In graph theory, the zig-zag product of regular graphs , denoted by
, takes a large graph (
) and a small graph (
), and produces a graph that approximately inherits the size of the large one but the degree of the small one. An important property of the zig-zag product is that if
is a good expander, then the expansion of the resulting graph is only slightly worse than the expansion of
.
Roughly speaking, the zig-zag product replaces each vertex of
with a copy (cloud) of
, and connects the vertices by moving a small step (zig) inside a cloud, followed by a big step (zag) between two clouds, and finally performs another small step inside the destination cloud.
The zigzag product was introduced by Reingold, Vadhan & Wigderson (2002). When the zig-zag product was first introduced, it was used for the explicit construction of constant degree expanders and extractors. Later on the zig-zag product was used in computational complexity theory to prove that symmetric logspace and logspace are equal (Reingold 2008).
Cuando no quiere
nomas no jala, se mueve se jala va
solo cuando se le da su regalada gana,
la suerte es una vaca gorda, gorda, gorda,
que cuando parece mover, se vuelve a echar,
aqui nadie enseña a nadie a respirar
rutina alguna, trabajo siempre busco ayuda
seguidas lineas bruscas, absolutamente rutas
que van marcandome
pausas.
Zigzagueandome voy moviendome
voy moviendome...
Zigzaguandome voy, voy, voy...
No ha cambiado sigue constante
desplazandose de lado a lado
todo se esquiva si acaso
se libra con un quiebre, quiebre
me sigues, no importa que mires
solo recuerda que y cuando lo dices
frecuencias circulares distorsionadas ondas
flexibles siempre iguales
rimando lento y suave
las ideas y las vocales
en palabras agudas y graves
van trazándome pautas.
Zigzagueandome voy moviendome
voy moviendome...