Simultaneous localization and mapping

In robotic mapping, simultaneous localization and mapping (SLAM) is the computational problem of constructing or updating a map of an unknown environment while simultaneously keeping track of an agent's location within it. While this initially appears to be a chicken-and-egg problem there are several algorithms known for solving it, at least approximately, in tractable time for certain environments. Popular approximate solution methods include the particle filter and extended Kalman filter.

SLAM algorithms are tailored to the available resources, hence not aimed at perfection, but at operational compliance. Published approaches are employed in self-driving cars, unmanned aerial vehicles, autonomous underwater vehicles, planetary rovers, newly emerging domestic robots and even inside the human body.

Problem definition

Given a series of sensor observations o_t over discrete time steps t, the SLAM problem is to compute an estimate of the agent's location x_t and a map of the environment m_t. All quantities are usually probabilistic, so the objective is to compute:

Podcasts:

PLAYLIST TIME:
×