
address space, the 16-bit assembler and linker support the handle () operator. The C
compiler uses this operator whenever a function address is taken. Assembly
programmers can use this operator three different ways:

mov #handle (func),w0 ; handle() used in an instruction

.word handle (func) ; handle () used with a data word directive

.pword handle (func) ; handle () used with a instruction word
;directive

The linker searches all input files for handle operators and constructs a jump table in a
section named .handle. For each function that is referenced by one or more handle
operators, a single entry is made in the jump table. Each entry is a GOTO instruction.
Note that GOTO is capable of reaching any function in the full 24- bit address space.
Section .handle is allocated low in program memory, well within the range of a 16-bit
pointer.

When the output file is built, the absolute addresses of all functions are known. Each
handle relocation entry is filled with an absolute address. If the address of the target
function fits in 16 bits, it is inserted directly into the object code. If the absolute address
of the target function exceeds 16 bits, the address of the corresponding entry in the
jump table is used instead. Only functions located beyond the range of 16-bit address-
ing suffer any performance penalty with this technique. However, there is a code space
penalty for each unused entry in the jump table.

In order to conserve program memory, the handle jump table can be suppressed for
certain devices, or whenever the application programmer is sure that all function point-
ers will fit in 16 bits. One way is to specify the --no-handles link option on the com-
mand line or in the IDE. Another way is to define a symbol named NO HANDLES in
the linker script:

__NO _HANDLES = 1;

Linker scripts for 16-bit devices with 32K instruction words or less all contain the
__NO_HANDLES definition to suppress the handle jump table.

Note: Ifthe handle jump table is suppressed, and the target address of a function
pointer does not fit in 16 bits, a “relocation truncated” link error will be gen-
erated.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 185

16-Bit Assembler, Linker and Utilities User’s Guide

10.8 INITIALIZED DATA

The linker provides automatic support for initialized variables in data memory. Variables
are allocated in sections. Each data section is declared with a flag that indicates
whether it is initialized, or not initialized.

To control the initialization of the various data sections, the linker constructs a data ini-
tialization template. The template is allocated in program memory, and is processed at
start-up by the run-time library. When the application main program takes control, all
variables in data memory have been initialized.

« Standard Data Section Names

 Data Initialization Template

¢ Run-Time Library Support

10.8.1 Standard Data Section Names

Traditionally, linkers based on the GNU technology support three sections in the linked
binary file:

TABLE 10-1: TRADITIONAL SECTION NAMES

Section Name Description Attribute
.text executable code code
.data data memory that receives initial values | data
.bss data memory that is not initialized bss

The name “bss” dates back several decades, and means memory “Block Started by
Symbol”. By convention, bss memory is filled with zeros during program start-up.

The traditional section names are considered to have implied attributes as listed in
Table 10-1. The code attribute indicates that the section contains executable code and
should be loaded in program memory. The bss attribute indicates that the section con-
tains data storage that is not initialized, but will be filled with zeros at program start-up.
The data attribute indicates that the section contains data storage that receives initial
values at start-up.

Assembly applications may define additional sections with explicit attributes using the
section directive described in Section 4.2 “Directives that Define Sections.”. For C
applications, the 16-bit compiler will automatically define sections to contain variables
and functions as needed. For more information on the attributes of variables and func-
tions that may result in automatic section definition, see the “MPLAB XC16 C Compiler
User's Guide” (DS50002071).

Note: Whenever a section directive is used, all declarations that follow are
assembled into the named section. This continues until another section
directive appears, or the end of file. For more information on defining
sections and section attributes, see Section 4.2 “Directives that Define
Sections.”.

DS50002106D-page 186

© 2013-2018 Microchip Technology Inc.

Linker Processing

10.8.2 Data Initialization Template

As noted in Section 10.8.1 “Standard Data Section Names.”, the 16-bit Language Tools
support BSS-type sections (memory that is not initialized) as well as data-type sections
(memory that receives initial values). The data-type sections receive initial values at
start-up, and the BSS-type sections are filled with zeros.

A generic data initialization template is used that supports any number of arbitrary
BSS-type sections or data-type sections. The data initialization template is created by
the linker and is loaded into an output section named .dinit in program memory.
Start-up code in the run-time library interprets the template and initializes data memory
accordingly.

The data initialization template contains one record for each output section in data
memory. The template is terminated by a null instruction word. The format of a data
initialization record is:

/* data init record */
struct data record {

char *dst; /* destination address */
unsigned int len; /* length in bytes */
unsigned int format:7; /* format code */
unsigned int page:9; /* destination page */
char dat[0]; /* variable length data */

}i

The first element of the record is a pointer to the section in data memory. The second
and third elements are the section length and format code, respectively. The fourth ele-
ment is the page value of the section. On EDS devices, the page value will be in the
range 0x001 to Ox1FF. On all other devices, the page value will be zero. The last ele-
ment is an optional array of data bytes. For BSS-type sections, no data bytes are
required.

The format code has three possible values.

TABLE 10-2: FORMAT CODE VALUES

Format Code Description
0 Fill the output section with zeros
1 Copy 2 bytes of data from each instruction word in the data array
2 Copy 3 bytes of data from each instruction word in the data array

By default, data records are created using format 2. Format 2 conserves program mem-
ory by using the entire 24-bit instruction word to store initial values. Note that this format
causes the encoded instruction words to appear as random and possibly invalid
instructions if viewed in the disassembler.

Format 1 data records may be created by specifying the --no-pack-data option.
Format 1 uses only the lower 16 bits of each 24-bit instruction word to store initial val-
ues. The upper byte of each instruction word is filled with 0x0 by default and causes
the template to appear as NOP instructions if viewed in the disassembler (and will be
executed as such by the 16-bit device). A different value may be specified for the upper
byte of the data template with the -—-fi11-data option.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 187

16-Bit Assembler, Linker and Utilities User’s Guide

10.8.3 Run-Time Library Support

In order to initialize variables in data memory, the data initialization template must be
processed at start-up, before the application's main function takes control. For C pro-
grams, this task is performed by C start-up modules in the runtime library. Assembly
language programs can also use the C start-up modules by linking with
libpic30-coff.aorlibpic30-elf.a.

Multiple versions of the start-up modules are contained within the runtime library. The
linker will select a startup module based on commands in the linker script. For example:

CRTO_STARTUP (crtO_standard.o)
CRT1 STARTUP (crtl standard.o)

For each device, two start-up modules are specified: a primary module (CRTO) and an
alternate module (CRT1).

To utilize a start-up module, the application must allow the run-time library to take con-
trol at device Reset. This happens automatically for C programs. The application’s
main () function is invoked after the start-up module has completed its work. Assembly
language programs should use the following naming conventions to specify which
routine takes control at device Reset.

TABLE 10-3: MAIN ENTRY POINTS

Main Entry Name Description
__reset Takes control immediately after device Reset
_main Takes control after the start-up module completes its work

Note that the first entry name (__reset) includes two leading underscore characters.
The second entry name (_main) includes only one leading underscore character. The
linker scripts constructa GOTO __ reset instruction at location 0 in program memory,
which transfers control upon device Reset.

The primary start-up module is linked by default and performs the following:

1. The stack pointer (W15) and stack pointer limit register (SPLIM) are initialized,
using values provided by the linker or a custom linker script. For more information,
see Section 10.10 “Stack Allocation.”

2. Ifa .const section is defined, it is mapped into the PSV window by initializing
the PSVPAG and CORCON registers. On devices which support EDS the
DSRPAG register will be initialized. Note that a . const section is defined when
the “Constants in code space” option is selected in MPLAB IDE, or the
-mconst-in-code option is specified on the compiler command line.

3. The data initialization template in section .dinit is read, causing all uninitial-
ized sections to be cleared, and all initialized sections to be initialized with values
read from program memory.

4. If the application has defined user init functions, section .user initis
called.

5. The function main is called with no parameters.
6. If main returns, the processor will reset.

The alternate start-up module is linked when the --no-data-init option is spec-
ified. It performs the same operations, except for step (3), which is omitted. The alter-
nate start-up module is much smaller than the primary module, and can be selected to
conserve program memory if data initialization is not required.

Source code for both modules is provided in the src directory of the MPLAB XC16 C
compiler installation directory. The start-up modules may be modified if necessary. For
example, if an application requires main to be called with parameters, a conditional
assembly directive may be switched to provide this support.

DS50002106D-page 188 © 2013-2018 Microchip Technology Inc.

Linker Processing

10.9 READ-ONLY DATA

Read-only data sections are located in program memory, but are defined and accessed
just like data memory. They are useful for storing constant tables that are too large for
available data memory. The C compiler creates a read-only section named . const
when the -mconst-in-code option is specified.

Access to read-only data sections is provided by means of the PSV window, or the EDS
window. In either case, a reference to the read-only data is resolved to a data address
within the PSV or EDS window.

C programmers can use the space attribute to allocate variables in read-only data sec-
tions. Access to such variables can be managed automatically by the compiler, or by

explicit application code. For additional information on using read-only variables in C,

refer to “MPLAB® XC16 C Compiler User’s Guide” (DS50002071), Section 4.14 “Pro-
gram Space Visibility (PSV) Usage” and Section 6.2 “Managed PSV Pointers”.

The psv section attribute is used to designate read-only data sections in assembly lan-
guage. The contents of read-only data sections may be specified with data directives,
as shown in the following assembly source example:

.section rdonly,psv
Ll: .byte 1
L2: .byte 2

In this example, section rdonly will be allocated in program memory. Both byte con-
stants will be located in the same program memory word, followed by a pad byte. Unlike
other sections in program memory, read-only sections are byte addressable. Each
label is resolved to a unique address that lies with the PSV or EDS address range.

The linker allocates read-only sections such that they do not cross a page boundary.
Therefore, a single setting of the page register will access the entire section. A maxi-
mum length restriction is implied; the linker will issue an error message if any read-only
data section exceeds 32 Kbytes. Only the least significant 16 bits of each instruction
word are available for data storage (bits 16-23). The upper byte of each program word
is filled with 0x0 or another value specified with the --fi11-upper option. None of
the p-variant assembler directives (including . pbyte and . pword) are permitted in
read-only data sections.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 189

16-Bit Assembler, Linker and Utilities User’s Guide

The following examples illustrate how bytes in read-only sections may be accessed:

; example 1

mov #psvpage (L1) ,w0

mov w0, PSVPAG ; set page register
mov #psvoffset (L1l),w0

mov #psvoffset (L2),wl

mov.b [wO],w2 ; load the byte at L1
mov.b [wl], w3 ; load the byte at L2

; example 2

mov #edspage (L1) ,w0

mov w0, DSRPAG ; set page register
mov #edsoffset (L1),w0

mov #edsoffset (L2),wl

mov.b [wO], w2 ; load the byte at L1
mov.b [wl], w3 ; load the byte at L2

User-defined read-only sections do not require a custom linker script. Based on the
psv section attribute, the linker will locate the section in program memory and map its
labels into the PSV or EDS window. If the programmer wishes to declare a read-only
section in a custom linker script, the following syntax may be used:

/*

** User-Defined Constants in Program Memory

** This section is identified as a read-only section
** by use of the psv section attribute. It will be
** loaded into program memory and mapped into data
** memory using the PSV or EDS window.
*/
userconstants ADDR : AT (LOADADDR)

{

* (userconstants) ;
} >program

In this example, LOADADDR specifies the load address in program memory.

It is not generally recommended to define read-only data sections in the linker script.
This is because sections that appear in the linker script are allocated sequentially, and
read-only data sections have significant page alignment restrictions. Because of these
alignment restrictions, sequential allocation can fragment memory and result in less
efficient memory utilization.

Likewise, it is not recommended to specify an absolute address for read-only data sec-
tions using attributes in source code. Absolute sections also fragment memory, and can
result in less efficient memory utilization.

DS50002106D-page 190

© 2013-2018 Microchip Technology Inc.

Linker Processing

10.10 STACK ALLOCATION

The 16-bit device dedicates register W15 for use as a software stack pointer. All pro-
cessor stack operations, including function calls, interrupts and exceptions, use the
software stack. Upon Power-on or Reset, register W15 is initialized to point to a region
of memory reserved for the stack. The stack grows upward, towards higher memory
addresses.

The 16-bit device also supports stack overflow detection. If the stack limit register
SPLIM is initialized, the device will test for overflow on all stack operations. If an over-
flow should occur, the processor will initiate a stack error exception. By default, this will
result in a processor Reset. Applications may also install a stack error exception han-
dler by defining an interrupt function named __ StackError. See

Section 10.12 “Interrupt Vector Tables.” for details.

By default, 16-bit linker allocates the largest stack possible from unused data memory.
Therefore, care should be taken when assigning symbols to data sections so as to
leave room for the stack (see Section 4.2 “Directives that Define Sections.”).

The location and size of the stack is reported in the link map output file, under the head-
ing Dynamic Memory Usage. Applications can ensure that at least a minimum sized
stack is available by using the -—stack command option. For example:

xcl6-1d -o t.exe tl.o --stack=0x100

While performing automatic stack allocation, 16-bit linker increases the minimum
required size by a small amount to accommodate the processing of stack overflow
exceptions. The stack limit register SPLIM is initialized to point just below this extra
space, which acts as a stack overflow guardband. If not enough memory is available
for the minimum size stack plus guardband, the linker will report an error.

The default stack guardband size is 16 bytes. Applications can specify a different size
by using the --stackguard command option. For example:

xcl6-1d -o t.exe tl.o --stackguard=32

As an alternative to automatic stack allocation, the stack may be allocated directly with
a user-defined section in assembly language. For example:

.section my stack, stack
.space 0x100

When the stack is allocated in this way, the usable stack space will be slightly less than
0x100 bytes, since a portion of the user-defined section will be reserved for the stack
guardband.

Regardless of how the stack is allocated (automatically or by user-defined section) the
linker creates two symbols for use by the startup module. SP_init defines the initial
value for the stack pointer (W15), and SPLIM init defines the initial value for the
stack limit register (SPLIM).

The start-up module uses these symbols to initialize the stack pointer and stack pointer
limit register. Normally the start-up module is provided by 1ibpic30.a. In special
cases, the application may provide its own start-up code. The following stack
initialization sequence may be used:

mov # SP init,wl5 ; initialize wl5
mov # SPLIM init,w0 ;
mov w0, SPLIM ; initialize SPLIM

© 2013-2018 Microchip Technology Inc. DS50002106D-page 191

16-Bit Assembler, Linker and Utilities User’s Guide

10.11 HEAP ALLOCATION

The 16-bit compiler standard C library, 1ibc. a, supports dynamic memory allocation
functions such as malloc () and free (). Applications which utilize these functions
must instruct the linker to reserve a portion of 16-bit data memory for this purpose. The
reserved memory is called a heap.

Applications can specify the heap size by using the --heap command option. For
example:

xcl6-1d -o t.exe tl.o --heap=0x100

While performing automatic heap allocation, the linker allocates the heap from unused
data memory. The heap size is always specified by the programmer. In contrast, the
linker sets the stack size to a maximum value, utilizing all remaining data memory.

As an alternative to automatic heap allocation, the heap may be allocated directly with
a user-defined section in assembly source code. For example:

.section my heap, heap
.space 0x100

The location and size of the heap are reported in the link map output file, under the

heading Dynamic Memory Usage. If the requested size is not available, the linker
reports an error.

10.12 INTERRUPT VECTOR TABLES

dsPIC30F/33F DSC and PIC24F/H MCU devices have two interrupt vector tables - a
primary and an alternate table, each containing exception vectors, as well as a RESET
instruction at location zero. By convention, the linker initializes the RESET instruction
and interrupt vector tables automatically, using information provided in the standard
linker scripts.

The 16-bit compiler provides a special syntax for writing interrupt handlers. See the
“MPLAB® XC16 C Compiler User’s Guide” (DS50002071) for more information.

Assembly language programmers can install interrupt handlers simply by following the
standard naming conventions. Interrupt handlers declared with the standard names
and defined as globals are automatically installed into the vector tables.

By convention, the entry pointnamed __ reset takes control at device Reset. All appli-
cations written in assembly language must include a Reset function with this name. For
C programs, the Reset function is provided in 1ibpic30, which initializes the C
run-time environment.

Note: Applications may provide a default interrupt handler, which will be installed
into any unused vector table entries. In assembly language, the name of the
default interrupt handleris DefaultInterrupt. In C the name is
_DefaultInterrupt.

If the application does not provide a default interrupt handler, the linker will
create one in section . isr that contains a reset instruction. Creation of a
default interrupt handler by the linker may be suppressed with the
--no-isr option. In that case unused slots in the interrupt vector tables
will be filled with zeros.

DS50002106D-page 192

© 2013-2018 Microchip Technology Inc.

Linker Processing

10.12.1 Interrupt Handler Example

The following example provides a Reset function and a default interrupt handler in
assembly language. The default interrupt handler uses persistent data storage to keep
a count of unexpected interrupts and/or error traps.

.include "p30£f6014.inc"
.text

.global reset

___reset:
;; takes control at device reset/power-on
mov # SP init,wl5 ; initialize stack pointer
mov # SPLIM init,w0 ; and stack limit register

mov w0, SPLIM ;

btst RCON, #POR ; was this a power-on reset?
bra z,start ; branch if not
clr FaultCount ; else clear fault counter
bclr RCON, #POR ; and power-on bit
start:
goto main ; start application
.global @ TlInterrupt
~ TlInterrupt:
;; services timer 1 interrupts
bclr IFSO,#T1IF ; clear the interrupt flag
retfie ; and return from interrupt
.global DefaultInterrupt
__DefaultInterrupt:
;7 services all other interrupts & traps
inc FaultCount ; increment the fault counter
reset ; and reset the device
.section .pbss,persist ; persistent data storage
.global FaultCount ; 1is not affected by reset
FaultCount:
.space 2 ; count of unexpected interrupts

The standard naming conventions for interrupt handlers are described in the sections
below.

Note: The compiler requires only one leading underscore before any of the inter-
rupt handler names. The assembler requires two leading underscores
before any of the interrupt handler names. The compiler format is shown in
tables in the following sections.

10.12.2 Interrupt Tables Location

For tables of interrupt vectors by device family:

* In MPLAB X IDE, for newer versions of the compiler, open the Dashboard window
and click on the Compiler Help button.

* On the command-line, see the docs subdirectory of the MPLAB XC16 C compiler
install directory (e.g., C:\Program Files (x86)\Microchip\xcl6\vl.25).
Open the XCl6MasterIndex file and click on the "Interrupt Vector Tables
Reference" link.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 193

16-Bit Assembler, Linker and Utilities User’s Guide

10.13 OPTIMIZING MEMORY USAGE

For memory intensive applications, it is often necessary to optimize memory usage by
reducing or eliminating any unused gaps. The linker will optimize memory allocation
automatically in most cases. However, certain constructs in source code and/or linker
scripts may introduce gaps and should be avoided.

Memory gaps generally fall into the following categories:

* Gaps Between Variables of Different Types
* Gaps Between Aligned Variables

« Gaps Between Input Sections

» Gaps Between Output Sections

10.13.1 Gaps Between Variables of Different Types

Gaps may be inserted between variables of different types to satisfy address alignment
requirements. For example, the following sequence of C statements will result in a gap:

char cl;

int 1i;

char c2;

int 3j;

Because the processor requires integers to be aligned on a 16-bit boundary, a padding
byte was inserted after variables c1 and c2. To eliminate this padding, variables of the
same type should be defined together, as shown:

char cl,c2;
int i,73;
Gaps between variables are not visible to the linker, and are not reported in the link

map. To detect these gaps, an assembly listing file must be created. The following
procedure can be used:

1. If the source file is written in C, specify the -save-temps command line option
to the compiler. This will cause an assembly version of the source file to be saved
infil enane.s.

xclé-gcc test.c -save-temps

2. Specify the —ai listing option to the assembler. This will cause a table of section
information to be generated.

xclb-as test.s -ai

SECTION INFORMATION:

Section Length (PC units) Length (bytes) (dec)
text 0 0 (0)
TOTAL PROGRAM MEMORY USED (bytes): 0 (0)
Section Alignment Gaps Length (bytes) (dec)
data 0 0 (0)
bss 0 0 (0)
nbss 0x2 0x8 (8)
TOTAL DATA MEMORY USED (bytes): 0x8 (8)

In this example, 2 bytes of unused memory were inserted into section .nbss. Gaps
between ordinary C variables will not exceed 1 byte per variable.

DS50002106D-page 194 © 2013-2018 Microchip Technology Inc.

Linker Processing

10.13.2 Gaps Between Aligned Variables

Variables may be defined in C with the aligned attribute in order to specify special
alignment requirements for modulo addressing or other purposes. Use of the aligned
attribute will cause the variable to be allocated in a unique section. Since a unique sec-
tion is never combined with other input sections, no alignment padding is necessary
and the linker will allocate memory for the aligned variable in the most efficient way
possible.

For example, the following sequence of C statements will not result in an alignment
gap, because variable buf is allocated in a unique section automatically:

char cl,c2;

int i,73;

int attribute ((aligned(256))) buf[128];

When allocating space for aligned variables in assembly language, the source code

must also specify a section name. Unless the aligned variable is defined in a unique
section, alignment padding may be inserted. For example, the following sequence of
assembly statements would result in a large alignment gap, and should be avoided:

.section my vars,bss
.global varl, var2, buf

_varl: .space 2
_var2: .space 2
; location counter is now 4
.align 256
buf: .space 256

; location counter is now 512

Re-ordering the statements so that buf is defined first will not eliminate the gap. A
named input section will be padded so that its length is a multiple of the requested
alignment. This is necessary in order to guarantee correct alignment when multiple
input sections with the same name are combined by the linker. Therefore reordering
statements would cause the gap to move, but would not eliminate the gap.

Aligned variables in assembly must be defined in a unique section in order to avoid
alignment padding. It is not sufficient to specify a section name that is used only once,
because the assembler does not know if that section will be combined with others by
the linker. Instead, the special section name * should be used. As explained in
Section 4.2 “Directives that Define Sections.”, the section name * instructs the
assembler to create a unique section that will not be combined with other sections.

To avoid alignment gaps, the previous example could be written as:

.section my vars,bss
.global wvarl, var?
_varl: .space 2
_var2: .space 2

.section *,bss

.global buf

.align 256
buf: .space 256

The alignment requirementfor buf could also be specified in the . section directive,
as shown:
.section *,bss,align (256)

.global buf
_buf: .space 256

© 2013-2018 Microchip Technology Inc. DS50002106D-page 195

16-Bit Assembler, Linker and Utilities User’s Guide

10.13.3 Gaps Between Input Sections

Gaps between input sections are similar to gaps between aligned variables, except that
the padding is inserted by the linker, not the assembler. This type of gap can occur
when variables with different alignment requirements are defined in separate source
files.

A necessary condition for the insertion of alignment gaps by the linker is explicit map-
ping of input sections in the linker script. For example, older versions of the 16-bit
compiler (prior to version 1.30) included the following definition:

/*

** Initialized Data and Constants

*/

.data :

{

*(.data);

* (.dconst) ;
} >data

This example maps all input sections named .data, and all input sections named
.dconst, into a single output section. The various input sections will be combined
sequentially. If the alignment requirement of any section exceeds that of the previous
section, the linker will insert padding as needed and report an alignment gap in the link
map:

Data Memory Usage

section address alignment gaps total length (dec)
.data 0x800 0x10 0x90 (144)
Total data memory used (bytes): 0x90 (144) <1%

The remedy for this type of gap is to simply eliminate the mapping of input sections in
linker scripts. Unmapped sections are allocated individually by the linker, so that no

special alignment padding is necessary. Newer versions of the 16-bit compiler (version
1.30 and later) do not explicitly map any input sections in data memory for this reason.

DS50002106D-page 196

© 2013-2018 Microchip Technology Inc.

Linker Processing

10.13.4 Gaps Between Output Sections

Gaps between output sections can occur when the alignment requirements differ and
multiple sections are allocated sequentially into the same memory region.

A necessary condition for the insertion of alignment gaps between output sections is
explicit mapping of output sections in the linker script. For example, older versions of
the 16-bit compiler (prior to version 1.30) included the following definitions:
/*
** Persistent Data
*/
.pbss (NOLOAD) :

{

*(.pbss);
} >data

/*

** Static Data

*/

.bss (NOLOAD) :
{

*(.bss);
} >data

This example creates two output sections (. pbss and .bss) and maps them into
memory region data. Because the output sections are allocated sequentially, any
difference in alignment requirements will result in gap.

In some instances the linker will make use of this gap, depending on the availability,
size, and alignment requirements of any unmapped sections. In general it is preferable
to eliminate the explicit mapping of output sections in linker scripts. When all output
sections are unmapped, the linker is free to perform a best-fit allocation based on
section attributes.

One consequence of best-fit allocation is that gaps between output sections may
appear in unexpected places. The linker tries to use small memory blocks first, and will
locate sections to leave the largest unused portions. When memory is segmented,
such as by the introduction of an absolute section, the arrangement in memory may
change dramatically. This should not be a problem unless the programmer expects a
certain area of memory to remain unused. In such cases the programmer should
reserve memory explicitly, using an array definition in source code, or by editing the
linker script.

Explicit mapping of output sections in linker scripts is recommended only when the
proximity or relative ordering of sections is important, and can't be satisfied using the
section attributes described in Section 4.2 “Directives that Define Sections.”.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 197

16-Bit Assembler, Linker and Utilities User’s Guide

10.14 BOOT AND SECURE SEGMENTS

The linker supports boot, secure, and general segments as described in the “Code-
Guard™ Security Reference Manual” (DS70180). The security model which includes
segment sizes and configuration options may be specified in multiple ways. The linker
allocates memory according to this security model and supports independent linking of
application segments.

10.14.1 Specifying the Security Model

The application security model (including the sizes of various secure segments in
FLASH, RAM, and EEDATA) can be specified in two ways:

1. In source code using macros currently defined for the FBS, FSS, FGS configu-
ration words. See processor-specific include files for details and examples.

2. Using linker command options (see Section 8.8 “Options that Specify Code-
Guard™ Security Features.”).

If both methods are used to provide conflicting information, the linker will issue a diag-
nostic. Likewise, a diagnostic will be issued if a security model is specified that can not
be supported by the target device. The security model will be encoded by the linker into
the executable file as contents for the FBS, FSS, and FGS configuration words.

A summary of CodeGuard Security options and segment sizes is written to the link map
file. For example:

Selected CodeGuard Options:
FBS:BSS:STRD_SMALL BOOT_CODE
FSS:SSS:STRD SMALL SEC CODE

CodeGuard FLASH Memory:
boot 0x100 to Ox3fe
secure 0x400 to Oxlffe
general 0x2000 to 0Ox17ffe

CodeGuard RAM Memory:
general 0x800 to 0x279f
secure (none)
boot (none)

DS50002106D-page 198

© 2013-2018 Microchip Technology Inc.

Linker Processing

10.14.2 User-Defined Boot and Secure Segments

User-defined boot and secure segments are supported in program memory and data
memory. This allows an application to take advantage of the CodeGuard Security lan-
guage extensions on any device, not just CodeGuard Security-enabled devices.
User-defined segments are specified with the ram size and flash size options
(see Section 8.8 “Options that Specify CodeGuard™ Security Features.”).

A summary of user-defined boot and secure segments is written to the link map file. For

example:

User-Defined CodeGuard Segments
boot RAM: 0x20 bytes
secure RAM: 0x80 bytes

CodeGuard FLASH Memory:
boot (none)
secure (none)

general 0x100 to Oxl7ffe
CodeGuard RAM Memory:
general 0x800 to 0x26ff
secure 0x2700 to 0x277f
boot 0x2780 to 0x279f

User-defined segment options should not be combined with CodeGuard Security
options. They are intended for debugging and/or special bootloader applications.
User-defined segment options are not encoded in the FBS, FSS, FGS configuration
words.

10.14.3 Boot and Secure Segment Allocation

The linker will collect input sections designated as boot or secure and allocate them
according to the security model. Diagnostics will be issued for errors such as overflow
of a secure segment, or requests for a type of protected memory that does not match
the security model.

The linker reserves memory for boot and secure segments by adjusting boundaries of
the following memory regions: program, data, and eedata. Therefore the name, origin,
and length of these regions expressed in the linker script should reflect the original val-
ues, not values adjusted for boot and secure segments.

Note: Only sections explicitly designated as boot or secure will be allocated in
the boot and secure segments. For independently linked applications,
boot and secure functions must not call any library functions, or have any
section dependencies that are not explicitly designated as boot or
secure.

If access entry points have been defined, the linker will construct branch tables as
needed for the boot or secure segment. Branch tables fill the entire access area (32
instruction words), regardless of how many access entry slots are actually used. This
ensures that secure segment object code can be reached only by access entry point.
Unused slots in the branch table will be filled with the default entry if one has been spec-
ified.

Execution flow may reach access entry points in several different ways, using a com-
bination of machine instructions and data directives. Each access entry consists of a
single, unconditional branch instruction, which targets the actual object code for a
secure function.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 199

16-Bit Assembler, Linker and Utilities User’s Guide

10.14.4 Resolving Symbols

Symbol references within CodeGuard Security segments, and between CodeGuard
Security segments, will be processed normally. If access entry points have been spec-
ified in a code address reference or in a function call reference, they will be resolved to
specific offsets in the access entry tables. This mechanism allows the linker to resolve
references to boot or secure functions that are defined only in terms of their access
entry slot number, and is the key to supporting independently-linked applications.

Interrupt service routines designated for the boot or secure segments will be installed
as a vector in slot 16 of the appropriate segment. Unused slots in the access entry
tables are resolved to the unused function handler if one has been defined.

Note: The linker implements the security model in terms of memory allocation,
but does not enforce a security policy. For example, references to a func-
tion defined in a secure segment from a lower privileged segment are per-
mitted. Therefore it is possible to successfully link an application that fails
at runtime due to CodeGuard Security hardware protection. This should be
a relatively uncommon occurrence, since in practice strict CodeGuard
Security protection implies independently-linked application segments.

10.14.5 Example of Simple Bootloader Application

A simple bootloader might look like this:

#include <xc.h>
#include "bootloader.h"

volatile int safe to continue = 0;
void attribute ((interrupt)) TlInterrupt(void) {
safe to continue = 1;

IFSObits.T1IF = 0;
}

/*
* will be filled in by target application
*/

void (*volatile startup location) (void)

__attribute ((section("startup"),shared)):;

main () {

IPCObits.T1IP = 6;
IECObits.T1IE=1;

PR1 = 1000;

T1CONbits.TON = 1;

while (safe to continue == 0);
T1CONbits.TON = 0;

// presumably we have no communications request, and can proceed
if (startup location) startup location();

DS50002106D-page 200 © 2013-2018 Microchip Technology Inc.

Linker Processing

The variable startup location is shared and defined in the bootloader. The end
application may redefine the contents of the variable, but not the address. The target
application will provide an over-ridden definition of this value to be the address of its
startup location. For a C application, this will be the function reset.

#include <xc.h>

#include <stdio.h>

#include "bootloader.h"

extern void reset (void);

void (*volatile startup location) (void)
__attribute ((section("startup"),shared)) = & reset;

main () {
fprintf (stderr, "Hello world\n");
}

The rest of the bootloader application could be filled-in to accept some communication
and re-program the target. When the whole system starts, the NULL initialization of
startup location may be over-written by the target application.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 201

16-Bit Assembler, Linker and Utilities User’s Guide

10.15 CO-RESIDENT APPLICATION LINKING

Co-resident applications are programs that share the same physical memory space on
an MCU or DSC. These applications are linked together in such a way that they can
share the device memory resource.

10.15.1 Associated Options

There are several optional controls:

« There is only one reset vector and one set of fuses. Only one application can con-
trol these locations. The linker command line option --coresident asks the
linker not to fill these locations, and once they are filled in it would be a link error to
try and define them again. See Section 8.4.4 “~-coresident.”

« There is still a restriction that there be only one constant section for the
const-in-code memory model, which must be shared amongst all linked applica-
tions. It is possible to reserve some space for future growth by using the option
--reserve—-const=size. This option will set aside up to size total bytes of
space to be used for the .const section in a future link. Remember the total size
of the .const section cannot be larger than 32K bytes. This option must be used
if const memory space is being used in a co-resident application domain. See
Section 8.4.32 “--reserve-const=size.”

« Padding general FLASH areas. There are already methods to add padding to
prelinked, input sections. However, this could be wasteful if all we need to do is
ensure that the contiguous allocation ends on a particular boundary. The option
--pad-flash=si ze will ensure that the linked output section is padded to a size
byte boundary. See Section 8.4.27 “~--pad-flash=size.”

* The linker option -—-no-isr has been extended to prevent the linker from com-
pleting the vector table. With this option specified, the linked executable will con-
tain entries only for vector slots that are used in the application. The others will
remain unfilled and can be defined in a future link. It is safer, in a final application,
to have all vector slots completely defined. Without the option --no-isr, the
linker will fill unused slots to call the DefaultInterrupt (void) handler
function, which it will define if none exists. See Section 8.4.16 “--no-isr.”

* The linker option —-no-1isr instructs the linker not to generate an IVT or AIVT,
unless one is explicitly created in the linker script or by other means. See
Section 8.4.18 “~--no-ivt.”

¢ The command line option --application-id=nane causes the linker to create
alias names for each external symbol. The provided name is prepended to the
normal symbol name; name should be C appropriate. See
Section 8.4.1 “--application-id=name.”

e The command line option --memory-usage causes the linker to create informa-
tion about the static memory usage for the linked application space. This informa-
tion is represented in the executable as a null terminated sequence of pairs of
start and end addresses for Flash usage and RAM usage. Flash usage informa-
tion is placed in a section named . f1ash usage, RAM usage is in
.ram_usage. See Section 8.6.4 “~--memory-usage.” and
Section 10.16 “Notable Symbols.”

10.15.2 Associated Attributes

An attribute, shared, can be applied to a function or data in C or a section in assembly
to indicate that the entry may be used outside of the application. A data item will be
initialized at startup of any application in the co-resident set.

DS50002106D-page 202 © 2013-2018 Microchip Technology Inc.

Linker Processing

10.15.3 Co-resident Usage Restrictions

When using co-resident applications:

« A function may be shared between co-resident applications, but calling such a
function should only be attempted if you are sure that all data is initialized, i.e., the
called function should only reference shared or constant data.

« Only one co-resident application can fill in each vector slot.

« Each co-resident application will share the same const-in-code Flash PSV page.

* A co-resident application should have a stack provided. For a non-coresident
application, the language tool will select the largest block of free space to be the
stack. In a co-resident application, this should be defined by the programmer. For-
tunately this is easily done with a simple assembly file. The following will reserve
1024 bytes for the stack:

.section *,stack
.space 1024

© 2013-2018 Microchip Technology Inc. DS50002106D-page 203

16-Bit Assembler, Linker and Utilities User’s Guide

10.16 NOTABLE SYMBOLS

The following symbols are defined by the linker and may be useful in code develop-

ment.

__DATA_LENGTH
~_CODE_LENGTH

Description:

Include:
Prototype:

Remarks:

Default Behavior:

Example:

Symbols that represent the maximum length of their respective
data sections.

libpic30.h

extern int _ DATA LENGTH;

extern int _ CODE LENGTH;

These symbols are defined in the default linker scripts. They
are treated like assembler equates but can be used from C.

The address of the symbol (its value in equate terms) rep-
resents the maximum length of the data section.

_PROGRAM_END

Description:

Include:
Prototype:
Remarks:

Default Behavior:

Examples:

A symbol defined in program memory to mark the highest
address used by a CODE or PSV section.

libpic30.h
__attribute ((space(prog))) int PROGRAM END

In C, the symbol should be referenced with the address opera-
tor (&), as in a built-in function call that accepts the address of
an object in program memory. Also, this symbol can be used
by applications as an end point for checksum calculations.

In assembly language, it should be referenced with an extra
underbar character in the prefix.

The highest address used by a CODE or PSV section.

C code:
__builtin tblpage (& PROGRAM END)
__builtin tbloffset (& PROGRAM END)

_prog addressT big addr;

_init prog address(big addr, & PROGRAM END)
Assembly code:

mov #tblpage(PROGRAM END), w0

mov #tbloffset (PROGRAM END) ,wl

.pword __ PROGRAM END
.long __ PROGRAM END

DS50002106D-page 204

© 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER'’S GUIDE
Chapter 11. Linker Examples

11.1 INTRODUCTION

The 16-bit devices include many architectural features that require special handling by
the linker. The 16-bit compiler and assembler each provide a syntax than can be used
to designate certain elements of an application for special handling. In C, a rich set of
attributes are available to modify variable and function definitions (see the “MPLAB
XC16 C Compiler User’s Guide” - DS50002071). In assembly language, variables and
functions are abstracted into memory sections, which become inputs to the linker. The
assembler provides another set of attributes that are available to modify section
definitions (see Section 4.7 “Directives that Modify Section Alignment”).

This chapter includes a number of 16-bit specific linker examples and shows the
equivalent syntax in C and assembly language.

11.2 HIGHLIGHTS

Topics covered in this chapter are:

* Memory Addresses and Relocatable Code

« Locating a Variable at a Specific Address

 Locating a Function at a Specific Address

* Using More than 32K of Constants

« Locating a Constant at a Specific Address in Program Memory
 Locating and Accessing Data in EEPROM Memory

« Creating an Incrementing Modulo Buffer in X Memory

« Creating a Decrementing Modulo Buffer in Y Memory
 Locating the Stack at a Specific Address

 Locating and Reserving Program Memory

© 2013-2018 Microchip Technology Inc. DS50002106D-page 205

16-Bit Assembler, Linker and Utilities User’s Guide

11.3 MEMORY ADDRESSES AND RELOCATABLE CODE

For most applications it is preferable to write fully relocatable source code, thus allow-
ing the linker to determine the exact addresses in memory where functions and vari-
ables are placed. The final address of external symbols in data memory and program
memory can be determined from the link map output, as shown in this excerpt:

External Symbols in Data Memory (by address):

0x0802 __curbrk
0x0804 _Stdin
0x082c _Stdout
0x0854 _Stderr
0x087c _Files
0x088c _Aldata
0x0890 _Size block

External Symbols in Data Memory (by name):

0x0802 __curbrk
0x088c _Aldata
0x087c _Files
0x0890 _Size block
0x0854 _Stderr
0x0804 _Stdin
0x082c _Stdout

In some cases it is necessary for the programmer to specify the address where a cer-
tain variable or function should be located. Traditionally this is done by creating a
user-defined section and writing a custom linker script. The 16-bit assembler and com-
piler provide a set of attributes that can be used to specify absolute addresses and
memory spaces directly in source code. When these attributes are used, custom linker
scripts are not required.

Note: By specifying an absolute address, the programmer assumes the respon-
sibility to ensure the specified address is reasonable and available. If the
specified address is out of range, or conflicts with a statically allocated
resource, a link error will occur.

DS50002106D-page 206

© 2013-2018 Microchip Technology Inc.

Linker Examples

11.4 LOCATING A VARIABLE AT A SPECIFIC ADDRESS

In this example, array buf1 is located at a specific address in data memory. The
address of buf1 can be confirmed by executing the program in the simulator, or by
examining the link map.

#include "stdio.h"

int attribute ((address(0x900))) bufl[128];

void main ()

{
printf ("0x900 = 0x%x\n", &bufl);

}

The equivalent array definition in assembly language appears below. The .align
directive is optional and represents the default alignment in data memory. Use of * as
a section name causes the assembler to generate a unique name based on the source

file name.
.section *,address (0x900),bss,near
.global bufl
.align 2

_bufl: .space 256

11.5 LOCATING A FUNCTION AT A SPECIFIC ADDRESS

In this example, function func is located at a specific address. Two built-in compiler
functions are used to calculate the program memory address, which is not otherwise
available in C.

#include "stdio.h"
void _ attribute ((address(0x2000))) func()

{1

void main ()

{
long addr;

addr = ((long) _ builtin tblpage(func) << 16)
+ builtin tbloffset (func);
printf ("0x2000 = O0x%1x\n", addr);
}

The equivalent function definition in assembly language appears below. The .align
directive is optional and represents the default alignment in program memory. Use of *
as a section name causes the assembler to generate a unique name based on the
source file name.

.section *,address (0x2000),code
.global func
.align 2

_func: return

© 2013-2018 Microchip Technology Inc. DS50002106D-page 207

16-Bit Assembler, Linker and Utilities User’s Guide

11.6 USING MORE THAN 32K OF CONSTANTS

By default, the compiler collects const-qualified variables and string literals into a com-
piler managed section named . const. This section is allocated in program memory,
and is mapped into data memory by means of the Program Space Visibility (PSV) win-
dow, or the Extended Data Space (EDS) window. Variables may be explicitly assigned
to this section with the space (auto_psv) attribute.

Because .const is a PSV-type section, it is limited to 32K of total constants. To use
more constants, variables may be assigned to other sections with the space (psv)
attribute. This attribute causes the variable to be allocated in a program memory
section that is designated for use with the PSV or EDS window.

For example:

const int attribute ((space(psv))) tablel[] =

{1, 2, 3, /* and so on */ };
space (psv) specifies the allocation of the variable, but it does not describe how the
variable will be accessed. In order to access variables in space (psv), the PSV or
EDS page register must be managed so that the correct range of program memory is
visible. Two options for managing the page register are available: compiler-managed
access, or user-managed access.

11.6.1 Compiler-Managed Access

With this option, the compiler generates additional instruction as needed to save, set,
and restore the PSV or EDS window page register. To specify compiler-managed
access, add the psv__ access qualifier to the variable definition. For example:

psv__ const int attribute ((space(psv))) tablel[] =
{1, 2, 3, /* and so on */ };

The psv__ access qualifier works with any variable allocated in space (psv) . Itcan

be used an any 16-bit device, and directs the compiler to generate code automatically

for managing the PSV or EDS window page register.

DS50002106D-page 208

© 2013-2018 Microchip Technology Inc.

Linker Examples

11.6.2 User-Managed Access

User-managed access means that the programmer must write explicit code to save,
set, and restore the PSV or EDS window page register. In certain situations, this could
result in faster execution speed.

In the following example, the constant status_string is located in the
compiler-managed PSV section, while the constant gamma_factor is located in a
separate PSV section.

Note: To modify this example to run on a device which supports the EDS window,
replace references to PSVPAG with DSRPAG.

The compiler will initialize the page register only for the compiler-managed PSV section
on startup. To properly access gamma_factor, you must manually manage the page
register. Namely, save the current page value, set the page register to access
gamma_factor, and restore the original page value after. To determine the correct
page value for a constant stored in program memory, use the

__builtin psvpage () helper function.

When the page register has been modified to access gamma_factor, be careful not
to access constants stored in the compiler-managed PSV section, such as string
constants used with printf (). Any attempts to access constants stored in the
compiler-managed PSV section with an incorrect page value will fail.

Note: On devices with less than 16K instruction words, there is only one page and
manual management of the page register is not required.

#include "stdio.h"
#include "p30fxxxx.h"

const char attribute ((space(auto_psv))) status string[2][10] =
{"System OK", "Key Made"};
const int attribute ((space(psv))) gamma factor([3] = {13, 23, 7};

int main (void)

{

unsigned psv_shadow;
unsigned key, seed = 17231;

/* print the first status string */
printf ("%$s\n", status stringl[0]);

/* save the PSVPAG */
psv_shadow = PSVPAG;

/* set the PSVPAG for accessing gamma factor[] */
PSVPAG = builtin psvpage (gamma factor);

/* build the key from gamma factor */
key = (seed + gamma_factor[O] + gamma factor([1l]) / gamma_factor[Z};

/* restore the PSVPAG for the compiler-managed PSVPAG */
PSVPAG = psv_shadow;

/* print the second status message */
printf ("%$s \n", status_string[l]);

© 2013-2018 Microchip Technology Inc. DS50002106D-page 209

16-Bit Assembler, Linker and Utilities User’s Guide

11.7 LOCATING A CONSTANT AT A SPECIFIC ADDRESS IN PROGRAM MEMORY

In this example, the constant table is located at a specific address in program mem-
ory. When a constant is specifically placed at an address in program memory, it must
be placed in its own PSV section using the space (psv) attribute. If a device has only
one PSV page (16K instruction words or less), the (psv) section and (auto psv)
section will share the same PSV page by default.

Note: Itis not possible to place a constant at a specific address in Program Mem-
ory using the space (auto_psv) attribute. Only the space (psv) attri-
bute may be used to perform this task.

The builtin tbladdress () helper function can be used to find the address of
a constant stored in program memory. The psv__ access qualifier is used to
specify compiler-managed access.

#include "stdio.h"
#include "p30fxxxx.h"

__psv__ const unsigned __attribute_ _ ((space(psv),
address (0x2000))) tablefl10] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};

int main (void)

{

unsigned sum=0, u;
long addr;

/* compute the address of table and print it */
addr = builtin tbladdress(table);

/* print the address of table */
printf ("table[] is stored at address 0x%1x\n", addr);

/* sum the values in table[] */
for (u=0; u<l0; u++) {
sum += tablelu];

}

/* print the sum */

printf ("sum is %d\n", sum);
}
The equivalent constant definition for the array table in assembly language appears
below. The .align directive is optional and represents the default alignment in pro-
gram memory. Use of * as a section name causes the assembler to generate a unique
name based on the source file name.

.section *,address (0x2000),psv

.global table

.align 2

table:

B .word 0,1,2,3,4,5,6,7,8,9
In order to allocate table in data memory, the space (psv) attribute could be
changedto space (data) . Inthis case, the specified address would be a data memory
address. In the absence of a space attribute, the keyword const directs the C com-
piler to allocate the variable in the same space as other compiler constants. Constants
are allocated in program memory by default, or in data memory if the constants-in-data
memory model is selected.

DS50002106D-page 210 © 2013-2018 Microchip Technology Inc.

Linker Examples

11.8 LOCATING AND ACCESSING DATA IN EEPROM MEMORY

In this example, two arrays are defined in data EEPROM. Tablel is aligned to a 32-bit
address, so it will be eligible for erasing or programming using the row programming
algorithm. Table?2 is defined with standard alignment, so it must be erased or pro-
grammed one word at a time. The macro EEDATA is used to place a variable in the
Data EEPROM section of memory and align the variable to the specified byte bound-
ary. This macro is defined in the processor header files for devices which contain data
flash. This example is targeted for the dsPIC30F6014 processor, and includes the
processor header file p30£6014.h.

The compiler and linker treat Data EEPROM like any other custom-defined (psv) sec-
tion. The psv__ access qualifier is used to instruct the compiler to generate the
necessary instructions to manage the PSV or EDS page register automatically.

/* load SFR definitions and macros */
#include "p30f6014.h"

/* load standard I/0 definitions */
#include "stdio.h"

__psv___ unsigned int EEDATA(32) Tablel[1l6];
__psv__ unsigned int EEDATA(2) Table2[4]= {0x1234, 0x5678, 0x9ABC,
OxXDEFO0};

unsigned int i, temp datal[4];
__psv___ unsigned int *ee rd ptr;

int main(void)

{

/* initialize EEPROM read pointer */
ee rd ptr = &Table2[0];

/* read integer data from EEPROM */
temp data[0] = *ee rd ptr++;

temp data[l] *ee rd ptr++;

temp data[2] *ee rd ptr++;

temp data[3] = *ee rd ptr;

/* display it */

for (1 = 0; 1 < 4; i++)
printf (" %$x", temp datafli]);
printf ("\n");

© 2013-2018 Microchip Technology Inc. DS50002106D-page 211

16-Bit Assembler, Linker and Utilities User’s Guide

11.9 CREATIN

The equivalent array definitions for Tablel and Table?2 in assembly language appear
below. Use of * as a section name causes the assembler to generate a unique name
based on the source file name.

.global Tablel

.section *,eedata
.align 32
_Tablel:
.space 32
.global Table2
.section *,eedata
.align 2
_Table2:
.word 0x1234
.word 0x5678
.word 0x9ABC
.word 0xDEFO

G AN INCREMENTING MODULO BUFFER IN X MEMORY

An incrementing modulo buffer for use in assembly language can be easily defined in
C. In this example, the macro XBSS is used to define an array whose memory align-
ment is the smallest power of two that is greater than or equal to its size. XBSS is
defined in the processor header file, which in this example is p30£6014.h.

#include "p30f6014.h"
#include "stdio.h"

int XBSS(128) xbuf[50];

void main ()

{
printf ("Should be zero:

}

The equivalent definition in assembly language appears below. The section alignment
could have specified with a separate .align directive. By using * as a section name,
the linker is afforded maximum flexibility to allocate memory.

o

$x\n", (int) &xbuf % 128);

.global xbuf
.section *,xmemory,bss,align(128)

_xbuf: .space 100

DS50002106D-page 212

© 2013-2018 Microchip Technology Inc.

Linker Examples

11.10 CREATING A DECREMENTING MODULO BUFFER IN Y MEMORY

A decrementing modulo buffer for use in assembly language can be easily defined in
C. Inthis case, the ending address +1 of the array must be aligned. There is not a suit-
able predefined macro in the processor header files for this purpose, so variable attri-
butes are specified directly. The far attribute is recommended because Y memory
does not fall within the near space on all devices, and the compiler uses a small-data
memory model by default.

#include "stdio.h"
int attribute ((space(ymemory), far, reverse(128))) ybuf[50];

void main ()
{
printf ("Should be zero: %$x\n",
((int) &ybuf + sizeof (ybuf)) % 128);

Notes:

1. The reverse () attribute can be used with constants stored in program mem-
ory only if they are located in a PSV section, not the compiler-managed
auto_ psv section.

2: The reverse () attribute can be used with constants stored in Data EEPROM
memory.

The equivalent definition in assembly language appears below. Reverse section
alignment can only be specified as an argument to the . section directive.

.global ybuf
.section *,ymemory,reverse (128)
_ybuf: .space 100

11.11 LOCATING THE STACK AT A SPECIFIC ADDRESS

By default, the linker allocates a maximum-size stack using the largest unused block of
data memory. In cases where it is necessary for the programmer to specify the location
and size of the stack explicitly, the stack may be defined in assembly language, using
the stack attribute:

.section my stack, stack, address(0x1800) .space 0x100

When the stack is allocated in this way, the usable stack space will be slightly less than
0x100 bytes, since a portion of the user-defined section will be reserved for the stack
guardband.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 213

16-Bit Assembler, Linker and Utilities User’s Guide

11.12 LOCATING AND RESERVING PROGRAM MEMORY

In this example, a block of program memory is reserved for a special purpose, such as
a bootloader. An arbitrary sized function is allocated in the block, with the remaining
space reserved for expansion or other purposes.

The following output section definition is added to a custom linker script:

BOOT_START = 0xA200;
BOOT LEN = 0x400;

my boot BOOT_ START :
{
* (my boot);
. = BOOT_LEN; /* advance dot to the maximum length */
} > program
Note the “dot assignment” (. =) that appears inside the section definition after the input
sections. Dot is a special variable that represents the location counter, or next fill point,
in the current section. It is an offset relative to the start of the section. The statement in
effect says “no matter how big the input sections are, make sure the output section is
full size.”

The following C function will be allocated in the reserved block:

void attribute ((section("my boot"))) funcl()
{
/* etc. */
}
The equivalent assembly language would be:

.section my boot, code

.global funcl
_funcl:

;7 and so on..

return

If the bootloader is allocated at the start of program memory, a custom linker script is
not be required. Instead, the function could be defined with attribute boot. For example:

void attribute ((boot)) funcl ()
{

/* and so on.. */

}
The equivalent definition in assembly language:

.section *,code,boot

.global funcl
_funcl:

; and so on..

return

In this case, program memory will be automatically reserved by specifying a
CodeGuard Security™ boot segment in FBS configuration word settings, or by
specifying a user-defined boot segment with linker command option. See
Section 10.14 “Boot and Secure Segments” for more information.

DS50002106D-page 214 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE

Chapter 12. Linker Map File

12.1

12.2

12.3

INTRODUCTION

The linker has the capability to produce map files. These map files list archive files
included, memory usage, external symbols, linker script information and memory
maps.

Topics covered in this chapter are:

¢ Generation
* Contents

GENERATION

To generate a map file whether in MPLAB X IDE, in MPLAB IDE v8 or on the command
line, you will need to specify an option described in Section 8.7 “Options that Modify the
Link Map Output.” By default, a map file is written to a . map file.

CONTENTS

The map files produced by the linker consist of the following items.

TABLE 12-1: LINKER MAP FILE CONTENTS

Item Description

Tool Name and Command Path and executable name of the linker, as well as command
line options used.

Archive Members The name of any members from archive files that are included
in the link

Memory Usage Report The starting address and length of all output sections in pro-
gram memory, data memory and dynamic memory

External Symbol Table All external symbols in data and program memory

Memory Configuration All of the memory regions defined for the link

Linker Script and Memory Modules, sections and symbols that are included in the link as

Map specified in the linker script

© 2013-2018 Microchip Technology Inc. DS50002106D-page 215

16-Bit Assembler, Linker and Utilities User’s Guide

EXAMPLE 12-1: MAP FILE

The following is an example of a linker map file for a PIC24FJ MCU project. Note that the . debug_aranges
register list has been shortened to save space.

Microchip Technology Inc, v1.34 (9)

Tool Name:
c:\program files (x86)\microchip\xcl6\vl.34\bin\bin\..\bin/elf-1d.exe

Command:

-p24FJ128GA010 \

-0 \

dist/default/production/PIC24FJ Count.X.production.elf \
-Lc:/program files (x86)/microchip/xcl6/v1.34/bin/bin/.. \
-Lc:/program files (x86)/microchip/xcl6/v1.34/bin/bin/..
-Lc:/program files (x86)/microchip/xcl6/v1.34/bin/bin/..
-Lc:/program files (x86)/microchip/xcl6/v1.34/bin/bin/..

(./1ib \
(
(
-Lc:/program files (x86)/microchip/xcl6/v1.34/bin/bin/..
(
(
(

./support/PIC24E/gld \
./support/PIC24F/gld \
./support/PIC24H/gld \
./support/dsPIC30F/gld
./support/dsPIC33C/gld
./support/dsPIC33E/gld
./support/dsPIC33F/gld

-Lc:/program files (x86)/microchip/xcl6/v1.34/bin/bin/..
-Lc:/program files (x86)/microchip/xcl6/v1.34/bin/bin/..
-Lc:/program files (x86)/microchip/xcl6/v1.34/bin/bin/..
-Lc:/program files (x86)/microchip/xcl6/v1.34/bin/bin/..
build/default/production/counter.o \
build/default/production/timer.o \
--defsym=_ MPLAB BUILD=1 \

-Tp24FJ128GA010.g91d.00 \

--stack=16 \

--check-sections \

--data-init \

--pack-data \

--handles \

-—isr \

--no-gc-sections \

--fill-upper=0 \

--stackguard=16 \

--no-force-link \

--smart-io \

-Map=pic24fj count.map \

-—report-mem \

--memorysummary \

dist/default/production/memoryfile.xml \

-start-group \

--library=lega-pic30-elf \

-—library=m-elf \

--library=lega-c-elf \

-end-group \

SO S S S S S
~ -

Optional library libpPIC24Fxxx.a not found
Archive member included because of file (symbol)

c:/program files (x86)/microchip/xcl6/v1.34/bin/bin/../../1lib
\liblega-pic30-elf.a(crt0_standard.o)
(_ resetPRI)
c:/program files (x86)/microchip/xcl6/v1.34/bin/bin/../../1lib
\liblega—pic30—elf.a(data_init_standard.o)
c:/program files (x86)/microchip/xcl6/v1.34/bin/bin/../../1lib
\liblega-pic30-elf.a(crt0 standard.o) (_ data init standard)

DS50002106D-page 216 © 2013-2018 Microchip Technology Inc.

Linker Map File

c:/program files

\liblega-pic30-elf.a(crt_start mode normal.Leo)
(__crt start mode normal)

(x86) /microchip/xcl6/v1.34/bin/bin/../../1lib

xcl6-1d 1.34 (9)
"program" Memory [Origin = 0x200, Length = 0x155fc]
section address length (PC units) length (bytes) (dec)
text 0x200 Oxce 0x135 (309)
text O0x2ce 0x56 0x81 (129
dinit 0x324 0x8 Oxc (12)
Total "program" memory used (bytes): Ox1lc2 (450) <1%
"data" Memory [Origin = 0x800, Length = 0x2000]
section address alignment gaps total length (dec)
nbss 0x800 0 0x2 (2)
Total "data" memory used (bytes): 0x2 (2) <1%
Dynamic Memory Usage
region address maximum length (dec)
heap 0 0 (0)
stack 0x802 Ox1lffe (8190)
Maximum dynamic memory (bytes): Ox1ffe (8190)
External Symbols in Data Memory (by address):
0x0800 _counter
External Symbols in Data Memory (by name) :
0x0800 _counter
External Symbols in Program Memory (by address):
0x000200 __resetPRI
0x00023c __psv_init
0x000252 __data_init
0x000252 __data init standard
0x0002c8 _ DefaultInterrupt
0x0002ce _TimerInit
0x0002ea _TimerIsOverflowEvent
0x000302 _main
External Symbols in Program Memory (by name) :
0x0002ce _TimerInit
0x0002ea _TimerIsOverflowEvent

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 217

16-Bit Assembler, Linker

and Utilities User’s Guide

0x0002c8 __DefaultInterrupt
0x000252 __data_init
0x000252 __data init standard
0x00023¢c __psv_init
0x000200 _resetPRI
0x000302 _main
Memory Configuration
Name Origin Length Attributes
data 0x000800 0x002000 a !xr
reset 0x000000 0x000004
ivt 0x000004 0x0000fc
_reserved 0x000100 0x000004
aivt 0x000104 0x0000fc
program 0x000200 0x0155fc XY
CONFIG2 0x0157fc 0x000002
CONFIG1 0x0157fe 0x000002
default 0x000000 Oxffffffff

Linker script and memory map

LOAD build/default/production/counter.o

LOAD build/default/production/timer.o
0x0001

LOAD pPIC24Fxxx

LOAD c:/program files
0x157fc
0x157fe
0x0200
0x155fc
0x0004
0x0104
0x0800
0x2000

0x000000
0x000000
0x000001
0x000002

0x4
0x2
0x2
0x2

.reset

0x7f)
0x000003 0x2
.text
*(.init)
.init

0x000200 Oxce

0x000200 Ox4c

0x000200
0x000200
0x00023c
0x00024c

.init 0x7c

0x000252
0x000252
*(.user_init)
* (.handle)
(.isr¥)
.isr

0x0002c8 0x4

__ MPLAB BUILD = 0xl

(x86) /microchip/xcl6/v1.34/bin/bin/../../1lib\libfx-elf.a

_ CONFIG2 = 0x157fc
__CONFIGl = 0x157fe
__CODE_BASE = 0x200
__CODE_LENGTH = 0x155fc
__IVT BASE = 0x4

__ AIVT BASE = 0x104

__ DATA BASE = 0x800

__ DATA LENGTH = 0x2000

SHORT 0x200 ABSOLUTE (_ reset)

SHORT 0x4

SHORT 0x0 ((ABSOLUTE (reset) >> 0x10) &
SHORT 0x0

c:/program files (x86)/microchip/xcl6/v1.34
/bin/bin/../../1ib
\liblega—pic30—elf.a(crtO_standard.o)
__resetPRI
___reset
__psv_init
c:/program files (x86)/microchip/xcl6/v1.34
/bin/bin/../../1ib
\liblega—pic30—elf.a(data_init_standard.o)
__data init standard
__data init

default isr

DS50002106D-page 218

© 2013-2018 Microchip Technology Inc.

Linker Map File

0x0002c8
*(.1libc)
*(.1libm)
*(.1libdsp)
(.1lib¥)
.1libpic30 crt start mode
0x0002cc
0x0002cc
0x0002cc
usercode
* (usercode)

_ CONFIG2 0x0157fc
(_ CONFIGZ2.sec)
___CONFIG2.sec 0x0157fc

__CONFIG1 0x0157fe
(_ CONFIGl.sec)
~ CONFIGl.sec 0x0157fe
.comment
* (.comment)

.debug info 0x000000
*(.debug _info)

.debug info 0x000000
.debug info 0x000246

(.gnu.linkonce.wi.)

.debug abbrev 0x000000
* (.debug abbrev)
.debug abbrev 0x000000
.debug_abbrev 0x0000c2

.debug line 0x000000
*(.debug line)

.debug line 0x000000
.debug line 0x0000f4
.debug_frame 0x000000
*(.debug frame)

.debug frame 0x000000
.debug frame 0x000030
.debug_str 0x000000
*(.debug str)

.debug_str 0x000000
.debug loc

*(.debug loc)

.debug macinfo
* (.debug macinfo)

.debug pubnames
0x000000
* (.debug pubnames)

0x2

0x2

0x2

0x2

0x2

0x70b

0x246

0x4c5

0x1d3

Oxc2
0x111

Ox1le9

0xf4
0xf5

Ox7c

0x30
Ox4c

0x12

0x12

0x7a

__DefaultInterrupt

c:/program files (x86)/microchip/xcl6/v1.34
/bin/bin/../../lib\liblega-pic30-elf.a
(crt start mode normal.Leo)
__crt start mode
__crt start mode normal

build/default/production/counter.o

build/default/production/counter.o

build/default/production/counter.o
build/default/production/timer.o

build/default/production/counter.o
build/default/production/timer.o

build/default/production/counter.o
build/default/production/timer.o

build/default/production/counter.o
build/default/production/timer.o

build/default/production/timer.o

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 219

16-Bit Assembler, Linker and Utilities User’s Guide

.debug pubnames

0x000000 0x41 build/default/production/counter.o
.debug pubnames
0x000041 0x39 build/default/production/timer.o
.debug_ranges
* (.debug ranges)
.debug aranges 0x000000 0x30
* (.debug aranges)
.debug aranges
0x000000 0x18 build/default/production/counter.o
.debug aranges
0x000018 0x18 build/default/production/timer.o
0x0000 WREGO = 0x0
0x0000 _WREGO = 0x0
0x0002 WREG1 = 0x2
0x0002 _WREGL = 0x2
0x0004 WREG2 = 0x4
0x0004 _WREG2 = 0x4
0x0006 WREG3 = 0x6
0x0006 _WREG3 = 0x6
0x0008 WREG4 = 0x8
0x0008 _WREG4 = 0x8
0x000a WREGS5 = Oxa
0x000a _WREGS = 0Oxa
0x0240 SPI1 = 0x240
0x0240 _SPI1 = 0x240
0x0260 SPI2 = 0x260
0x0260 _SPI2 = 0x260
0x0220 UART1 = 0x220
0x0220 _UART1 = 0x220
0x0230 UART2 = 0x230
0x0230 _UART2 = 0x230

START GROUP

LOAD c:/program files (x86)/microchip/xcl6/v1.34/bin/bin/
LOAD c:/program files (x86)/microchip/xcl6/v1.34/bin/bin/
LOAD c:/program files (x86)/microchip/xcl6/v1.34/bin/bin/
END GROUP

OUTPUT (dist/default/production/PIC24FJ Count.X.production
LOAD default isr

LOAD data_ init

.debug pubtypes

../../1lib\liblega-pic30-elf.a
../../1lib\libm-elf.a
../../1lib\liblega-c-elf.a

.elf elf32-pic30)

0x000030 0x78
.debug pubtypes
0x000030 Ox1f build/default/production/counter.o
.debug pubtypes
0x00004f 0x59 build/default/production/timer.o
_ c30 _signature
0x0000a8 0x18
__c30_signature
0x0000a8 0x6 build/default/production/counter.o
__c30_signature
0x0000ae 0x6 build/default/production/timer.o

~c30 _signature

DS50002106D-page 220

© 2013-2018 Microchip Technology Inc.

Linker Map File

~ c30 _signature

.nbss

.nbss

.text
.text

.text

.dinit
.dinit

0x0000b4

0x0000ba

0x0800
0x0800
0x0800

0x0002ce
0x0002ce
0x0002ce
0x0002ea
0x000302
0x000302

0x000324
0x000324

0x6

0x6

0x2
0x2

0x56
0x34

0x22

0x8
0x8

c:/program files (x86)/microchip/xcl6/v1.34

/bin/bin/../../1ib

\liblega-pic30-elf.a(crt0 standard.o)

c:/program files (x86)/microchip/xcl6/v1.34

/bin/bin/../../1ib

\liblega—pic30—elf.a(data_init_standard.o)

build/default/production/counter.o

_counter

build/default/production/timer.o

_TimerInit
_TimerIsOverflowEvent

build/default/production/counter.o

_main

data init

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 221

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 222 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER'’S GUIDE
Chapter 13. Linker Errors/Warnings

13.1 INTRODUCTION

MPLAB XC16 Object Linker generates errors and warnings. A descriptive list of these
outputs is shown here.

For information on linker limitations and known problems, see the Readme file.

13.2 HIGHLIGHTS

The following topics covered in this appendix:

e Errors
« Warnings

13.3 ERRORS
Symbols

% by zero

Modulo by zero is not computable.
/ by zero

Division by zero is not computable.

A

A heap is required, but has not been specified.
A heap must be specified when using Standard C input/output functions.
Address 0x8 of filename section .reset is not within region reset.

This error indicates a problem with the linker script. Normally section . reset is created
by the linker script and includes a single GOTO instruction. If a linker script is included
in the link as an input file, it will augment the built-in script instead of replacing it. Then
section . reset will be created twice, resulting in an overflow. To correct this error,
specify --script or —-T on the link command before the linker script file name.

Address addr of filename section secname is not within region region.
Section secname has overflowed the memory region to which it was assigned.

C

Cannot access symbol (name) with file register addressing. Value must be less
than 8192.

nane is not located in near address space. A read or write of name could not be
resolved with the small data memory model.

Cannot access symbol (hame) at an odd address.

Instructions that operate on word-sized data require operands to be allocated at even
addresses.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 223

16-Bit Assembler, Linker and Utilities User’s Guide

cannot move location counter backwards (from addressl to address?2).

The location counter can be advanced but it cannot be moved backwards. An operation
is attempting to move it from address1 backwards to address?2.

cannot open linker script file name.

Unable to open the specified linker script file. Check the file name and/or the path.
cannot open name:

Cannot open the input file name. Check for correct spelling, extension or path.
cannot PROVIDE assignment to location counter.

The PROVIDE keyword may not be used to make an assignment to the location
counter.

Cannot use relocation type reloc on a symbol (name) that is located in an
executable section.

An attempt was made to use a symbol in an executable section as a data address. To
reference an executable symbol in a data context, the psvoffset () or
tbloffset () operator is required.

Could not allocate data memory.

The linker could not find a way to allocate all of the sections that have been assigned
to region ‘data’.

Could not allocate program memory.

The linker could not find a way to allocate all of the sections that have been assigned
to region ‘program’.

Could not allocate eedata memory.

The linker could not find a way to allocate all of the sections that have been assigned
to region ‘eedata’.

Could not allocate section ‘name’, because ‘ymemory,near’ is not a valid
combination on this device.

The linker could not allocate section name because the combination of section attri-
butes [ymemory,near] is not valid on the current device.

Could not allocate section secname at address addr.

An address has been specified for secname that conflicts with another section or the
limit of memory.

Could not allocate section ‘section name’ it is illegal to use the last word of
program memory

Using the last word of program memory is illegal and a link error will be generated if
you attempt to place any code there.

D

Data region overlaps PSV window (%d bytes).

The data region address range must be less than the start address for the PSV window.
This error occurs when the C compiler’s “constants in code” option is selected and
more than 32K of data memory is required for program variables.

--data-init and --no-data-init options can not be used together.

--data-init creates a special output section named .dinit as a template for the
run-time initialization of data, --no-data-init does not. Only one option can be
used.

DS50002106D-page 224 © 2013-2018 Microchip Technology Inc.

Linker Errors/Warnings

__DMA_BASE is needed, but not defined (check linker script?)
__DMA_END is needed, but not defined (check linker script?)

The symbols __ DMA_BASE and __DMA_END must be defined in order to allocate
variables or sections in dma memory. By convention these symbols are defined in the
linker script for a particular device, if that device supports dma memory.

E

EOF in comment.
An end-of-file marker (EOF) was found in a comment.

F

op forward reference of section sechame.
The section name being used in the operation has not been defined yet.

G

--gc-sections and -r may not be used together.
Do notuse --gc-sections option which enables garbage collection of unused input
sections with the —r option which generates relocatable output.

H

--handles and --no-handles options cannot be used together.
--handles supports far code pointers; --no-handles does not. Only one option can
be used.

includes nested too deeply.

include statements should be nested no deeper than 10 levels.
Illegal value for DO instruction offset (-2, -1 or 0).

These values are not permitted.

invalid assignment to location counter.

The operation is not a valid assignment to the location counter.
invalid hex number ‘num.’

A hexadecimal number can only use the digits 0-9 and A-F (or a-f). The number is iden-
tified as a hex value by using Ox as the prefix.

invalid syntax in flags.

The region attribute flags must be w, %, a, r, i and/or 1. (‘!’ is used to invert the sense
of any following attributes.) Any other letters or symbols will produce the invalid syntax
error.

M

macros nested too deeply.

Macros should be nested no deeper than 10 levels.

missing argument to -m.

The emulation option (-m) requires a name for the emulation linker.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 225

16-Bit Assembler, Linker and Utilities User’s Guide

N

Near data space has overflowed by num bytes.

Near data space must fit within the lowest 8K address range. It includes the sections
.nbss for static or non-initialized variables, and . ndata for initialized variables.

no input files.

The 16-bit linker requires at least one object file.

non constant address expression for section secname.

The address for the specified section must be a constant expression.
nonconstant expression for name.

name must be a constant expression.

non constant address expression specified. Section will be allocated at the
current address in the current region.

If a load address is specified for a section in the linker script using the AT (symbol)
expression and “symbol” is not defined, a warning will be generated and the section will
be allocated at the current address in the current region.

Not enough contiguous memory for section secname.

The linker attempted to reallocate program memory to prevent a read-only section from
crossing a PSV page boundary, but a memory solution could not be found.

Not enough memory for heap (num bytes available).

There was not enough memory free to allocate the heap.

Not enough memory for stack (num bytes available).

There was not enough memory free to allocate the minimum-sized stack.

O

object name was created for the processor which is not instruction set
compatible with the target processor.

An object file to be linked was created for a different processor family than the link tar-
get, and the instruction sets are not compatible.

Odd values are not permitted for a new location counter.

When a .org or .porg directive is used in a code section, the new location counter
must be even. This error also occurs if an odd value is assigned to the special DOT
variable.

P

--pack-data and --no-pack-data options cannot be used together.

--pack-data fills the upper byte of each instruction word in the data initialization
template with data. --no-pack-data does not. Only one option can be used.

PSV section secname exceeds 32 Kbytes (actual size = num).

The constant data table may not exceed the program memory page size that is implied
by the PSVPAG register which is 32 Kbytes.

DS50002106D-page 226 © 2013-2018 Microchip Technology Inc.

Linker Errors/Warnings

R

region region is full (filename section sechname).
The memory region region is full, but section secnane has been assigned to it.
--relax and -r may not be used together.

The option --relax which turns relaxation on may not be used with the —r option
which generates relocatable output.

relocation truncated to fit: PC RELATIVE BRANCH name.

The relative displacement to function name is greater than 32K instruction words. A
function call to name could not be resolved with the small code memory model.

relocation truncated to fit: relocation_type name.
The relocated value of name is too large for its intended use.

S

section .handle must be allocated low in program memory.

A custom linker script has organized memory such that section .handle is not located
within the first 32K words of program memory.

section secnamel [startaddrl—startaddr2] overlaps section secname?2
[startaddrl—startaddr2]\n”),

There is not enough region memory to place both of the specified sections or they have
been assigned to addresses that result in an overlap.

-shared not supported.

The option -shared is not supported by the 16-bit linker.

Symbol (name) is not located in an executable section.

An attempt was made to call or branch to a symbol in a bss, data or readonly section.
syntax error.

An incorrectly formed expression or other syntax error was encountered in a linker
script.

U

undefined symbol *_reset’ referenced in expression.

The library -1pic30 is required, or some other input file that contains a start-up func-
tion. This error may result from a version or architecture mismatch between the linker
and library files.

undefined symbol ‘symbol’ referenced in expression.
The specified symbol has not been defined.

undefined reference to ‘'_Ctype’.

undefined reference to ‘_Tolotab’.

undefined reference to ‘*_Touptab’.

These errors indicate a version mismatch between include files and library files, or
between library files and precompiled object files. Make sure that all object files to be
linked have been compiled with the same version of the 16-bit compiler. If you are using
a precompiled object or library file from another vendor, request an update that is
compatible with the latest version of the compiler.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 227

16-Bit Assembler, Linker and Utilities User’s Guide

undefined reference to ‘'symbol.’

The specified symbol has not been defined. Either an input file has been omitted, a
library file is incomplete, a library file requires a symbol from an earlier library, or a cir-
cular reference exists between libraries. Circular references can be resolved with the
--start-group, --—end-group options.

unrecognized emulation mode: target
Supported emulations:

The specified target is not an emulation mode supported by the linker. The list of
supported emulations follows the error message.

unrecognized -a option ‘argument.’

The —a option is not supported by 16-bit devices; so it is ignored.
unrecognized -assert option ‘option.’

The -assert option is not supported by 16-bit devices; so it is ignored.
unrecognized option ‘option’.

The specified option is not a recognized linker option. Check the option and its usage
information with the --help option.

op uses undefined section secname.
The section referred to in the operation is not defined.

X

X data space has overflowed by num bytes.
The address range for X data space must be less than the start of Y data space. The
start of Y data space is determined by the processor used.

Y

__YDATA_BASE is needed, but not defined.

By convention, the starting address of Y data memory for a particular device is defined
in linker scripts using this name. The linker needed this information to allocate a section
with xmemory or ymemory attribute, but could not find it.

DS50002106D-page 228

© 2013-2018 Microchip Technology Inc.

Linker Errors/Warnings

13.4 WARNINGS
A

Addresses specified for READONLY section name are not valid for PSV window.

The application has specified absolute addresses for a read-only section that are not
consistent with the PSV window. If two addresses have been specified, the
least-significant 15 bits should be identical. Also, the most significant bit of the virtual
address should be set.

C

cannot find entry symbol symbol defaulting to value.

The linker can't find the entry symbol, so it will use the first address in the text section.
This message may occur if the —e option incorrectly contains an equal sign (‘=') in the
option (i.e., —e=0x200) .

common of ‘name’ overridden by definition
defined here.

The specified variable name has been declared in more than one file with one instance
being declared as common. The definition will override the common symbol.

common of ‘name’ overridden by larger common
larger common is here.

The specified variable name has been declared in more than one file with different val-
ues. The smaller value will be overridden with the larger value.

common of ‘name’ overriding smaller common
smaller common is here.

The specified variable name has been declared in more than one file with different val-
ues. The first one encountered was smaller and will be overridden with the larger value.

D

data initialization has been turned off, therefore section secname will not be
initialized.

The specified section requires initialization, but data initialization has been turned off;

S0, the initial data values are discarded. Storage for the data sections will be allocated
as usual.

data memory region not specified. Using default upper limit of addr.

The linker has allocated a maximum-size stack. Since the data memory region was not
specified, a default upper limit was used.

definition of ‘name’ overriding common
common is here.

The specified variable name has been declared in more than one file with one instance
being declared as common. The definition will override the common symbol.

H

--heap option overrides HEAPSIZE symbol.

The —-heap option has been specified and the HEAPSIZE symbol has been defined
but they have different values so the —-heap value will be used.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 229

16-Bit Assembler, Linker and Utilities User’s Guide

initial values were specified for a non-loadable data section (name). These
values will be ignored.

By definition, a persistent data section implies data that is not initialized; therefore the
values are discarded. Storage for the section will be allocated as usual.

M

multiple common of ‘name’
previous common is here.

The specified variable name has been declared in more than one file.

N

no memory region specified for section ‘secname’.
Section secname has been assigned to a default memory region, but other non-default
regions are also defined.

@)

object name was created for the processor and references register name.

An object file to be linked was created for a different processor family than the link
target, and references an SFR that may not be compatible.

P

program memory region not specified. Using default upper limit of addr.

The linker has reallocated program memory to prevent a read-only section from cross-
ing a PSV page boundary. Since the program memory region was not specified, a
default upper limit was used.

R

READONLY section secname at addr crosses a PSVPAG boundary.

Address addr has been specified for a read-only section, causing it to cross a PSV
page boundary. To allow efficient access of constant tables in the PSV window, it is
recommended that the section should not cross a PSVPAG boundary.

‘-retain-symbols-file’ overrides ‘-s’ and ‘-S’
If the strip all symbols option (-s) or the strip debug symbols option (-3) is used with
--retain-symbols-file FILE only the symbols specified in the file will be kept.

S

--stack option overrides STACKSIZE symbol.
The —--stack option has been specified and the STACKSIZE symbol has been defined
but they have different values so the —-stack value will be used.

T

target processor ‘name’ does not match linker script.

The link target processor specified on the command line does not match the linker
script OUTPUT ARCH command. The processor name specified on the command line
takes precedence.

DS50002106D-page 230 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER'’S GUIDE
Part 3 — 16-Bit Utilities (including the Archiver/Librarian)

Chapter 14. MPLAB XC16 Object Archiver/Librarian..........cccccccuvvviiiiiiiieeeieeeeeee, 233
Chapter 15. Other ULIITIESuuuriiei e e e 239

© 2013-2018 Microchip Technology Inc. DS50002106D-page 231

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 232 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER'’S GUIDE
Chapter 14. MPLAB XC16 Object Archiver/Librarian

14.1 INTRODUCTION

The MPLAB XC16 Object Archiver/Librarian creates, modifies and extracts files from

archives. This tool is one of several utilities (xc16-ar). An “archive” is a single file hold-
ing a collection of other files in a structure that makes it possible to retrieve the original
individual files (called “members” of the archive).

The original files’ contents, mode (permissions), timestamp, owner and group are pre-
served in the archive, and can be restored on extraction.

The 16-bit archiver/librarian can maintain archives whose members have names of any
length; however, if an £ modifier is used, the file names will be truncated to 15
characters.

The archiver is considered a binary utility because archives of this sort are most often
used as “libraries” holding commonly needed subroutines.

The archiver creates an index to the symbols defined in relocatable object modules in
the archive when you specify the modifier s. Once created, this index is updated in the
archive whenever the archiver makes a change to its contents (save for the g update
operation). An archive with such an index speeds up linking to the library and allows
routines in the library to call each other without regard to their placement in the archive.

You may use xcl6-nm -s Or xcl6-nm —-print-armap to list this index table. If an
archive lacks the table, another form of the 16-bit archiver/librarian called
xcl6-ranlib can be used to add only the table.

The 16-bit archiver/librarian is designed to be compatible with two different facilities.
You can control its activity using command line options or, if you specify the single
command line option -M, you can control it with a script supplied via standard input.

14.2 HIGHLIGHTS

The following topics are covered in this chapter:

« Archiver/Librarian and Other Development Tools
* Feature Set

* Input/Output Files

e Syntax

» Options

 Scripts

© 2013-2018 Microchip Technology Inc. DS50002106D-page 233

16-Bit Assembler, Linker and Utilities User’s Guide

14.3 ARCHIVER/LIBRARIAN AND OTHER DEVELOPMENT TOOLS

The 16-bit librarian creates an archive file from object files created by the 16-bit assem-
bler. Archive files may then be linked by the 16-bit linker with other relocatable object
files to create an executable file. See the “MPLAB XC16 C Compiler User’s Guide”
(DS50002071) for an overview of the tools process flow.

14.4 FEATURE SET

Notable features of the librarian include:

* Available for Windows
« Command Line Interface

14.5 INPUT/OUTPUT FILES

The 16-bit archiver/librarian generates archive files (. a). An archive file is a single file
holding a collection of other files in a structure that makes it possible to retrieve the
original individual files.

By default, object files are processed in the ELF format. To specify ELF or COFF format
explicitly, use the —omf option on the command line, as shown:

xcl6-ar -omf=coff [options...]
xcl6-ar -omf=elf [options...]

Alternatively, the environment variable XC16 OMF may be used to specify object file
format for the 16-bit language tools.

14.6 SYNTAX

xcl6-ar [-]P[MOD [RELPOS] [COUNT]] ARCH VE [MEMBER...]
xcl6-ar -M [<mri-script]

DS50002106D-page 234 © 2013-2018 Microchip Technology Inc.

MPLAB XC16 Object Archiver/Librarian

14.7 OPTIONS

When you use the 16-bit archiver/librarian with command line options, the archiver
insists on at least two arguments to execute: one key letter specifying the operation
(optionally accompanied by other key letters specifying modifiers), and the archive
name.

xcl6-ar [-]P[MOD [RELPOS] [COUNT]] ARCH VE [MEMBER...]

Note: Command line options are case sensitive. I

Most operations can also accept further MEMBER arguments, specifying archive
members. Without specifying members, the entire archive is used.

The 16-bit archiver/librarian allows you to mix the operation code p and modifier flags
MOD in any order, within the first command line argument. If you wish, you may begin
the first command line argument with a dash.

The P keyletter specifies what operation to execute; it may be any of the following, but
you must specify only one of them.

TABLE 14-1: OPERATION TO EXECUTE

Option Function
d Delete modules from the archive. Specify the names of modules to be deleted as
MEMBER. . .; the archive is untouched if you specify no files to delete.
If you specify the v maodifier, the 16-bit archiver/librarian lists each module as it is
deleted.
m Use this operation to move members in an archive.

The ordering of members in an archive can make a difference in how programs are
linked using the library, if a symbol is defined in more than one member.

If no modifiers are used with m, any members you name in the MEMBER arguments
are moved to the end of the archive; you can use the a, b or i modifiers to move
them to a specified place instead.

P Print the specified members of the archive, to the standard output file. If the v mod-
ifier is specified, show the member name before copying its contents to standard
output. If you specify no MEMBER arguments, all the files in the archive are printed.

Append the files MEMBER. . . into ARCHIVE.

r Insert the files MEMBER. . . into ARCHIVE (with replacement).

If one of the files named in MEMBER. . . does not exist, the archiver displays an
error message, and leaves undisturbed any existing members of the archive match-
ing that name. By default, new members are added at the end of the file; but you
may use one of the modifiers a, b or i to request placement relative to some exist-
ing member. The modifier v used with this operation elicits a line of output for each
file inserted, along with one of the letters a or r to indicate whether the file was
appended (no old member deleted) or replaced.

t Display a table listing the contents of ARCHIVE, or those of the files listed in
MEMBER. .., thatare presentin the archive. Normally only the member name is
shown; if you also want to see the modes (permissions), timestamp, owner, group
and size, you can request that by also specifying the v modifier. If you do not spec-
ify a MEMBER, all files in the archive are listed.

For example, if there is more than one file with the same name (f£ie) in an archive
(b.a),then xcl6-ar t b.a fie lists only the first instance; to see them all,
you must ask for a complete listing in xcl6-ar t b.a.

x Extract members (named MEMBER) from the archive. You can use the v modifier
with this operation, to request that the archiver list each name as it extracts it.

If you do not specify a MEMBER, all files in the archive are extracted.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 235

16-Bit Assembler, Linker and Utilities User’s Guide

A number of modifiers (MOD) may immediately follow the P keyletter to specify varia-
tions on an operation’s behavior.

TABLE 14-2: MODIFIERS

Option

Function

a

Add new files after an existing member of the archive. If you use the modifier a,
the name of an existing archive member must be present as the RELPOS
argument, before the ARCHIVE specification.

Add new files before an existing member of the archive. If you use the modifier
b, the name of an existing archive member must be present as the RELPOS
argument, before the ARCHIVE specification. (Same as 1.)

Create the archive. The specified ARCHIVE is always created if it did not exist,
when you requested an update. But a warning is issued unless you specify in
advance that you expect to create it, by using this modifier.

Truncate names in the archive. The 16-bit archiver/librarian will normally permit

file names of any length. This will cause it to create archives that are not compat-
ible with the native archiver program on some systems. If this is a concern, the £
modifier may be used to truncate file names when putting them in the archive.

Insert new files before an existing member of the archive. If you use the modifier
i, the name of an existing archive member must be present as the RELPOS
argument, before the ARCHIVE specification. (Same as b.)

This modifier is accepted but not used.

Uses the COUNT parameter. This is used if there are multiple entries in the
archive with the same name. Extract or delete instance COUNT of the given
name from the archive.

Preserve the original dates of members when extracting them. If you do not
specify this modifier, files extracted from the archive are stamped with the time of
extraction.

Use the full path name when matching names in the archive. The 16-bit
archiver/librarian cannot create an archive with a full path name (such archives
are not POSIX compliant), but other archive creators can. This option will cause
the archiver to match file names using a complete path name, which can be
convenient when extracting a single file from an archive created by another tool.

Write an object-file index into the archive, or update an existing one, even if no
other change is made to the archive. You may use this modifier flag either with
any operation, or alone. Running xc16-ar s on an archive is equivalent to
running xcl6-ranlib onit.

Do not generate an archive symbol table. This can speed up building a large
library in several steps. The resulting archive cannot be used with the linker. In
order to build a symbol table, you must omit the S modifier on the last execution
of the archiver, or you must run ranlib on the archive.

Normally, xcl6-ar r...inserts all files listed into the archive. If you would like
to insert only those of the files you list that are newer than existing members of
the same names, use this modifier. The u modifier is allowed only for the opera-
tion r (replace). In particular, the combination qu is not allowed, since checking
the timestamps would lose any speed advantage from the operation q.

This modifier requests the verbose version of an operation. Many operations dis-
play additional information, such as, file names processed when the modifier v
is appended.

This modifier shows the version number of the 16-bit archiver/librarian.

DS50002106D-page 236

© 2013-2018 Microchip Technology Inc.

MPLAB XC16 Object Archiver/Librarian

14.8 SCRIPTS

If you use the single command line option —M with the archiver, you can control its oper-
ation with a rudimentary command language.

xcl6-ar -M [<SCRIPT]

Note: Command line options are case sensitive. I

This form of the 16-bit archiver/librarian operates interactively if standard input is com-
ing directly from a terminal. During interactive use, the archiver prompts for input (the
prompt is AR >), and continues executing even after errors. If you redirect standard
input to a script file, no prompts are issued, and the 16-bit archiver/librarian abandons
execution (with a nonzero exit code) on any error.

The archiver command language is not designed to be equivalent to the command line
options; in fact, it provides somewhat less control over archives. The only purpose of
the command language is to ease the transition to the 16-bit archiver/librarian for
developers who already have scripts written for the MRI “librarian” program.

The syntax for the 16-bit archiver/librarian command language is straightforward:

e commands are recognized in upper or lower case; for example, LIST is the same
as list. In the following descriptions, commands are shown in upper case for
clarity.

« a single command may appear on each line; it is the first word on the line.

« empty lines are allowed, and have no effect.

» comments are allowed; text after either of the characters “*” or “;” is ignored.

« Whenever you use a list of names as part of the argument to an xcl16-ar com-
mand, you can separate the individual names with either commas or blanks.
Commas are shown in the explanations below, for clarity.

* “+” s used as a line continuation character; if “+” appears at the end of a line, the
text on the following line is considered part of the current command.

Table 14-3 shows the commands you can use in archiver scripts, or when using the
archiver interactively. Three of them have special significance.

TABLE 14-3: ARCHIVER SCRIPTS COMMANDS

Option Function

OPEN or CREATE Specify a “current archive”, which is a temporary file
required for most of the other commands.

SAVE Commits the changes so far specified by the script.
Prior to SAVE, commands affect only the temporary
copy of the current archive.

ADDLIB ARCHIVE Add all the contents of ARCHIVE (or, if specified, each
ADDLIB ARCHIVE (MODULE, |hamedMODULE from ARCHIVE) to the current archive.
MODULE, . . .MODULE) Requires prior use of OPEN or CREATE.
ADDMOD MEMBER, MEMBER, Add each named MEMBER as a module in the current
MEMBER archive.
Requires prior use of OPEN or CREATE.
CLEAR Discard the contents of the current archive, canceling

the effect of any operations since the last SAVE. May be
executed (with no effect) even if no current archive is
specified.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 237

16-Bit Assembler, Linker and Utilities User’s Guide

TABLE 14-3:

ARCHIVER SCRIPTS COMMANDS (CONTINUED)

Option

Function

CREATE ARCHIVE

Creates an archive, and makes it the current archive
(required for many other commands). The new archive
is created with a temporary name; it is not actually
saved as ARCHIVE until you use SAVE. You can over-
write existing archives; similarly, the contents of any
existing file named ARCHIVE will not be destroyed until
SAVE.

DELETE MODULE, MODULE,
MODULE

Delete each listed MODULE from the current archive;
equivalent to xcl6-ar -d ARCHIVE MODULE ...
MODULE.

Requires prior use of OPEN or CREATE.

DIRECTORY ARCHIVE
(MODULE, MODULE)
[OUTPUTFILE]

List each named MODULE present in ARCHIVE. The
separate command VERBOSE specifies the form of the
output: when verbose output is off, output is like that of
xcl6-ar -t ARCHIVE MODULE.... When verbose
output is on, the listing is like xcl6-ar -tv
ARCHIVE MODULE....

Output normally goes to the standard output stream;
however, if you specify OUTPUTFILE as a final argu-
ment, the 16-bit archiver/librarian directs the output to
that file.

END

Exit from the archiver with a 0 exit code to indicate suc-
cessful completion. This command does not save the
output file; if you have changed the current archive
since the last SAVE command, those changes are lost.

MODULE

EXTRACT MODULE, MODULE,

Extract each named MODULE from the current archive,
writing them into the current directory as separate files.
Equivalentto xcl6-ar -x ARCHIVE MODULE....
Requires prior use of OPEN or CREATE.

LIST

Display full contents of the current archive, in “verbose”
style regardless of the state of VERBOSE. The effect is
like xcl6-ar tv ARCHIVE. (This single command
is a 16-bit archiver/librarian enhancement, rather than
present for MRI compatibility.)

Requires prior use of OPEN or CREATE.

OPEN ARCHIVE

Opens an existing archive for use as the current archive
(required for many other commands). Any changes as
the result of subsequent commands will not actually
affect ARCHIVE until you next use SAVE.

MODULE

REPLACE MODULE, MODULE,

In the current archive, replace each existing MODULE
(named in the REPLACE arguments) from files in the
current working directory. To execute this command
without errors, both the file, and the module in the cur-
rent archive, must exist.

Requires prior use of OPEN or CREATE.

VERBOSE

Toggle an internal flag governing the output from
DIRECTORY. When the flag is on, DIRECTORY output
matches output from xcl6-ar -tv ...

SAVE

Commits your changes to the current archive and actu-
ally saves it as a file with the name specified in the last
CREATE or OPEN command.

Requires prior use of OPEN or CREATE.

DS50002106D-page 238

© 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE
Chapter 15. Other Utilities

15.1 INTRODUCTION

This chapter discusses general information about other utilities for PIC24 MCUs and
dsPIC DSCs.

15.2 HIGHLIGHTS

In addition to the archiver/librarian, other utilities are tools available for use with the
assembler and/or linker.

TABLE 15-1: AVAILABLE UTILITIES
Utility Description

xcl6-bin2hex* |Converts a linked object file into an Intel® hex file.
xcl6-nm Lists symbols from an object file.
xcl6-objdump |Displays information about object files.

xclé6-ranlib Generates an index from the contents of an archive and stores it
in the archive.

xcl6-strings |Prints the printable character sequences.
xcl6-strip Discards all symbols from an object file.

*See the “MPLAB XC16 C Compiler User’s Guide” (DS50002071) for an overview of
the tools process flow.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 239

16-Bit Assembler, Linker and Utilities User’s Guide

15.3 XC16-BIN2HEX UTILITY

15.3.1 Introduction

The binary-to-hexadecimal (xc16-bin2hex) utility converts binary files (from the
16-bit linker) to Intel hex format files, suitable for loading into device programmers.

15.3.2 Highlights

The following topics are covered in this section:
¢ Input/Output Files

e Syntax

» Options

15.3.3 Input/Output Files

 Input: ELF or COFF formatted binary object files
¢ Output: Intel hex files

By default, object files are processed in the ELF format. To specify ELF or COFF format
explicitly, use the —omf option on the command line, as shown:

xcl6-bin2hex -omf=coff filel.out
xcl6-bin2hex -omf=elf file2.out

Alternatively, the environment variable XC16 OMF may be used to specify object file
format for the dsPIC30F language tools.

Because the Intel hex file format is byte-oriented, and the 16-bit PC is not, program
memory sections require special treatment. Each 24-bit program word is extended to
32 bits by inserting a so-called “phantom byte”. Each program memory address is
multiplied by 2 to yield a byte address.

For example, a section that is located at 0x100 in program memory will be represented
in the hex file as 0x200. Consider the following assembly language source:

; file test.s
.section foo, code,address (0x100)
.pword 0x112233

The following commands will assemble the source file and create an Intel hex file:

xcl6-as -o test.o test.s
xcl6-bin2hex test.o

The file “test.hex” will be produced, with the following contents:

:020000040000fa
:040200003322110096
:00000001FF

Notice that the data record (line 2) has a load address of 0200, while the source code
specified address 0x100. Note also that the data is represented in “little-endian” format,
meaning the least significant byte appears first. The phantom byte appears last, just
before the checksum.

15.3.4 Syntax

Command line syntax is:
xclé6-bin2hex object file [-v] [-a] [-u] [-omf=format]

Example 15.1: hello.cof
Convert the absolute COFF executable file hello.cof to hello.hex
xcl6-bin2hex hello.cof

DS50002106D-page 240

© 2013-2018 Microchip Technology Inc.

Other Utilities

15.3.5 Options

The following options are supported.

TABLE 15-2: xc16-bin2hex OPTIONS
Option Function

object _file -a |Sortthe contents of the object file in ascending address order.
For a summary of the object file contents, add the —v option

(-va).

—-omf=f or nat Specify object file format. The following formats are supported:
ELF, COFF. Format names are case-insensitive. ELF in the
default.

-u Use upper-case hexadecimal digits

-V Print a table of diagnostic information to standard output in the

format shown in Example 15-2.

EXAMPLE 15-2: -va OPTION OUTPUT

writing hello.hex

section PC address byte address length (w/pad) actual length (dec)

.reset 0 0 0x8 0x6 (6)
.ivt 0x4 0x38 0xf8 Oxba (186)
.aivt 0x84 0x108 0xf8 Oxba (186)
.text 0x100 0x200 Oxaec 0x831 (2097)
.const 0x676 Oxcec 0x10 Oxc (12)
.dinit 0x67e Oxcfc 0x104 0xc3 (195)
.text 0x700 0xe00 0x14 Oxf (15)
.isr 0x70a Oxeld 0x4 0x3 (3)
Total program memory used (bytes): Oxa8c (2700)

© 2013-2018 Microchip Technology Inc. DS50002106D-page 241

16-Bit Assembler, Linker and Utilities User’s Guide

15.4 XC16-NM

UTILITY

15.4.1 Introduction

The xc16-nm utility produces a list of symbols from object files. Each item in the list
consists of the symbol value, symbol type and symbol name.

15.4.2 Highlights

The following topics are covered in this section:

¢ Input/Output Files
e Syntax

» Options

e Output Formats

15.4.3 Input/Output Files

« Input: Object archive files

¢ Output: Object archive files. If no object files are listed as arguments, xc16-nm
assumes the file a. out.

15.4.4 Syntax

Command line syntax is:

xcle-nm [-A | -o | --print-file-name]
[—a | --debug-syms] [-B]
[-——defined-only] [-u | --undefined-only]
[-f format | --format=format] [-g | —--extern-only]
[==help] [-1 | --line-numbers]
[-n | -v | --numeric-sort] [—omf=f or mat]
[-p | -—-no-sort]
[=P | —--portability] [-r | —--reverse-sort]
[-=s --print-armap] [--size-sort]
[-t radix | --radix=radix] [-V | --version]
[OBJFILE...]

DS50002106D-page 242

© 2013-2018 Microchip Technology Inc.

Other Utilities

15.4.5 Options

Long and short forms of options, shown in Table 15-3 as alternatives, are equivalent.

TABLE 15-3: xc16-nm OPTIONS

Option Function
-A Precede each symbol by the name of the input file (or
-0 archive member) in which it was found, rather than

--print-file-name

identifying the input file once only, before all of its symbols.

-a Display all symbols, even debugger-only symbols; normally
--debug-syms these are not listed.
-B The same as —-format=bsd.

--defined-only

Display only defined symbols for each object file.

--format=f or nat

-u Display only undefined symbols (those external to each
--undefined-only |object file).
-f format Use the output format f or mat , which can be bsd, sysv

or posix. The default is bsd. Only the first character of
f or mat is significant; it can be either upper or lower case.

--line-numbers

-g Display only external symbols.

-—extern-only

--help Show a summary of the options to xc16-nm and exit.

-1 For each symbol, use debugging information to try to find a

filename and line number. For a defined symbol, look for the
line number of the address of the symbol. For an undefined
symbol, look for the line number of a relocation entry that
refers to the symbol. If line number information can be
found, print it after the other symbol information.

-n
-V
—-—-numeric-sort

Sort symbols numerically by their addresses, rather than
alphabetically by their names.

—-omf=f or mat

Specify object file format. The following formats are sup-
ported: ELF, COFF. Format names are case-insensitive.
ELF in the default.

P
—--no-sort

Do not bother to sort the symbols in any order; print them
the order encountered.

n

-P
--portability

Use the POSIX.2 standard output format instead of the
default format. Equivalentto -f posix.

-r
—-—-reverse-sort

Reverse the order of the sort (whether numeric or alpha-
betic); let the last come first.

-s
--print-armap

When listing symbols from archive members, include the
index: a mapping (stored in the archive by xcl16-ar or
xcl6-ranlib) of which modules contain definitions for
which names.

--size-sort

Sort symbols by size. The size is computed as the differ-
ence between the value of the symbol and the value of the
symbol with the next higher value. The size of the symbol is
printed, rather than the value.

-t radix Use r adi x as the radix for printing the symbol values. It
--radix=r adi x must be d for decimal, o for octal or x for hexadecimal.
-V Show the version number of xc16-nm and exit.
--version

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 243

16-Bit Assembler, Linker and Utilities User’s Guide

15.4.6

Output Formats

The symbol value is in the radix selected by the options, or hexadecimal by default.

If the symbol type is lowercase, the symbol is local; if uppercase, the symbol is global
(external). Table 15-4 shows the symbol types.

TABLE 15-4: SYMBOL TYPES

Symbol Description

A The symbol’s value is absolute, and will not be changed by further linking.

B The symbol is in the uninitialized data section (known as BSS).

C The symbol is common. Common symbols are uninitialized data. When
linking, multiple common symbols may appear with the same name. If the
symbol is defined anywhere, the common symbols are treated as unde-
fined references.

D The symbol is in the initialized data section.

N The symbol is a debugging symbol.

R The symbol is in a read only data section.

T The symbol is in the text (code) section.

U The symbol is undefined.

\Y The symbol is a weak object. When a weak defined symbol is linked with
a normal defined symbol, the normal defined symbol is used with no error.
When a weak undefined symbol is linked and the symbol is not defined,
the value of the weak symbol becomes zero with no error.

W The symbol is a weak symbol that has not been specifically tagged as a

weak object symbol. When a weak defined symbol is linked with a normal
defined symbol, the normal defined symbol is used with no error. When a
weak undefined symbol is linked and the symbol is not defined, the value
of the weak symbol becomes zero with no error.

The symbol type is unknown, or object file format specific.

EXAMPLE 15-3: XC16-NM OUTPUT

00000474
0000023e
000001b2
0000051e
00000700
000003bc
00000334
00000198
0000061la
0000062c
00000326
00000310
000005a0

_fclose
_fputc
_fputs
_free
_main
~malloc
_memcpy
_puts
_remove
_sbrk
_strlen
_strrchr
_write

SHEa=s=993934a4a434

DS50002106D-page 244

© 2013-2018 Microchip Technology Inc.

Other Utilities

15.5 XC16-OBJDUMP UTILITY

15.5.1 Introduction

The xc16-objdump utility displays information about one or more object files. The
options control what particular information to display.

15.5.2 Highlights

The following topics are covered in this section:
¢ Input/Output Files

e Syntax

» Options

15.5.3 Input/Output Files

* Input: Object archive files

¢ Output: Object archive files. If no object files are listed as arguments, xc16-nm
assumes the file a. out.

15.5.4 Syntax

Command line syntax is:

xclo-objdump [-a | --archive-headers]
[-d | ——-disassemble]
[-D | —-disassemble-all]
[-EB | -EL | --endian={big | little }]
[-f | -—-file-headers]
[——file-start-context]
[-g | --debugging]
[-h | ——-section-headers | —--headers]
[-H | —-—help]
[=3 nane | --section=name]
[-1 | --line-numbers]
[-M options | --disassembler-options=0ptions]
[-omf=f or mat]
[—-prefix-addresses]
[——psrd-psrd-check]
[-r | —--reloc]
[=s | —=-full-contents]
[=S | —--source]
[=—[no-]show-raw-insn]

[——start-address=address]
[——-stop-address=address]

[-t | ——syms]

[-V | --version]

[-w | --wide]

[-x | --all-headers]

[=z | —-—disassemble-zeroes]
OBJFILE. ..

OBJFILE.. are the object files to be examined. When you specify archives,
xcl6-objdump shows information on each of the member object files.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 245

16-Bit Assembler, Linker and Utilities User’s Guide

15.5.5 Options

The long and short forms of options, shown in Table 15-5, as alternatives, are equiva-

lent. At least one of the following options -a, -4, -b, -f, -g, -G, -h, -H,
-p, -r, -R, -S, -t, -T, -Vor-xmustbe given.
TABLE 15-5: xcl16-objdump OPTIONS
Option Function
-a If any of the OBJFILE files are archives, display the

-—-archive-header

archive header information (in a format similar to 1s
-1). Besides the information you could list with
xcl6-ar tv, xclé-objdump -a shows the object
file format of each archive member.

--disassemble-all

-d Display the assembler mnemonics for the machine

--disassemble instructions from OBJFILE. This option only disas-
sembles those sections that are expected to contain
instructions.

-D Like —d, but disassemble the contents of all sections,

not just those expected to contain instructions.

-EB
-EL
--endian={big|little}

Specify the endianness of the object files. This only
affects disassembly. This can be useful when disas-
sembling a file format that does not describe
endianness information, such as S-records.

-f
-—-file-header

Display summary information from the overall header
of each of the OBJFILE files.

-—-file-start-context

Specify that when displaying inter-listed source
code/disassembly (assumes *-s’) from a file that has
not yet been displayed, extend the context to the start
of the file.

--section=nane

-g Display debugging information. This attempts to parse

--debugging debugging information stored in the file and print it out
using a C like syntax. Only certain types of debugging
information have been implemented.

-h Display summary information from the section

--section-header headers of the object file.

--header

-H Print a summary of the options to xc1 6-objdump and

--help exit.

-J name Display information only for section nane.

-1
--line-numbers

Label the display (using debugging information) with
the filename and source line numbers corresponding
to the object code or relocs shown. Only useful with
-d, -Dor-r.

-M options
--disassembler-
options=options

Pass target specific information to the disassembler.
The dsPIC30F device supports the following target
specific options:

symbolic - Will perform symbolic disassembly.

DS50002106D-page 246

© 2013-2018 Microchip Technology Inc.

Other Utilities

TABLE 15-5: xc16-objdump OPTIONS (CONTINUED)
Option Function
-omf=f or nat Specify object file format. The following formats are

supported: ELF, COFF. Format names are
case-insensitive. ELF in the default.

--prefix-addresses

When disassembling, print the complete address on
each line. This is the older disassembly format.

--psrd-psrd-check
[=library]

Check for back-to-back data flash reads. Specifying
the optional =1ibrary should be used on unlinked
object files (such as a library). This option can be com-
bined with -d to get a disassembly listing with addi-
tional information.

-r
--reloc

Print the relocation entries of the file. If used with -d
or -D, the relocations are printed interspersed with the
disassembly.

-s
-—-full-contents

Display the full contents of any sections requested.

-S
--source

Display source code intermixed with disassembly, if
possible. Implies -d.

--show-raw-insn

When disassembling instructions, print the instruction
in hex, as well as in symbolic form. This is the default
except when --prefix-addresses is used.

--no-show-raw-insn

When disassembling instructions, do not print the
instruction bytes. This is the default when
--prefix-addresses is used.

--start-address=addre
SS

Start displaying data at the specified address. This
affects the output of the -d, -r and -s options.

--stop-address=addr es

Stop displaying data at the specified address. This

S affects the output of the -d, -r and -s options.

-t Print the symbol table entries of the file. This is similar
--syms to the information provided by the xc16-nm program.
-V Print the version number of xc16-objdump and exit.
--version

-w Format some lines for output devices that have more

--wide than 80 columns.

-x Display all available header information, including the
--all-header symbol table and relocation entries. Using -x is

equivalent to specifying all of -a -f -h -r -t.

-z
--disassemble-zeroes

Normally, the disassembly output will skip blocks of
zeroes. This option directs the disassembler to
disassemble those blocks, just like any other data.

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 247

16-Bit Assembler, Linker and Utilities User’s Guide

EXAMPLE 15-4: -h OUTPUT
hello.out: file format c
Sections:
Idx Name Size
0 .reset 00000004
CONTENTS,
1 .text 00000576
CONTENTS,
2 .comment 0000005e
CONTENTS,
3 .ivt 0000007c
CONTENTS,
4 .aivt 0000007c
CONTENTS,
5 c30 signature 0000007e
CONTENTS,
6 .data 0000008e
CONTENTS,
7 .bss 00000002
ALLOC
8 .data 00000002
CONTENTS,
9 .bss 00000002
ALLOC
10 .heap 00000080
ALLOC
11 .const 00000008
CONTENTS,
12 .dinit 00000082
CONTENTS,
13 .text 0000000a
CONTENTS,
14 .isr 00000002
CONTENTS,

off-pic30

VMA File off Algn
00000000 00000000 00000288 2**1
ALLOC, LOAD, CODE
00000100 00000100 00000290 2**1
ALLOC, LOAD, CODE
00000000 00000000 00000d7c 2**1
NEVER LOAD
00000004 00000004 00000e38 2**1
ALLOC, LOAD, CODE
00000084 00000084 00000£30 2**1
ALLOC, LOAD, CODE

0000005e 0000005e 00001028 2**1
DEBUGGING
00000800 00000800 00001124 2**1
ALLOC, DATA, NEVER LOAD
0000088e 0000088e 00000000 2**1
00000890 00000890 00001240 2**1
ALLOC, DATA, NEVER LOAD
00000892 00000892 00000000 2**1
00000894 00000894 00000000 2**1
00008676 00000676 00001244 2**1
ALLOC, LOAD, READONLY, PSV
0000067e 0000067e 00001254 2**1
ALLOC, LOAD, CODE
00000700 00000700 00001358 2**1
ALLOC, LOAD, CODE
0000070a 0000070a 0000136c 2**1
ALLOC, LOAD, CODE

DS50002106D-page 248

© 2013-2018 Microchip Technology Inc.

Other Utilities

15.6 XC16-RANLIB UTILITY

15.6.1 Introduction

The xcl6-ranlib utility generates an index to the contents of an archive and stores
it in the archive. The index lists each symbol defined by a member of an archive that is
a relocatable object file. You may use xcl6-nm -s Or xcl6-nm --print-armap to
list this index. An archive with such an index speeds up linking to the library and allows
routines in the library to call each other without regard to their placement in the archive.

Running xc16-ranlib is completely equivalent to executing xcl6-ar -s (i.e., the
16-bit archiver/librarian with the —s option).

15.6.2 Highlights

The following topics are covered in this section:
¢ Input/Output Files

e Syntax

* Options

15.6.3 Input/Output Files

 Input: Archive files

« Output: Archive files

15.6.4 Syntax

Command line syntax is:

xcl6-ranlib [-omf=format] [-v | -V | —--version] ARCHIVE
15.6.5 Options

The long and short forms of options, shown in Table 15-6 as alternatives, are equiva-
lent.

TABLE 15-6: xcl6-ranlib OPTIONS
Option Function

—-omf=f or nat Specify object file format. The following formats are supported:
ELF, COFF. Format names are case-insensitive. ELF in the
default.

-v Show the version number of xcl6-ranlib
-V
--version

© 2013-2018 Microchip Technology Inc. DS50002106D-page 249

16-Bit Assembler, Linker and Utilities User’s Guide

15.7 XC16-STRINGS UTILITY

15.7.1 Introduction

For each file given, the xc16-strings utility prints the printable character sequences
that are at least 4 characters long (or the number given in the options) and are followed
by an unprintable character. By default, it only prints the strings from the initialized and
loaded sections of object files; for other types of files, it prints the strings from the whole
file.

xcl6-strings is mainly useful for determining the contents of non-text files.
15.7.2 Highlights

The following topics are covered in this section:
* Input/Output Files

e Syntax

« Options

15.7.3 Input/Output Files

 Input: Any files

e Output: Standard output

15.7.4 Syntax

Command line syntax is:

xcl6-strings [-a | --all | -] [-f | —--print-file-name]
[--help] [-nin-len | -n nmin-len | --bytes=nin-len]
[-omf=format] [-t radix | —--radix=radix]
[-v | —--version] FILE...

DS50002106D-page 250

© 2013-2018 Microchip Technology Inc.

Other Utilities

15.7.5 Options

The long and short forms of options, shown in Table 15-7 as alternatives, are
equivalent.

TABLE 15-7: xcl16-strings OPTIONS

Option Function
-a Do not scan only the initialized and loaded sections of
--all object files; scan the whole files.
-f Print the name of the file before each string.
--print-file-name
--help Print a summary of the program usage on the standard

output and exit.

-mn-len Print sequences of characters that are at least - mi n- | en
-n mn-len characters long, instead of the default 4.

--bytes=m n-| en

-omf=f or nat Specify object file format. The following formats are sup-
ported: ELF, COFF. Format names are case-insensitive.
ELF in the default.

-t radix Print the offset within the file before each string. The single

--radix=radi X character argument specifies the radix of the offset: o for
octal, x for hexadecimal, or d for decimal.

-v Print the program version number on the standard output

--version and exit.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 251

16-Bit Assembler, Linker and Utilities User’s Guide

15.8 XC16-STRIP UTILITY

15.8.1 Introduction

The xcl16-strip utility discards all symbols from the object and archive files
specified. At least one file must be given. xc16-strip modifies the files named in its
argument, rather than writing modified copies under different names.

15.8.2 Highlights

The following topics are covered in this section:
¢ Input/Output Files

e Syntax

» Options

15.8.3 Input/Output Files

* Input: Object or archive files

« Output: Object or archive files. If no object or archive files are listed as arguments,
xcl6-strip assumes the file a.out.

15.8.4 Syntax

Command line syntax is:

xclo-strip [-g | =S | --strip-debug] [--help]
[-K synbol nane | --keep-symbol=synbol nane]
[-N synbol nane | --strip-symbol=synbol nanme]
[—o file 1 [-omf=format]
[-p | —--preserve-dates]
[-R sectionnane | --remove-section=sectionnanme]
[=s | —--strip-all] [--strip-unneeded]
[=v | —-verbose] [=V | —--version]
[-=x | —--discard-all] [-X | —--discard-locals]
OBJFILE...

DS50002106D-page 252

© 2013-2018 Microchip Technology Inc.

Other Utilities

15.8.5

Options

The long and short forms of options, shown in Table 15-8 as alternatives, are equivalent.

TABLE 15-8: xcl16-strip OPTIONS
Option Function
-g Remove debugging symbols only.
-S
--strip-debug
--help Show a summary of the options to xc16-strip and exit.

-K synbol nane
--keep-symbol=symnbol name

Keep only symbol synmbol nane from the source file. This option
may be given more than once.

-N synbol nane
--strip-symbol=synbol nane

Remove symbol synbol name from the source file. This option
may be given more than once, and may be combined with strip
options other than -X.

-o file

Put the stripped output in f i | e, rather than replacing the exist-
ing file. When this argument is used, only one OBJFILE
argument may be specified.

-omf=f or mat

Specify object file format. The following formats are supported:
ELF, COFF. Format names are case-insensitive. ELF in the
default.

Y
--preserve-dates

Preserve the access and modification dates of the file.

-R sectionnane

--remove-section=secti onnane

Remove any section named sect i onnane from the output file.
This option may be given more than once. Note that using this
option inappropriately may make the output file unusable.

-s
--strip-all

Remove all symbols.

--strip-unneeded

Remove all symbols that are not needed for relocation
processing.

--discard-all

-V Verbose output: list all object files modified. In the case of
--verbose archives, xcl6-strip -v lists all members of the archive.
-V Show the version number for xcl6-strip.

--version

-x Remove non-global symbols.

-X
--discard-locals

Remove compiler-generated local symbols.
(These usually start with . or “.”.)

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 253

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 254 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE

Part 4 — Appendices
Appendix A. Deprecated FEAtUIES.......cciii it e e 257
Appendix B. USeful TabIESoooviiiiiiiie e 259
Appendix C. GNU Free Documentation LICENSEcuvvvviiiiiiiiieie e 262
Appendix D. Document ReVision HiSTOrYcoooiiiiiiiiiiiiiciccs e 265

© 2013-2018 Microchip Technology Inc. DS50002106D-page 255

16-Bit Assembler, Linker and Utilities User’s Guide

NOTES:

DS50002106D-page 256 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE
Appendix A. Deprecated Features

A.1 INTRODUCTION

The features described below are considered to be obsolete and have been replaced
with more advanced functionality. Projects which depend on deprecated features will
work properly with versions of the language tools cited. The use of a deprecated fea-
ture will result in a warning; programmers are encouraged to revise their projects in
order to eliminate any dependency on deprecated features. Support for these features
may be removed entirely in future versions of the language tools.

A.2 HIGHLIGHTS

Topics covered in this appendix are:

* Assembler Directives that Define Sections
* Reserved Section Names with Implied Attributes
* Environmental Variables

A.3 ASSEMBLER DIRECTIVES THAT DEFINE SECTIONS

The following . section directive format was deprecated in v1.30. The new directive
format may be found in Section 4.2 “Directives that Define Sections”.

A3.1 .section name [, “flags”]

Definition

Assembles the following code into a section named name. If the optional argument is
quoted, it is taken as flags to use for the section. Each flag is a single character. The
following flags are recognized:

b bss section (uninitialized data)

n Section is not loaded

d Data section (initialized data)

r Read-only data section (PSV window)

x Executable section

If the n flag is used by itself, the section defaults to uninitialized data.

If no flags are specified, the default flags depend on the section name. If the section
name is not recognized, the default will be for the section to be loadable data.

© 2013-2018 Microchip Technology Inc. DS50002106D-page 257

16-Bit Assembler, Linker and Utilities User’s Guide

The following section names are recognized:

TABLE A-1: SECTION NAMES

Section Name Default Flag
.text X
.data d
.bss b
Note: Ensure that double quotes are used around flags. If the optional argument
to the . section directive is not quoted, it is taken as a sub-section num-
ber. Remember, a single character in single quotes (i.e., ‘b’) is converted by
the preprocessor to a number.
Example
.section .const, "r"
; The following symbols (Cl and C2) will be placed
; in the named section ".const".
Cl: .word 0x1234
C2: .word 0x5678

A.4 RESERVED SECTION NAMES WITH IMPLIED ATTRIBUTES
Implied attributes for the section names in the table below were deprecated in v1.30.

Reserved Name Implied Attribute(s)
.xbss bss, xmemory
.xdata data, xmemory
.nbss bss, near
.ndata data, near

.ndconst data, near
.pbss bss, persist
.dconst data
.ybss bss, ymemory
.ydata data, ymemory
.const psv
.eedata eedata

See Section 4.2 “Directives that Define Sections” for more information.

A.5 ENVIRONMENTAL VARIABLES

The environment variable PIC30 OMF was used to specify object file format for the
16-bit language tools. Now use XC16 OMF.

DS50002106D-page 258 © 2013-2018 Microchip Technology Inc.

MICROCHIP

MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES
USER’S GUIDE

Appendix B. Useful Tables

B.1 INTRODUCTION

Some useful tables are included for reference here.

B.2 HIGHLIGHTS

The tables are:

¢ ASCII Character Set
+ Hexadecimal to Decimal Conversion

B.3 ASCIl CHARACTER SET

This table shows the ASCII character set in nibbles.

Most Significant Nibbles

Least
Significant
Nibbles

Hex 0 1 2 3 4 5 6 7
0 NUL | DLE | Space 0 @ P) p
1 SOH | DC1 ! 1 A Q a q
2 STX | DC2 2 B R b r
3 ETX | DC3 # 3 C S c S
4 EOT | DC4 $ 4 D T d t
5 ENQ | NAK % 5 E U e u
6 ACK | SYN & 6 F Y f %
7 Bell ETB ' 7 G W g w
8 BS CAN (8 H X h X
9 HT EM) 9 I Y [y
A LF SUB * J Z j z
B VT ESC + : K [k {
C FF FS < L \ I [
D CR GS - = M | m }
E SO RS . > N A n ~
F Sl us / ? o] _ o DEL

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 259

16-Bit Assembler, Linker and Utilities User’s Guide

B.4 HEXADECIMAL TO DECIMAL CONVERSION

This appendix describes how to convert hexadecimal to decimal. For each hex digit,
find the associated decimal value. Add the numbers together.

High Byte Low Byte

Hex 1000 | Dec Hex 100 Dec Hex 10 Dec Hex 1 Dec
0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
2 8192 2 512 2 32 2 2
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2560 A 160 A 10
B 45056 B 2816 B 176 B 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 208 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

For example, hex A38F converts to 41871 as follows:
Hex 1000's Hex 100’s Hex 10’s Hex 1's

Digit Digit Digit Digit Result
40960 768 128 15 41871 Decimal

DS50002106D-page 260 © 2013-2018 Microchip Technology Inc.

Useful Tables

© 2013-2018 Microchip Technology Inc. DS50002106D-page 261

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE

Appendix C. GNU Free Documentation License

Copyright (C) 2010 Microchip Technology Inc.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.3 or any later version published by
the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and

no Back-Cover Texts.

A copy of the license is included in the section entitled "GNU Free Documentation
License" under “MPLAB Language Tools Reference.”

© 2013-2018 Microchip Technology Inc. DS50002106D-page 262

GNU Free Documentation License

NOTES:

© 2013-2018 Microchip Technology Inc. DS50002106D-page 263

16-Bit Assembler, Linker and Utilities User’s Guide

DS50002106D-page 264 © 2013-2018 Microchip Technology Inc.

\ MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER’S GUIDE

Appendix D. Document Revision History

Revision A (September 2013)

Initial release of this document.

Revision B (December 2014)

» Section 4.2 “Directives that Define Sections” - Added notes to .bss and .data to
warn against using all data memory for symbols so there is no room for stack.

» Chapter 8. “Linker Command Line Options” - Changed title from “Linker Com-
mand Line Interface”. Also placed option lists into tables to better highlight
option/no option pairs.

e Section 8.4.22 “-mreserve” - Added this section.

e Section 8.4.46 “~-wrap symbol” - Added more to this section.

e Section 8.5.6 “--1ocal-stack” and Section 8.5.7 “~-no-local-stack” -
Added these sections.

« Section 10.10 “Stack Allocation” - Added text to warn against using all data mem-
ory for symbols so there is no room for stack.

« Section 13.3 “Errors” - Updated definition for “undefined reference to ‘symbol™.
Revision C (August 2016)

» Section 4.2 “Directives that Define Sections” - Added to “Attributes that Represent
Section Types”: packedflash; added to “Attributes that Modify Section Types”:
shared, preserved, update, and priority.

« Section 8.4 “Options that Control Output File Creation” - Added options
--application-id, --coresident, --no-ivt, -—-pad-flash,
--preserve, -—preserve-all, --reserve-const; Updated option
--no-isr.

« Section 8.6 “Options that Control Informational Output” - Added option
--memory-usage.

» Section 10.15 “Co-resident Application Linking” - Co-resident applications
information and options.

Revision D (February 2018)

« Section 3.9 “Special Operators” - Table 3-8 updated with footnote that two opera-
tors cannot be used in an expression.

» Chapter 4. “Assembler Directives” - Numbered all directive sections for better ref-
erence.

» Section 4.2.7.2 “Attributes that Modify Section Types” - Table 4-2 updated for
ymemory and dma attributes also applicable to dsPIC33EP devices.

« Section 8.4 “Options that Control Output File Creation” - added —--ivt and
--no-ivt linker options.

» Section 8.6 “Options that Control Informational Output” - added
--no-psrd-psrd-check linker option.

» Section 9.7.5.7 “Output Section Data” - removed reference to QUAD; not used.
« Section 10.14.5 “Example of Simple Bootloader Application” - added example.
» Chapter 12. “Linker Map File” - updated linker map file.

© 2013-2018 Microchip Technology Inc. DS50002106C2-page 265

16-Bit Assembler, Linker and Utilities User’s Guide

» Section 15.5 “xc16-objdump Utility” - added --psrd-psrd-check[=library]
option.

DS50002106C2-page 266 © 2013-2018 Microchip Technology Inc.

N MPLAB® XC16 ASSEMBLER,
LINKER AND UTILITIES

MICROCHIP USER'’S GUIDE

| ndex

Symbols HWOrd e, 69
 CODE_LENGTH oot 204 oo IE=Y=Tox (o] o R OSTU 145
_ DATA_LENGTH oo, 204 ADBNL 84
_RAM_USAGE __ 127 If .. 79
LS oo 188 1 {0 L= o] O RRR 79
_ROM_USAGE .. 127 .!fdef ... 79
CIMAIN o 188 ANAEC oo 79
_PROGRAM_END ... 204 .!fndef ... 80
OO 43 AMMOLABCH .o 79
DO e 84 AMOLAET 80
AlIGN e 74,179 AMCDIN 84
APPINE wevieiieee e 84 ANCIUGR oo 33,35, 85
LASCT vttt e 66 ANIESECHON oo 141
ASCIZ v 67 AL 69
DS e 56, 70 |rp .. 81
DSS SECHON «veeee e 123, 158, 186 !I’pC R T I 82
BYEE et 67 ASI SECHON L. 141
COMITE 1ottt ettt eb e eaens 70 ACOMIM. 70
.COMM SYMDBOL, IENGHN ..o 70 .I!b* sectl_on ... 141
CONSt SECHON oo 179, 188, 189 .I!bc sectloq .. 141
QAU e 56 dibdsp section ..., 141
ALA SECHON oo 124, 186 .I!bm S.ECtIOD ... 141
AT oo 86 libperi SeCtion ..o 141
M e 86 NE. e 86
ANt SECHON oo 187, 188 ST e —————————— 78
AOUBIE oo 67 I e ————————————— 84
BJEC .o 78 OC. 85
IS o 79 dONG 69
EISEIf....ocici 79 AMBCTO o 82
NG oo 84 MEMOTY i 57
ENOET ... 86 NONST.. v 78
NI e 79 L R R 7
NAM L 82 PRGN 7
ONAT e 81, 82, 83 .pasc!l ... 66, 67
LU oot 42,71 PASCIZ 67
LQUIV v 42,71 PDSS SECHON oo 125
=Y OSSOSO PSR UR 79 POYVIE 67,176,189
VBITOE oottt et ne 79 DAL 75
XM o 81 PAIVAIUE oo 64
OXEEIM o 70 PINCDIN 85
Rl e 84 POPSECHON .oooovoi 57
FIlE v 86 POTG covervinssrmmmsisssessssmmssssse s 76
Fill v 75 PN covtinnnsninsssnss s 85
FIHUPPET v 64 PSIZE 78
SIIVAIUE .o 64 PSKIP - 76
FIXEA oo 68 PSPACE. ettt s 76
FIOAt . 68 PSUING oo 69
AGIODA! oo 70 PUTGEIM vovcrirtsnssennst s 83
LGIODI 70 APUSNSBCUON ..o 57
NANAIE ..o 125 PWORD o 69,189
handle SECHON oo 141, 175, 185 L] o O PP PPPP PP 83
reSet SECHONooviiiiicciic e 140

© 2013-2018 Microchip Technology Inc. DS50002106D-page 267

16-Bit Assembler, Linker and Utilities User’s Guide

OVEIVIEW ...ttt e e e e e e e e e e e e e

SOUMCR ..ottt
ASSERT ..ottt
Assigning Output Sections to Regions
Assigning Values

auto_pPSV......cceeeeveenn.
AUXFIASH ..,
AUXPSY 1.t eiieeesiteeeetee et ee et e et b et e e aeeas
B
Base Memory Addresses
LSEAIEOT. ettt 52 binZhex utility..........c..cooooeriinn.
string Binary Filecooviiiiiiie e
Struct ...
G e
LS U PTORPR
.text section
title............
type Building the Output File ...
uleb128 Built-in Functions
.user_init section ADDR ..o
VAl ALIGN .o
version ASSERT..........
weak BLOCK
word DEFINED
S(7) e LOADADDR
B s MAX o
MIN..................
A N[=0Q
S 118 SIZEOF ...t
- WU SO SPUPPRPURRPN 20 c
a.out 17, 32,122
ACCESSING DAA ..o 49 --CheCK-SECHONSoviiiiii 127
Accumulator SeleCt ..o 38 (070 o [T 58
CODE_LENGTH ..ooiiiiiiiiiiiieeeeeeeee 204
Command-Line Information
LINKEr SCrIPLS «ovvveeieeeieiiieeeiiee e 136
Command-Line Interface
Archiver/Librariancccceeeeeeiieiiiiieeiieeeeeen, 235
Assembler
Linkercc......
COMMENES ...
Computing Absolute Addresses.........ccocveeevveeenne. 175
Condition Codes 37

alignment gaps.....ccoee... f s T
Conditional Assembly Directives

Allocating Memory
Allocating Unmapped Sections

--application-id
AF ULIIEY oo
——ArChItECIUNE ..o
ATCRIVET Lo

Command-Line Interfacecccceeeevvvvvvvnnnnnes

Scripts
Arguments

ASCII Character Set.........cccocoiiiiiiiiiiiiiicec _ A :
Assembler Configuration Region

Command-Line INerfacecocoevvereerevenenen. 19 Constant Data
DIr€CHVES oo 37,55 CONSEANTS ..eencee e

DS50002106D-page 268 © 2013-2018 Microchip Technology Inc.

Fixed-Point NUmberscccocvvviniiiiicinees 41
Floating-Point Numbers............c.ccocevvevieeiinnennn. 40
Integer

Locating in Program Memory...........cccceevveenne 210
Numeric

Current Address....
Custom Linker Script

CUSTOMEr SUPPOIt.....evieiieeiiiieiee e e

D

o T S TP PR TS PPPTPURPURPTIN 118
AR .. 58
Data Initialization Template..........ccccceevvvrnveerninnenn. 187
Data MEMOIYovviviiiiiieeee e 49,176
Data ReQIiONcccvveiieiiceieee e

DATA LENGTH
o F= 1 = S 1| R

type

Debugger MEMOIYcccovvviiiiieiiiieeeeeeeeee e 145
Declare Symbols Directives
DSS

—=dEfSYM .o
Destination Select
[T = Tox 1LY/ USRS
Directives
AlIGNMENT ..ot 72
Assembler
Conditional
Debug Information
Declare SymbolS..........ccocvviiiiiieeiiiee e 70
Define SymbolS........cooviiieriiiiieeee e 71

OULPUL LIStING . ..vveeiieeeiiiee e

LST=Tox (o] o Nt

Substitution/Expansion
--discard-allccccceeeenns
--discard-locals

Documentation
CONVENTIONS ... e
Layoutcceevvvvvvnnnnnnn,

DOT Symbol

Dot Variable

(=TT I L= LSRR
EEDATA Memory Regionc.cccoecvveeeeeeiiiieeeeennns
EEPROM, Locating and Accessing
Empty EXPreSSIONSeeiiiiieiiiiie e
==BN0-GIOUP e

Escape Characters..............
Evaluationccceeeeerneenn.
Examples, LINKEr........cccociiiiiiiie e
EXCLUDE_FILE....cccoiiiiiiiiiiie e
EXpressions.........cccccvveennnee.
Expressions, Empty
Expressions, Integer
EXTERN ..ottt

F

--fatal-warningscccccoveeiiie e 31
File Commands, Linker Scripts

OUTPUT
SEARCH_DIR ...ttt 151
STARTUP ...ttt 151
File Extensions
Assembler
Linkerccoeveeeiiiieneene
File REQISLEIS ..ovviieiie et
Files
Libraryccovvee i
Linker Output
Linker Script........cccoc..e.
LISTNG et

Fill Directives
JHUPPET e 64
Jillvalue ..., 64
pfillvalue ...
--fill-upper
Fixed-Point NUMDEISccoccuvvviirieiiiiieieeeeeeeeeeeeeeen 41

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 269

16-Bit Assembler, Linker and Utilities User’s Guide

Floating-Point Numbers............ccccocovvieeeeiiiiiiec e, 40
FORCE_COMMON_ALLOCATIONccoceeeririrnne 165
--force-exe-SUffiXcccouiiiiii 119
=fOrce-lNK ...ooeeei e 119
Functions, LOCatiNgccceeviivieiieiiiiiieee e 207
G
gaps, alignment.........ccocv i 194
==gC-SECHONSeei it ee et 120
“=gENETAL ...t 131
Getting @ GriP .veeeeviee et 185
Global SymbolSs ... 184
GROUP ...ttt 151
H
handle()ooeoveeeriieeee e 51,175,185
HaNAIESoooiieeiee e 185
=-handlesoooeeiiiii 125
HEATET ..o 90
“=NAP .. 125
NEAP ... 58
Heap AIOCALIONc.vvviiiiiiiiieeee e 192
=NEID 31,127
Hexadecimal to Decimal Conversion 260
High-level Source............ccccoveeeeiiiiiiie e, 24,90
|
L s 33
et 122
ICD MEMOIY ...t 145
INCLUDE ..ottt 150
INFIX OPEratOrS.....ccovveieiieieeiee e a7
INFO .ot 161
INFO L 59
Informational Output Options, Assembler
--fatal-warningscccooii 31
=NeID 31
m et aes 31
STNO-WAN ettt 31
—target-help ..o 31
SV e 31
=VEIDOSE ..o 31
V(=1 5o o PR 31
SV s 31
SN e 31
Informational Output Options, Linker
--CheCK-SECHIONSvvviiiiiieiiie e 127
=NeID e 127
--MEMOIY-USAJE.......ceeeeeeiiiiiiiii i 127
--N0-CheCK-SECtIONS.......ccoviiiiiieeiiiie e, 127
--n0-psrd-psrd-check........cccooevviiiiiiieinieens 127
--NO-Warn-miSmMatChcccccvevviiieeiieee s 128
= TEPOIM-MEM .. 128
. SRR 128
SACE e 128
--trace-Symbol ... 128
SV e 128
SV e 128
S-VETDOSE ..t 128
V(=] 5= o] o RPN 128
==WarN-COMMIONuuuiirieeeeeeeerennniae e e e e eeeeenens 128

“SWAMN=0NCE ..ttt 129
--warn-section-align..........ccccovveeeniieeniiee e, 129
Y ettt e e e et ennrae e nnnas 128
Initialization Directives
ASCH weteeeieiieie e 66
BSCIZ vveeenitee sttt 67
BYEE o 67
dOUDBIE .. 67
FIXE. .o 68
float . 68
RWOId ... 69
TN e 69
JONG e 69
PASCHl +eeeiveieiiiie et 66, 67
PASCIZ .o 67
POV o 67
PSIING coeee e 69
01V o] o ORISR 69
SNOTE . 69
SINGIE .eeie i 68
SEANG e 69
o] o [PPSR 69
Initialized Data........ccccoovvviieeeieiiiiie e 186
INPUT ..ottt 150
Input Section
Common SYmbOIS........cccvveeiiiiiiieee e 158
EXAMPIE ..o 158
Wildcard Patterns.........ooocoeeeeiiiiiiee e, 157
Input/Output Section Map........ccccovveeerveiieiieennneen. 140
INteger EXPreSSIONS.......cooviveiiieeeiiie e 46
INEEQEIS oo 40
INternal PreproCeSSOroveveiiiee et siieeesieeeeniieeenes 35
Internet Address, Microchip..........ccccooeeiiieeeeiiineen. 11
Interrupt
Handlers ... 192
Vector Tablescocvvviiiiiiiiecie e 147,192
SoISE e 120
SoIVE e 120
IVE REGION ..o 138
J
SRS 31
K
K OSUFFIX e 166
--KeeP-10CalS.......eviiiii e 32
L
SR 32,121
e 120
Label. ..o, 36,42,43,176, 185
slegacy-libe ... 120
LENGTH .oeiiiiiee ettt 154
lbPIC30-COff.a ...vveeiiie e 188
bPIC30-Elf.a ... 188
LIDrarian ... 233
Command-Line Interface..........ccccccvveviveennnen. 235
SCIPLS et 237
=lBrary ..o 120
Library FileS.....oooiiie e 112
—-library-path ..o 121

DS50002106D-page 270

© 2013-2018 Microchip Technology Inc.

Link Map Options, Linker SEUCT Lot 76
:-I\jref ... M
_Map __ -M...... B L EIE LRI
e DFNEMAD v eeeeeeeeee e eeeeee s eeee M SUFFIX weeerieiceee e
Linker -Map T
AlloCationoeveveeeeeeeeenenn Map File ..o
Command-Line Interface .. Mapping Sections................
EXAMPIES ..o, MAX oo
File EXCENSIONS ..o SIMID e
Output File [10170010] VAU U PP
Overview........ Memory Addressing
Processing MEMORY Command
LINKET SCHPS «...vevveceeeeceeee e Memory Region Information
Command Languagecoeveeeeeeerennn. “-MEMOIY-USAQEeeeerieeeirreeeireeeereeeeerreeeereeesneeas
Command-Line Information MEIJE ..viiii
CONCEPLS...ovveeeeeeveeetere et s e en e n e 1YL
CONLENES «.veveeeeeeeeeee e eee e eeesnees Miscellaneous Directives
Custom

File

File Commands.........cccoeeeiiieiiiiiiieiieeeeeeeee

Other Commandscccceeeeeeeeeeeeieeeeeeee e,
Listing FileS ...c.oooiiciiiee e,
Listing Output Options, Assembler

--listing-cont-lines
--listing-lhs-widthccocoeiii e
--listing-lhs-width2 ...,
--listing-rhs-widthcccoiiiiiiiii s
--listing-cont-liNes........cc.ccooiiiiiii e
--listing-lhs-width
--listing-lhs-width2 ...
--listing-rhs-Widthccccooviiiini
Literalsc.ccoeene.

Load Memory Address
LOADADDR ...
Loading INPUL Files.........ccccveiiiiiiiieccece
Local Symbols............cceevierns
--local-stack..............

Location Counter
Location Counter Directives

.align
glrlg .. nm utility PR
palign --no-check-sections

. NOCROSSREFS ..ot
-pfil ==NO-dAtA-INIt.....ceveiiiiiiiiriiieeeee e
.polr(g ==NO-FOrCE-IINK ...vvveiiieiiieieeeee e
'pi I:ce =-N0-NANAIESvvveeiiicieeeeee e
Ekﬁ; --n0|nh|b|t-exec

B [R L) N

Sspace B [0 1 1Y/ N

© 2013-2018 Microchip Technology Inc. DS50002106D-page 271

16-Bit Assembler, Linker and Utilities User’s Guide

=-N0-KEEP-MEMOIYeveieiiiieiiie e 121
NOLOAD ...ttt 161
[10] 0= To I PSPPSR 59
--NO-l0Cal-StacK.........cooeiiiiiiiieeie e 126
=-NO-PACK-AALAvveeieeeiie e 126
--N0-PSrd-pSrd-Checkccevviiiiiieniiiieeceec e 127
SNO-TEIAX .. 32
--N0-select-0bjecCtS........ccovvviiiiie e, 123
--no-undefined........ccooiiii 124
B (0= T o PP PPPPTR 31
--NO-Warn-mismatchcccccoiiiiiiiniiii e 128
NUMENC CONSLANES.....ccouveieiiieiriiie e 40
O
o PP OTPR 32,122
objdump ULIIIEY ..oooeeeeiiee e 245
ODbJECt FileS wueviieiiiieiee e 17,112
-omf.............. 17,32, 122, 241, 243, 247, 249, 251, 253
OPETANGS ...oiiiiiee et 37
OPEIALOISoevvieiiiieie e 46, 168
INFIX e 47
PrefiX ..o 46
OPLMIZE . 121
Options, Archiver/Librarian
o PRSP 235
10 TSP 235
D ettt 235
Lo [O TOTPPPPTP 235
ettt 235
SO T 235
X tttee ettt e ettt e et ae e et e e et e e araeeeanteeeenaeeannneen 235
Options, Assembler
Informational OULPULcceeviviveiiiiiiiee e, 31
LiSting OULPUL...ccocvveeiiiiie e 20
Other .. 33
Output File Creation..........ccccveveeeinee e 32
Options, Linker
Informational QUPULcooeeeeiiircrieecrieeene 127
Link Map OULPUL......ccoeeeiiiieiiiececiee e 130
Output File Creation.........cccccovevvcieeiieee e 117
Run-time Initialization.............ccccovoeeiviiiinnnenn. 125
Options, pic30-bin2hex
- SRS 241
SOMF e 241
U et 241
SV e 241
Options, pic30-nm
S e 243
- SRS 243
B s 243
--dEDUG-SYMS ..o 243
--defined-onlycccociiiiiiiii e 243
—-@XEEIMN-ONIY ittt 243
e 243
—format= ..., 243
RS RSSP 243
=hEID e 243
e 243
--liNe-NUMDETScoiiiiiiiiei e 243
RS RRSSP 243
=mN0-SOMT . 243

“=NUMETIC-SOM .. .uvvviriiiieieieieeeeeeeeeeee e e e e e e e e e eaaanns 243
S0 ettt e e e e e e e e a 243
FOMT s 243
P 243
o SR 243
=-POrtabIlitY .o 243
S=PHNE-AIMAP eeeeeiiiee e 243
--print-file-name........ccccci i 243
N 243
B = (0 [SO 243
—-FBVEISE-SOM..uu i 243
S ittt a e e e e rr e 243
B A= RE{0] £ AP 243
. N 243
N 243
--undefined-onlycccoovveeeiiiiiei e, 243
SV e —— 243
SV ettt a e e e e ar 243
VL= £ 0] ISR 243
Options, pic30-objdump
= WS 246
—call-header.....uueeeeiiiii e, 247
--archive-header............cccccvvveeeeiiieeeeee, 246
D 246
o N 246
--debuggingccoeiiiieiiie 246
--disassemble..........oooiiiiiiiiiiiie, 246
--disassemble-all............ccccccvvvveeiiiiiiiiieiiii, 246
--disassembler-options=...........cccccvvrevneerrnnn. 246
--diSasSeEMDbIE-ZErOES.........ccoeeeeeeiiiiiiiiieiiiiiins 247
BB 246
e N 246
—eNAIANT ... 246
e ———— 246
-file-header.........ooooiviiiiiiiiieee e, 246
-file-start-ConteXtvvveeveiieeeeeiiiie s 246
--fUll-CONEENLS ...vvvvviiiiiieiiieeeeeeeeeeeeeee e, 247
o PP UT TP 246
H o —— 246
o o TN 246
—cheader......ocvvveeiiieie 246
=NEIP e 246
S [E TP UP R TUPPPPRN 246
N 246
--liNe-NUMDEISeveeiiiiieee e, 246
M 246
--NO-ShOW-raw-iNSNcovvviiieeeeeeeeeeeeieiiiinn, 247
FOMT s 247
--prefix-addreSSesccoovveeeiiieeeiiieee e, 247
--pSrd-psrd-checkccoocveiiieiiiiiiece e, 247
N 247
B (=] [0 I 247
S e ——— 247
S ittt e e e e e e rr 247
Y=ot 1[0 246
--section-header........ccccevevevieeiiiiececcs 246
=-ShOW-TAW-INSN......cooiiiiiiiiee e 247
1010 | ol = PR 247
--start-addreSS=...........ccuvviieiiieeeeeeeeen 247
--StOP-AddreSS= ... eeveeiiie e 247

DS50002106D-page 272

© 2013-2018 Microchip Technology Inc.

SSYIMIS 1t 247
ST U PP PP PPRTPUPURRTIN 247
SV e 247
V(=1 =10 o TP 247
SW et 247
SmWIHE o 247
X et e e e e 247
e 247
Options, pic30-ranlib
SOMIF L 249
SV e 249
SV e 249
S=VETSION .ttt 249
Options, pic30-strings
SOV O PR OUPTUPPRPRPRINS 251
- TSRO PP RTOUPUPRTI 251
S 251
—DYtES = 251
S TP T PSP URT PP PPRTPUPPURRTIN 251
=hEIP 251
e L TP PR TP UPRTOUPUPRTI 251
SOMIF L 251
--print-file-name ... 251
STAAIXT e 251
ST TP PRT PP UPRTPUPPURRTIN 251
SV e 251
V(=1 =10 o H PRI 251
Options, pic30-strip
-—discard-allccevieiiiii 253
--discard-localscccovveriiiiiiiic 253
o T TP PP PP UPPPRP 253
=heIP 253
K 253
--keep-symbol=.........ccoeiiiii 253
SN 253
20ttt s 253
SOME i 253
S F PP PP PP PR UPPPRP 253
--preserve-datesccccvvieiieeeninieenee e 253
SR 253
--F€MOVE-SECHON=eeie e 253
TS 253
B T PP PP UTPR PP 253
==SHAP-All e 253
--Strip-debug ..o 253
--Strip-SymMbol= ... 253
--Strip-unneededcooovvieiieeen 253
SV 253
SV e 253
=-VEIDOSE .. 253
V(=1 =10 o H TP 253
X e 253
TP PR P UPRTUUPUPRTR 253
ORG ..ottt 154
ORIGIN Lottt 154
Other Linker Script Commands
ASSERT ..ot 165
ENTRY oot 165
EXTERN ..ot 165
FORCE_COMMON_ALLOCATION................ 165

NOCROSSREFScccocoiiiiiiiieniiceeei 165
OUTPUT_ARCH ...ttt 165
OUTPUT_FORMAToooiiiiitiiiinieeiee e 165
TARGET ..ottt 165
Other Options, Assembler
—=dEfSYM i 33
PR P PP PP PPPPPRUPRN 33
D e 33
“sPrOCESSON ...cvviiiiiiiiiiiee e 33
OUTPUT oottt 151
SsOUEPUL. .. 122
Output File Creation Options, Assembler
--keep-localscocoeiiiiiiii 32
TP PP PP PPPPRRPN 32
SMD e 33
SSNO-TEIAX .. e 32
L0 TSP 32
SOME i 32
R 32
STRIAX e 32
e 32
Output File FOrmMatocoveiiieeeiirereie e 136
Output File Options, Linker
S(7) e 118
A 118
—-application-idccccovvieini 118
-—arChIteCtUreoeveeiieiiee e 118
o [P RTUURP PRI 118
SOC e 118
—=dEfSYM i 118
—discard-allcocviiiiiiie 119
--discard-locals.coovveeriiiniin 119
SOP e 118
=-EN0-GIOUP .ot 118
= Fill-UPPEI e 119
--force-exe-SuffiXcoerveriiiiiinicicce e 119
--fOrce-linKoooveeiiici 119
8 [T=To1 (o] 1 TR 120
e 122
SIS e 120
SmIVE e 120
O U PRSP R OPPUPPPPRPPIN 121
TP R T PUPPPPRPPIN 120
-legacy-libC.......cueeviieii 120
=lDFANY e 120
—-library-path.........ccoociiiiin 121
SIMNEESEIVE ... e e 121
=-NO-fOrce-lNK......cocvviiiiiiir e 119
=-NOINNIDIt-EXEC ...cvvviiviiiieerie e 121
Sm0-IST et 120
e 1 [0 AV PSP 120
--N0-KEEP-MEMONYoovviiiiiiiiiie e 121
--NO-SEleCt-0ODJECESoovveeiiiii e 123
--NO-undefined..........ccoveviiiiiic e 124
20 ettt 122
SOME Lo 122
010 11 61U | TN 122
B S TR PR TUPPPPIN 122
—-pad-flash ... 122
SPIESEIVE ..ttt 122

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 273

16-Bit Assembler, Linker and Utilities User’s Guide

-preserve-all ... 122
SPFOCESSON .t ettt 122
S TSP VRO UPPOPRRPR 122
--relocateablecccoveeeiiiiii 122
==F@SEIVE-CONSL...covvriiii e 122
--retain-symbols-file............ccccccoe i, 122
S s 123
S et 123
S=SCIIPL et 123
--Select-0bjectS......cccvviiiiee 123
==STAM-groUP ..eeveeeeeiiiiiieeeeeec 118
==SHAP-AUl e 123
--Strip-debug.......eveiiiii 123
T s 123
STSS e 123
STdAt@. e 124
STEEXE e 124
U ettt 124
--undefined ..o, 124
SUT 122
(L1 S U 124
X e 119
B QTSRO U TP PTUPRPRP 119
Output Formats, pic30-nm
s 244
A 244
B 244
G s 244
D e 244
N e 244
R 244
T e 244
U e 244
Ve 244
WV e 244
Output Listing Directives
EJECT 1ttt 78
BTt 78
(010 1) SR 78
PSIZE. it 78
SBEEl e 78
BEIE e 78
Output Section
TESEL ..ttt 140
LOX e 141
AAAIESS ...t 159
ALFDULES .. 161
Data ...coveiiiieiiii 160
DESCIIPLON ...t 159
DiISCArdING .ccovvveeieiee et 160
Fll e 162
LMA e 162
REGION......iiiiiii e 162
TYPE et 161
COPY .ot 161
DSECT ...ttt 161
INFO oot 161
NOLOAD......ccctiiieetit e 161
OVERLAY ..ottt 161

Output Sections in

Configuration Memory........cccccceeeveivveeneeeennnen. 144
OUTPUT_ARCH ..ottt 165
OUTPUT_FORMAT ..ottt 165
OVERLAY .ottt 161
Overlay DeSCrPtioNceeiveieriiieiiee e 163
Overview

ASSEMDIEN ..o 15

LINKET o 111
P
oD e 122
D 33
=-PACK-AALAcoveeeeiiiiieeee e 126
packedflashccocviiiii e 58
PAAAIN() ettt 51
—-pad-flash ... 122
PAGE ettt 59
Page SiZe ..o 50
PEISISE ...ttt 58
PIC30-ar ULIILY ..oveeeiieeiiee e 233
Pic30-biN2hex ULteeeviieeeiiieieceee e 240
PIC30-NM ULlILY ..eeeeveeeiieeeee e 242
pic30-0bjdump ULtyeeeviieeeiiiieic e 245
Pic30-ranlib Utility.........ccccoviieeriiiieeee e, 249
PIC30-StrNGS ULIlILY ...ocoeveeeiiieeecceceeee e 250
PIC30-SHP ULIILY ... 252
POINEEN ..t 49
Precedenceccocovvvvieciieiiience e 47,168
Prefix Operatorsccccvvveieiiieeeniiee e 46
Preprocessor, Internal..........ccocceieeiiiiiie e, 35
“SPIESEIVE ..t 122
SPreServe-allcooiiviiiiiiie e 122
PrESEIVEM ...eoiiiiiiiiiie et 59
S=PHNEMAP e 130
o]0 11172 PR RPPRP 59
Processing, LINKercceeieiiiiiiiiee e 173
“=PrOCESSON ...ovvviiiiiiiiiiiiiee e 33,122
Program AdAresSsccccoveeeiiireeeiiiee e 51
Program MemOry.......ccccvvviviviiiieiiieeieeeeeeeeenneens 49,176
Program Memory, Locating and Reserving............ 214
Program Regioncoovuieviieiiiiiee e 138
Program Space Visibility Window.....50, 163,177, 179,

188

PROGRAM_ENDccocoiiiiniieiieiiieniee e 204
PROVIDEooiiiiiiieiiteie et 153
PV ettt 58
PSV Windowcccueeee. 50, 163, 177,179, 188, 257
PSVOTFSEL() ... vveereee et 50
PSVPAGE() +-vvveemreeeirireeearie e st 50
R

R 32
T U RU PRSPPI 122
raniib Utilitycooovvieeiiii e 249
Reading, Recommended...........cccccceevvvvvereeevcnineennn. 10
Read-Only Data..........cccccvvveeeeiiiiiie e 189
REQISIEIS ... 37
Relative Branchesccccceeeiiiiiiiieeiieee e 32
Relative Callsoooviiiiiiiie e 32
STRIAX et 32
relocatable...........ccoeviiiiiiiiii e 17

DS50002106D-page 274

© 2013-2018 Microchip Technology Inc.

Relocatable Codeccevvvvivieiieiiiiiiiiiiciinrineees 206
-relocateable ... 122
--report-mem

=-FE€SEIVE-CONSE ...t

Reset Regioncccccccevvvennnn.
Resolving Symbols
--retain-symbols-file
(A=) 1<
Run-time Initialization Options, Linker
--data-init
--handles
==hEaP oo
--local-Stackcoeeeiiiiiiii
--no-data-init ..
--N0-haNAIES.......ueeeeiiiiiiiecee e

--NO-10CAI-SLACKoeeviiiiiiiiiiiiecec e
--N0-PaCK-dataccovveeriiiiiiiiii e 126
—-PACK-0ALA. ... eee e 126
--stack .
--Stackguardcccoovieeeiiiie e 126
Run-time Library SUPpPOrt.........cccoovveiiiiniiecnineene 188
S
-S
S e
--script
Scripts
Librariancocooeioiie e 237
Scripts, Archiver/Librarian
ADDLIB ..ottt 237
SAVEcccoone. 237,238
VERBOSE ... 238
SEARCH_DIR ..ottt 151
Section Attributes

Modify Section TYPEScccevvvveiieereiiieeeiieeee

Represent Section Types

Reserved Section Names
Section Directives

.memory
JPOPSECHION et
PUSHSECHION......oiiiiieii e
.SECHION NAME ...oeviiiiiiii e

Section of an Expression
SECTIONS Commandccceevvririenieenieiienieenne
S=SBCUIE .ttt ettt ettt ettt sbe e e b
SECUTE 1.ttt ettt ettt ettt ne e be et be e s

S=SBCUIE .. eveeeetteeesneeeeseteeessteeesseeessseeeenreeeenes
--SeleCt-0DJECESuviiei i
SFR Addresses..................

Simple Assignments
5] V74 =@] N
Source Code ...
Source Files.....

AMAPAGE ..eeeeeeiiiieiieeetee et
€ASOffSEL ...ooiiiiiiiei e
edspage....

Stack Pointer Limit Register
Stack, LOCAING.......ccoeiiiiiiiaeaiiiiee e
==StACKQUAId ...
Standard Data Section Names..........c.ccoccvvevieennnnne 186
=-SEAM-grOUD oot
Starting Address
STARTUP ..ottt
Start-up COUEcevviieieeiiie e
Start-up Module..................
Startup Modules
Statement Format
SEANGS ULIILY .o
SHAP ULIITY ©eveeeee e
--strip-all
--strip-debug
Substitution/Expansion Directives

BNAM e 82

irp
SUBLItIE e 78,90
Symbol NameS.......coocoviiiieie e 166
Symbol Tablecccoevveee. 28, 86, 87, 90, 150, 171

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 275

16-Bit Assembler, Linker and Utilities User’s Guide

Syntax
Archiver/Librarianccocvovieviiiiicnece 234
ASSEMDIET ..o 19
LINKET .oeeeeee e 115
PIC30-bINZNEX ..o 240
PIC30-NIM .o 242
PIC30-0DjAUMP oo 245
PIC30-ranliboovviiiiiiiie 249
PIC30-StHNGS ..cvei e 250
PIC30-SHP evveiriie e 252
T
T e 123
S O TPV UPPTOPRRUP 128
Table Access INStructionsccccceveevvienienneenn 176
TARGET ...ttt 165
—target-help.....cccoi 31
tBIOFFSEL() . 49,176
tDIPAGE() oo 49,176
STISS e 123
STAALA e 124
THIE e 78
THle LiN@ v 90
SITBCE e 128
--trace-SymbOlooviiei 128
STEEXE e 124
U
L TSP T TP PTUPRRTR 124
—-undefined ... 124
UPAALE . 59
SUT s 122
User-Defined Section in Data Memory................... 146
User-Defined Section in Program Memory............. 142
ULIHIES e 231
Vv
SV e 128
SV e 31,128
Variables, LoCating.........ccoovvvveeeiiiiieeie e ciiieeee e 207
S-VEIDOSE ..ot 31,128
SVEISION ittt e e eneeea e 31,128
Virtual Memory Address.........ccccvvvvieenniineenns 150, 162
VMA e 150, 162
W
SV s 31
WIS e 188, 191
SmWAIM ot 31
=-WaIN-COMMONoviiiiiieiiiie e 128
“mWAIMNONCE ..ot e e e e e eenes 129
--warn-section-align...........ccceveviiiiee e 129
Watchdog Timer, Disablingccccocoveiiiieinieeenne 144
Weak Symbolscccvvvieiiiiiiee e 184
Web Site, MicroChipccccooveiiiiiiiie e 11
WHhItE SPACEeiiiiiii it 36
L= S N 124
X
R et 119
TR VPOV UPPTUPRRTR 119
X Memory, Creating a Modulo Buffer..................... 212

XCLB it 246, 253
XIMEIMOTY ..t eiiitte e ettt e e s e e e e 59
Y

L V2SR PP U SSPRPPPNE 128
Y Memory, Creating a Modulo Buffer.................... 213
YMEIMOIY .t e e e e e e 59
Z

2 et ee e e anaee 32

DS50002106D-page 276

© 2013-2018 Microchip Technology Inc.

MICROCHIP

Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support

Web Address:
www.microchip.com
Atlanta

Duluth, GA

Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX

Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago

Itasca, IL

Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas

Addison, TX

Tel: 972-818-7423
Fax: 972-818-2924
Detroit

Novi, MI

Tel: 248-848-4000
Houston, TX

Tel: 281-894-5983
Indianapolis
Noblesville, IN

Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY

Tel: 631-435-6000
San Jose, CA

Tel: 408-735-9110
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong

Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing

Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu

Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongging
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing

Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao

Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai

Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan

Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian

Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen

Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai

Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune

Tel: 91-20-3019-1500
Japan - Osaka

Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo

Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu

Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul

Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore

Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Taiwan - Taipei

Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan

Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice

Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw

Tel: 48-22-3325737
Spain - Madrid

Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham

Tel: 44-118-921-5800
Fax: 44-118-921-5820

06/23/16

© 2013-2018 Microchip Technology Inc.

DS50002106D-page 277

http://support.microchip.com
http://www.microchip.com

	Preface
	Part 1 – MPLAB XC16 Assembler
	Chapter 1. Assembler Overview
	1.1 Introduction
	1.2 Feature Set
	1.3 Assembler Usage
	1.4 Input/Output Files
	1.4.1 Source File
	1.4.2 Object File
	1.4.3 Listing File

	Chapter 2. Assembler Command Line Options
	2.1 Introduction
	2.2 Command-Line Syntax
	2.3 Options that Modify the Listing Output
	2.3.1 -a[suboption] [=file]
	2.3.2 --listing-lhs-width #
	2.3.3 --listing-lhs-width2 #
	2.3.4 --listing-rhs-width #
	2.3.5 --listing-cont-lines #

	2.4 Options that Control Informational Output
	2.4.1 --fatal-warnings
	2.4.2 --no-warn (-W)
	2.4.3 --warn
	2.4.4 -J
	2.4.5 --help
	2.4.6 --target-help
	2.4.7 --version
	2.4.8 --verbose (-v)

	2.5 Options that Control Output File Creation
	2.5.1 -g
	2.5.2 --keep-locals (-L)
	2.5.3 -o objfile
	2.5.4 -omf = format
	2.5.5 -R
	2.5.6 --relax
	2.5.7 --no-relax
	2.5.8 -Z
	2.5.9 -MD file

	2.6 Other Options
	2.6.1 --defsym sym=value
	2.6.2 -I dir
	2.6.3 -p, --processor=PROC

	Chapter 3. MPLAB XC16 Assembly Language
	3.1 Introduction
	3.2 Internal Preprocessor
	3.3 Source Code Format
	3.3.1 Label
	3.3.2 Mnemonic
	3.3.3 Directive
	3.3.4 Operands
	3.3.5 Arguments
	3.3.6 Comments

	3.4 Characters
	3.4.1 Delimiters
	3.4.2 Special Characters

	3.5 Constants
	3.5.1 Numeric Constants
	3.5.2 Character Constants

	3.6 Symbols
	3.6.1 Reserved Names
	3.6.2 Local Symbols
	3.6.3 Giving Symbols Other Values
	3.6.4 The Special DOT Symbol
	3.6.5 Using Executable Symbols in a Data Context
	3.6.6 Predefined Symbols

	3.7 Expressions
	3.7.1 Empty Expressions
	3.7.2 Integer Expressions

	3.8 Operators
	3.8.1 Prefix Operators
	3.8.2 Infix Operators

	3.9 Special Operators
	3.9.1 Accessing Data in Program Memory
	3.9.2 Obtaining a Program Address of a Symbol or Constant
	3.9.3 Obtaining a Handle to a Program Address
	3.9.4 Obtaining the DMA Offset of a Symbol – PIC24H/dsPIC33F Devices Only
	3.9.5 Obtaining the DMA Offset of a Symbol – PIC24EP/dsPIC33EP Devices Only
	3.9.6 Obtaining the Size of a Specific Section
	3.9.7 Obtaining the Starting Address of a Specific Section
	3.9.8 Accessing Functions in Boot or Secure Segments

	Chapter 4. Assembler Directives
	4.1 Introduction
	4.2 Directives that Define Sections
	4.2.1 .bss
	4.2.2 .data
	4.2.3 .memory name, size(nn) [, origin(aa)]
	4.2.4 .pushsection name [, attr1[,...,attrn]]
	4.2.5 .popsection
	4.2.6 .section name [, “flags”] (deprecated)
	4.2.7 .section name [, attr1[,...,attrn]]
	4.2.8 .text

	4.3 Directives that Fill Program Memory
	4.3.1 .fillupper [value]
	4.3.2 .fillvalue [value]
	4.3.3 .pfillvalue [value]
	4.3.4 Section Example

	4.4 Directives that Initialize Constants
	4.4.1 .ascii “string1” | <##>1 [, ..., “stringn” | <##>n]
	4.4.2 .pascii “string1” | <##>1 [, ..., “stringn” | <##>n]
	4.4.3 .pascii “string1”
	4.4.4 .asciz “string1” | <##>1 [, ..., “stringn” | <##>n]
	4.4.5 .pasciz “string1” | <##>1 [, ..., “stringn” | <##>n]
	4.4.6 .pasciz “string2”
	4.4.7 .byte expr1[, ..., exprn]
	4.4.8 .pbyte expr1[, ..., exprn]
	4.4.9 .double value1[, ..., valuen]
	4.4.10 .fixed value1[, ..., valuen]
	4.4.11 .float value1[, ..., valuen]
	4.4.12 .single value1[, ..., valuen]
	4.4.13 .hword expr1[, ..., exprn]
	4.4.14 .int expr1[, ..., exprn]
	4.4.15 .long expr1[, ..., exprn]
	4.4.16 .short expr1[, ..., exprn]
	4.4.17 .string “str”
	4.4.18 .pstring “str”
	4.4.19 .pstring “string2”
	4.4.20 .word expr1[, ..., exprn]
	4.4.21 .pword expr1[, ..., exprn]

	4.5 Directives that Declare Symbols
	4.5.1 .bss symbol, length [, algn]
	4.5.2 .comm symbol, length [, algn]
	4.5.3 .extern symbol
	4.5.4 .global symbol .globl symbol
	4.5.5 .lcomm symbol, length
	4.5.6 .weak symbol

	4.6 Directives that Define Symbols
	4.6.1 .equ symbol, expression
	4.6.2 .equiv symbol, expression
	4.6.3 .set symbol, expression

	4.7 Directives that Modify Section Alignment
	4.7.1 Implicit Alignment in Program Memory
	4.7.2 Explicit Section Alignment Directives
	4.7.3 .align algn[, fill[, max-skip]]
	4.7.4 .palign algn[, fill[, max-skip]]
	4.7.5 .fill repeat[, size[, fill]]
	4.7.6 .pfill repeat[, size[, fill]]
	4.7.7 .org new-lc[, fill]
	4.7.8 .porg new-lc[, fill]
	4.7.9 .skip size[, fill] .space size[, fill]
	4.7.10 .pskip size[, fill] .pspace size[, fill]
	4.7.11 .struct expression

	4.8 Directives that Format the Output Listing
	4.8.1 .eject
	4.8.2 .list
	4.8.3 .nolist
	4.8.4 .psize lines[, columns]
	4.8.5 .sbttl “subheading”
	4.8.6 .title “heading”

	4.9 Directives that Control Conditional Assembly
	4.9.1 .else
	4.9.2 .elseif expr
	4.9.3 .endif
	4.9.4 .err
	4.9.5 .error “string”
	4.9.6 .if expr
	4.9.7 .ifdecl symbol
	4.9.8 .ifndecl symbol .ifnotdecl symbol
	4.9.9 .ifdef symbol
	4.9.10 .ifndef symbol .ifnotdef symbol

	4.10 Directives for Substitution/Expansion
	4.10.1 .exitm
	4.10.2 .irp symbol, value1 [, ..., valuen]endr
	4.10.3 .irpc symbol, valueendr
	4.10.4 .macro symbol arg1[=default] [, ..., argn [=default]]endm
	4.10.5 .purgem “name”
	4.10.6 .rept countendr

	4.11 Miscellaneous Directives
	4.11.1 .abort
	4.11.2 .appline line-number .ln line-number
	4.11.3 .end
	4.11.4 .fail expression
	4.11.5 .ident “comment ”
	4.11.6 .incbin “file”[,skip[,count]]
	4.11.7 .include “file”
	4.11.8 .loc file-number, line-number
	4.11.9 .pincbin “file”[,skip[,count]]
	4.11.10 .print “string”
	4.11.11 .version “string”

	4.12 Directives for Debug Information
	4.12.1 .def name
	4.12.2 .dim
	4.12.3 .endef
	4.12.4 .file “string”
	4.12.5 .line line-number
	4.12.6 .scl class
	4.12.7 .size expression
	4.12.8 .size name, expression
	4.12.9 .sleb128 expr1 [, ..., exprn]
	4.12.10 .tag structname
	4.12.11 .type value
	4.12.12 .type name, description
	4.12.13 .uleb128 expr1[,...,exprn]
	4.12.14 .val addr

	Chapter 5. Assembler Listing File
	5.1 Introduction
	5.2 Generation
	5.3 Contents

	Chapter 6. Assembler Errors/Warnings/Messages
	6.1 Introduction
	6.2 Fatal Errors
	6.3 Errors
	6.4 Warnings
	6.5 Messages

	Part 2 – MPLAB XC16 Object Linker
	Chapter 7. Linker Overview
	7.1 Introduction
	7.2 Feature Set
	7.3 Linker Usage
	7.4 Input/Output Files
	7.4.1 Object Files
	7.4.2 Library Files
	7.4.3 Linker Script File
	7.4.4 Linker Output File
	7.4.5 Map File

	Chapter 8. Linker Command Line Options
	8.1 Introduction
	8.2 Highlights
	8.3 Syntax
	8.4 Options that Control Output File Creation
	8.4.1 --application-id=name
	8.4.2 --architecture arch (-A arch)
	8.4.3 -(archives -), --start-group archives, --end-group
	8.4.4 --coresident
	8.4.5 -d, -dc, -dp
	8.4.6 --defsym sym=expr
	8.4.7 --discard-all (-x)
	8.4.8 --discard-locals (-X)
	8.4.9 --fill=option
	8.4.10 --fill-upper value
	8.4.11 --force-exe-suffix
	8.4.12 --force-link
	8.4.13 --no-force-link
	8.4.14 --gc-sections
	8.4.15 --isr
	8.4.16 --no-isr
	8.4.17 --ivt
	8.4.18 --no-ivt
	8.4.19 -legacy-libc
	8.4.20 --library libname (-l libname)
	8.4.21 --library-path <dir> (-L <dir>)
	8.4.22 -mreserve
	8.4.23 --no-keep-memory
	8.4.24 --noinhibit-exec
	8.4.25 -omf=format
	8.4.26 --output file (-o file)
	8.4.27 --pad-flash=size
	8.4.28 --preserve=executable
	8.4.29 --preserve-all
	8.4.30 -p,--processor PROC
	8.4.31 --relocatable (-r, -i, -Ur)
	8.4.32 --reserve-const=size
	8.4.33 --retain-symbols-file file
	8.4.34 --script file (-T file)
	8.4.35 --select-objects
	8.4.36 --no-select-objects
	8.4.37 --smart-io
	8.4.38 --no-smart-io
	8.4.39 --strip-all (-s)
	8.4.40 --strip-debug (-S)
	8.4.41 -Tbss address
	8.4.42 -Tdata address
	8.4.43 -Ttext address
	8.4.44 --undefined symbol (-u symbol)
	8.4.45 --no-undefined
	8.4.46 --wrap symbol

	8.5 Options that Control Run-time Initialization
	8.5.1 --data-init
	8.5.2 --no-data-init
	8.5.3 --handles
	8.5.4 --no-handles
	8.5.5 --heap size
	8.5.6 --local-stack
	8.5.7 --no-local-stack
	8.5.8 --pack-data
	8.5.9 --no-pack-data
	8.5.10 --stack size
	8.5.11 --stackguard size

	8.6 Options that Control Informational Output
	8.6.1 --check-sections
	8.6.2 --no-check-sections
	8.6.3 --help
	8.6.4 --memory-usage
	8.6.5 --no-psrd-psrd-check
	8.6.6 --no-warn-mismatch
	8.6.7 --report-mem
	8.6.8 --trace (-t)
	8.6.9 --trace-symbol symbol (-y symbol)
	8.6.10 -V
	8.6.11 --verbose
	8.6.12 --version (-v)
	8.6.13 --warn-common
	8.6.14 --warn-once
	8.6.15 --warn-section-align

	8.7 Options that Modify the Link Map Output
	8.7.1 --cref
	8.7.2 --print-map (-M)
	8.7.3 -Map file

	8.8 Options that Specify CodeGuard™ Security Features
	8.8.1 CodeGuard Security Segment Options
	8.8.2 User-Defined Segment Options

	8.9 Options that Control the Preprocessor
	8.9.1 -D<macro>[=value]
	8.9.2 --no-cpp
	8.9.3 --save-gld

	Chapter 9. Linker Scripts
	9.1 Introduction
	9.2 Highlights
	9.3 Overview of Linker Scripts
	9.3.1 Contents
	9.3.2 File Names and Locations

	9.4 Command Line Information
	9.5 Contents of a Linker Script
	9.5.1 Processor and Startup Modules
	9.5.2 Memory Region Information
	9.5.3 Base Memory Addresses
	9.5.4 Input/Output Section Map
	9.5.5 Interrupt Vector Tables
	9.5.6 SFR Addresses

	9.6 Creating a Custom Linker Script
	9.7 Linker Script Command Language
	9.7.1 Basic Linker Script Concepts
	9.7.2 Commands Dealing with Files
	9.7.3 Assigning Values to Symbols
	9.7.4 MEMORY Command
	9.7.5 SECTIONS Command
	9.7.6 Other Linker Script Commands

	9.8 Expressions in Linker Scripts
	9.8.1 Constants
	9.8.2 Symbol Names
	9.8.3 The Location Counter
	9.8.4 Operators
	9.8.5 Evaluation
	9.8.6 The Section of an Expression
	9.8.7 Built-in Functions

	Chapter 10. Linker Processing
	10.1 Introduction
	10.2 Highlights
	10.3 Overview of Linker Processing
	10.3.1 Loading Input Files
	10.3.2 Allocating Memory
	10.3.3 Resolving Symbols
	10.3.4 Creating Special Sections
	10.3.5 Computing Absolute Addresses
	10.3.6 Building the Output File

	10.4 Memory Addressing
	10.4.1 Table Access Instructions
	10.4.2 Program Space Visibility (PSV) Window
	10.4.3 Extended Data Space (EDS) Window

	10.5 Linker Allocation
	10.5.1 Mapping Input Sections to Output Sections
	10.5.2 Assigning Output Sections to Regions
	10.5.3 Allocating Unmapped Sections

	10.6 Global and Weak Symbols
	10.7 Handles
	10.8 Initialized Data
	10.8.1 Standard Data Section Names
	10.8.2 Data Initialization Template
	10.8.3 Run-Time Library Support

	10.9 Read-only Data
	10.10 Stack Allocation
	10.11 Heap Allocation
	10.12 Interrupt Vector Tables
	10.12.1 Interrupt Handler Example
	10.12.2 Interrupt Tables Location

	10.13 Optimizing Memory Usage
	10.13.1 Gaps Between Variables of Different Types
	10.13.2 Gaps Between Aligned Variables
	10.13.3 Gaps Between Input Sections
	10.13.4 Gaps Between Output Sections

	10.14 Boot and Secure Segments
	10.14.1 Specifying the Security Model
	10.14.2 User-Defined Boot and Secure Segments
	10.14.3 Boot and Secure Segment Allocation
	10.14.4 Resolving Symbols
	10.14.5 Example of Simple Bootloader Application

	10.15 Co-resident Application Linking
	10.15.1 Associated Options
	10.15.2 Associated Attributes
	10.15.3 Co-resident Usage Restrictions

	10.16 Notable Symbols

	Chapter 11. Linker Examples
	11.1 Introduction
	11.2 Highlights
	11.3 Memory Addresses and Relocatable Code
	11.4 Locating a Variable at a Specific Address
	11.5 Locating a Function at a Specific Address
	11.6 Using More than 32K of Constants
	11.6.1 Compiler-Managed Access
	11.6.2 User-Managed Access

	11.7 Locating a Constant at a Specific Address in Program Memory
	11.8 Locating and Accessing Data in EEPROM Memory
	11.9 Creating an Incrementing Modulo Buffer in X Memory
	11.10 Creating a Decrementing Modulo Buffer in Y Memory
	11.11 Locating the Stack at a Specific Address
	11.12 Locating and Reserving Program Memory

	Chapter 12. Linker Map File
	12.1 Introduction
	12.2 Generation
	12.3 Contents

	Chapter 13. Linker Errors/Warnings
	13.1 Introduction
	13.2 Highlights
	13.3 Errors
	13.4 Warnings

	Part 3 – 16-Bit Utilities (including the Archiver/Librarian)
	Chapter 14. MPLAB XC16 Object Archiver/Librarian
	14.1 Introduction
	14.2 Highlights
	14.3 Archiver/Librarian and Other Development Tools
	14.4 Feature Set
	14.5 Input/Output Files
	14.6 Syntax
	14.7 Options
	14.8 Scripts

	Chapter 15. Other Utilities
	15.1 Introduction
	15.2 Highlights
	15.3 xc16-bin2hex Utility
	15.3.1 Introduction
	15.3.2 Highlights
	15.3.3 Input/Output Files
	15.3.4 Syntax
	15.3.5 Options

	15.4 xc16-nm Utility
	15.4.1 Introduction
	15.4.2 Highlights
	15.4.3 Input/Output Files
	15.4.4 Syntax
	15.4.5 Options
	15.4.6 Output Formats

	15.5 xc16-objdump Utility
	15.5.1 Introduction
	15.5.2 Highlights
	15.5.3 Input/Output Files
	15.5.4 Syntax
	15.5.5 Options

	15.6 xc16-ranlib Utility
	15.6.1 Introduction
	15.6.2 Highlights
	15.6.3 Input/Output Files
	15.6.4 Syntax
	15.6.5 Options

	15.7 xc16-strings Utility
	15.7.1 Introduction
	15.7.2 Highlights
	15.7.3 Input/Output Files
	15.7.4 Syntax
	15.7.5 Options

	15.8 xc16-strip Utility
	15.8.1 Introduction
	15.8.2 Highlights
	15.8.3 Input/Output Files
	15.8.4 Syntax
	15.8.5 Options

	Part 4 – Appendices
	Appendix A. Deprecated Features
	A.1 Introduction
	A.2 Highlights
	A.3 Assembler Directives that Define Sections
	A.3.1 .section name [, “flags”]

	A.4 Reserved Section Names with Implied Attributes
	A.5 Environmental Variables

	Appendix B. Useful Tables
	B.1 Introduction
	B.2 Highlights
	B.3 ASCII Character Set
	B.4 Hexadecimal to Decimal Conversion

	Appendix C. GNU Free Documentation License
	Appendix D. Document Revision History

	Index
	Worldwide Sales and Service

