A protein domain is a conserved part of a given protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain. Each domain forms a compact three-dimensional structure and often can be independently stable and folded. Many proteins consist of several structural domains. One domain may appear in a variety of different proteins. Molecular evolution uses domains as building blocks and these may be recombined in different arrangements to create proteins with different functions. Domains vary in length from between about 25 amino acids up to 500 amino acids in length. The shortest domains such as zinc fingers are stabilized by metal ions or disulfide bridges. Domains often form functional units, such as the calcium-binding EF hand domain of calmodulin. Because they are independently stable, domains can be "swapped" by genetic engineering between one protein and another to make chimeric proteins.
The concept of the domain was first proposed in 1973 by Wetlaufer after X-ray crystallographic studies of hen lysozyme and papain and by limited proteolysis studies of immunoglobulins. Wetlaufer defined domains as stable units of protein structure that could fold autonomously. In the past domains have been described as units of:
In molecular biology, the protein domain, Ydc2 (also known as SpCce1), is a Holliday junction resolvase from the fission yeast Schizosaccharomyces pombe that is involved in the maintenance of mitochondrial DNA.
In molecular biology, the Ydc2 domains are enzymes, or in other words biological catalysts, capable of resolving Holliday junctions into separate DNA duplexes by cleaving DNA after 5'-CT-3, and 5'-TT-3, sequences.
The junction resolving enzymes are very diverse, but have the following properties in common:
Essentially, they are highly specific.
Furthermore, the cleavage efficiency is affected by:
This protein domain forms a ribonuclease H fold consisting of two beta sheets and one alpha helix, arranged as a beta-alpha-beta motif. Each beta sheet has five strands, arranged in a 32145 order, with the second strand being antiparallel to the rest.