Vertical tangent
In mathematics, particularly calculus, a vertical tangent is tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.
Limit definition
A function ƒ has a vertical tangent at x = a if the difference quotient used to define the derivative has infinite limit:
The first case corresponds to an upward-sloping vertical tangent, and the second case to a downward-sloping vertical tangent. Informally speaking, the graph of ƒ has a vertical tangent at x = a if the derivative of ƒ at a is either positive or negative infinity.
For a continuous function, it is often possible to detect a vertical tangent by taking the limit of the derivative. If
then ƒ must have an upward-sloping vertical tangent at x = a. Similarly, if
then ƒ must have a downward-sloping vertical tangent at x = a. In these situations, the vertical tangent to ƒ appears as a vertical asymptote on the graph of the derivative.