In 3-dimensional geometry, for a finite planar surface of scalar area and unit normal
, the vector area
is defined as the unit normal scaled by the area:
For an orientable surface S composed of a set of flat facet areas, the vector area of the surface is given by
where is the unit normal vector to the area
.
For bounded, oriented curved surfaces that are sufficiently well-behaved, we can still define vector area. First, we split the surface into infinitesimal elements, each of which is effectively flat. For each infinitesimal element of area, we have an area vector, also infinitesimal.
where is the local unit vector perpendicular to
. Integrating gives the vector area for the surface.
For a curved or faceted surface, the vector area is smaller in magnitude than the area. As an extreme example, a closed surface can possess arbitrarily large area, but its vector area is necessarily zero. Surfaces that share a boundary may have very different areas, but they must have the same vector area—the vector area is entirely determined by the boundary. These are consequences of Stokes theorem.
ÂÎÉÍÀ
1 Êóïëåò
È ñíîâà ñîëíöà çàêàò ÿ âèæó ïåðåä ñîáîé,
è íå îðåò íàø êîìáàò è íå çîâåò èäòè â áîé.
ß âûðåçàþ íîæîì íà äåðåâÿííîì áðóñêå èìÿ òâîå.
Ìû ñ ïàöàíàìè ñèäèì íà ðûõëîé ÷åðíîé çåìëå
è âñïîìèíàåì äðóçåé, ïàâøèõ íà ýòîé âîéíå,
è äóìàåì îá îäíîì, ÷òî ó êîãî-òî èç íàñ áóäåò ïóëÿ â âèñêå.
Ïðèïåâ
Âîéíà - áåcêîíå÷íàÿ ñòðåëüáà íàä ãîëîâîé,
è ëåæèò â ñûðîé çåìëå òîâàðèù ìîé.
àëèñìàí ñæèìàþ êðåïêî ÿ â ðóêå, òèõî ïëà÷à ïðè ëóíå.
2 Êóïëåò
Ïèøó òåáå ÿ, ïîéìè, ÷òî íåò ìîåé çäåñü âèíû,
÷òî íåò íàçàä ìíå ïóòè, ÿ ñàì õîòåë áû óéòè,
è ÿ ïðîøó îá îäíîì, î ñàìîì äîðîãîì:
ëþáîâü ìîþ ñîõðàíè.
Íàì ïðåäñòîèò çàâòðà áîé, ñåðüåçíûé è ðîêîâîé,
è áóäåò âíîâü íàøà êðîâü ïðîëèâàòüñÿ ðåêîé,
à åñëè ïåðåæèâó, òî îæèäàåò ìåíÿ äîðîãà äîìîé.