Trigonometry (from Greek trigōnon "triangle" + metron "measure"[1]) is a branch of mathematics that studies triangles and the relationships between their sides and the angles between these sides. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves. The field evolved during the third century BC as a branch of geometry used extensively for astronomical studies.[2] It is also the foundation of the practical art of surveying.
Trigonometry basics are often taught in school either as a separate course or as part of a precalculus course. The trigonometric functions are pervasive in parts of pure mathematics and applied mathematics such as Fourier analysis and the wave equation, which are in turn essential to many branches of science and technology. Spherical trigonometry studies triangles on spheres, surfaces of constant positive curvature, in elliptic geometry. It is fundamental to astronomy and navigation. Trigonometry on surfaces of negative curvature is part of Hyperbolic geometry.
Contents |
Sumerian astronomers introduced angle measure, using a division of circles into 360 degrees.[4] They and their successors the Babylonians studied the ratios of the sides of similar triangles and discovered some properties of these ratios, but did not turn that into a systematic method for finding sides and angles of triangles. The ancient Nubians used a similar methodology.[5] The ancient Greeks transformed trigonometry into an ordered science.[6]
Classical Greek mathematicians (such as Euclid and Archimedes) studied the properties of chords and inscribed angles in circles, and proved theorems that are equivalent to modern trigonometric formulae, although they presented them geometrically rather than algebraically. Claudius Ptolemy expanded upon Hipparchus' Chords in a Circle in his Almagest.[7] The modern sine function was first defined in the Surya Siddhanta, and its properties were further documented by the 5th century Indian mathematician and astronomer Aryabhata.[8] These Greek and Indian works were translated and expanded by medieval Islamic mathematicians. By the 10th century, Islamic mathematicians were using all six trigonometric functions, had tabulated their values, and were applying them to problems in spherical geometry.[citation needed] At about the same time, Chinese mathematicians developed trigonometry independently, although it was not a major field of study for them. Knowledge of trigonometric functions and methods reached Europe via Latin translations of the works of Persian and Arabic astronomers such as Al Battani and Nasir al-Din al-Tusi.[9] One of the earliest works on trigonometry by a European mathematician is De Triangulis by the 15th century German mathematician Regiomontanus. Trigonometry was still so little known in 16th century Europe that Nicolaus Copernicus devoted two chapters of De revolutionibus orbium coelestium to explaining its basic concepts.
Driven by the demands of navigation and the growing need for accurate maps of large areas, trigonometry grew to be a major branch of mathematics.[10] Bartholomaeus Pitiscus was the first to use the word, publishing his Trigonometria in 1595.[11] Gemma Frisius described for the first time the method of triangulation still used today in surveying. It was Leonhard Euler who fully incorporated complex numbers into trigonometry. The works of James Gregory in the 17th century and Colin Maclaurin in the 18th century were influential in the development of trigonometric series.[12] Also in the 18th century, Brook Taylor defined the general Taylor series.[13]
If one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a triangle is completely determined, except for similarity, by the angles. Once the angles are known, the ratios of the sides are determined, regardless of the overall size of the triangle. If the length of one of the sides is known, the other two are determined. These ratios are given by the following trigonometric functions of the known angle A, where a, b and c refer to the lengths of the sides in the accompanying figure:
The hypotenuse is the side opposite to the 90 degree angle in a right triangle; it is the longest side of the triangle, and one of the two sides adjacent to angle A. The adjacent leg is the other side that is adjacent to angle A. The opposite side is the side that is opposite to angle A. The terms perpendicular and base are sometimes used for the opposite and adjacent sides respectively. Many English speakers find it easy to remember what sides of the right triangle are equal to sine, cosine, or tangent, by memorizing the word SOH-CAH-TOA (see below under Mnemonics).
The reciprocals of these functions are named the cosecant (csc or cosec), secant (sec), and cotangent (cot), respectively:
The inverse functions are called the arcsine, arccosine, and arctangent, respectively. There are arithmetic relations between these functions, which are known as trigonometric identities. The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to "co-".
With these functions one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. These laws can be used to compute the remaining angles and sides of any triangle as soon as two sides and their included angle or two angles and a side or three sides are known. These laws are useful in all branches of geometry, since every polygon may be described as a finite combination of triangles.
The above definitions apply to angles between 0 and 90 degrees (0 and π/2 radians) only. Using the unit circle, one can extend them to all positive and negative arguments (see trigonometric function). The trigonometric functions are periodic, with a period of 360 degrees or 2π radians. That means their values repeat at those intervals. The tangent and cotangent functions also have a shorter period, of 180 degrees or π radians.
The trigonometric functions can be defined in other ways besides the geometrical definitions above, using tools from calculus and infinite series. With these definitions the trigonometric functions can be defined for complex numbers. The complex exponential function is particularly useful.
See Euler's and De Moivre's formulas.
A common use of mnemonics is to remember facts and relationships in trigonometry. For example, the sine, cosine, and tangent ratios in a right triangle can be remembered by representing them as strings of letters. For instance, a mnemonic for English speakers is SOH-CAH-TOA:
One way to remember the letters is to sound them out phonetically (i.e. "SOH-CAH-TOA", which is pronounced 'so-kə-tow'-uh').[14] Another method is to expand the letters into a sentence, such as "Some Old Hippy Caught Another Hippy Trippin' On Acid".[15] or "Some Old Houses, Can't Always Hide, Their Old Age"
Trigonometric functions were among the earliest uses for mathematical tables. Such tables were incorporated into mathematics textbooks and students were taught to look up values and how to interpolate between the values listed to get higher accuracy. Slide rules had special scales for trigonometric functions.
Today scientific calculators have buttons for calculating the main trigonometric functions (sin, cos, tan and sometimes cis) and their inverses. Most allow a choice of angle measurement methods: degrees, radians and, sometimes, grad.[citation needed] Most computer programming languages provide function libraries that include the trigonometric functions. The floating point unit hardware incorporated into the microprocessor chips used in most personal computers have built-in instructions for calculating trigonometric functions.[citation needed]
There are an enormous number of uses of trigonometry and trigonometric functions. For instance, the technique of triangulation is used in astronomy to measure the distance to nearby stars, in geography to measure distances between landmarks, and in satellite navigation systems. The sine and cosine functions are fundamental to the theory of periodic functions such as those that describe sound and light waves.
Fields that use trigonometry or trigonometric functions include astronomy (especially for locating apparent positions of celestial objects, in which spherical trigonometry is essential) and hence navigation (on the oceans, in aircraft, and in space), music theory, acoustics, optics, analysis of financial markets, electronics, probability theory, statistics, biology, medical imaging (CAT scans and ultrasound), pharmacy, chemistry, number theory (and hence cryptology), seismology, meteorology, oceanography, many physical sciences, land surveying and geodesy, architecture, phonetics, economics, electrical engineering, mechanical engineering, civil engineering, computer graphics, cartography, crystallography and game development.
Identities are those equations that hold true for any value.
Certain equations involving trigonometric functions are true for all angles and are known as trigonometric identities. Some identities equate an expression to a different expression involving the same angles. These are listed in List of trigonometric identities. Triangle identities that relate the sides and angles of a given triangle are listed below.
In the following identities, A, B and C are the angles of a triangle and a, b and c are the lengths of sides of the triangle opposite the respective angles.
The law of sines (also known as the "sine rule") for an arbitrary triangle states:
where R is the radius of the circumscribed circle of the triangle:
Another law involving sines can be used to calculate the area of a triangle. Given two sides and the angle between the sides, the area of the triangle is:
The law of cosines (known as the cosine formula, or the "cos rule") is an extension of the Pythagorean theorem to arbitrary triangles:
or equivalently:
The law of tangents:
Euler's formula, which states that Failed to parse (Missing texvc executable; please see math/README to configure.): e^{ix} = \cos x + i \sin x , produces the following analytical identities for sine, cosine, and tangent in terms of e and the imaginary unit i:
Find more about Trigonometry on Wikipedia's sister projects: | |
![]() |
Definitions and translations from Wiktionary |
![]() |
Images and media from Commons |
![]() |
Learning resources from Wikiversity |
![]() |
News stories from Wikinews |
![]() |
Quotations from Wikiquote |
![]() |
Source texts from Wikisource |
![]() |
Textbooks from Wikibooks |
Trigonometry is the second album by Saafir, under the alias Mr. No No. It was released on January 20, 1998, on Wrap Records and featured production from Saafir and Shock G.
I'm Saafir, the Saucee Nomad [x5]
All day, all day, ery day, always
I'm Saafir, the Saucee Nomad [x2]
Out the side of the beat I slides out the gate like Snake Pliskin
with, heat fuming got more sauce than, Paul Newman
I'm the shit I'll make you bowel, movement
Runnin through em without the celery
Never embraced when thinkin cleverly is a felony
Hey hey, hey-hey hey, I got an A A-A in mixing elixirs
Remedies putting you under the laughing gas, like a dentist
If you seek I got prescriptions that work in three minutes
and some change, here's your receipt, here's your re-ce-ee-hee-pt
I keep saying that al-lee-hee, couldn't help me from these
em-cee-ee-hees, that keep saying wack rhizymes to enzymes
I regurgitate and reverse your fallopian tube growth, rate
You so fake you belong with a strong ass-whooping
I got your ass cooking, ho ho ho like turkey beefy bacon
is what you're feelin, just a professional opinion from the doc-torrr
You don't believe me then, let's take tests test me
Please do so so I can have ya, full Stranded at Sea like Caruso
Have you lookin over The Aftermath like Dr. Dre
Me make a mill-ion, lambingas they say
I'm Saafir, the Saucee Nomad [x4]
Ery day, all day, all day, always
I'm Saafir, the Saucee Nomad [x4]
I'm the type of ninja that'll laugh, then blast your ass
then pass the bomb that'll fuck with my concious a little but I'll stay calm
in it, armed, I'm all about self-preservation in a fighting stance
Always ready to get down then run up in your ass like ants
But I'd rather pull plants by the root and get, smoked
with my crew makin greenery, and scenery the vision of a landscape is
with a handful of papers, get the papers
with the President faces on the front, with the eagle grabbin arrows
and the pyramid, and the owl that shrunk, huh dollar bill y'all
It's amazing how you keep paper grazing my palms and I make it stick
like a magnet like a magnum never stagnant when I'm stickin it
Movin keep my motion, all blurred most likely, a visuallusion
I have you on the search for attachment, but not to focus
Have you won a contest as a finalist, on whose the brokest?
Flows stay saturated and drenched, I've never had to soak it
I'm the wrong breed to fuck with, I'm mixed with Grinch and locust
hocus motherfuckin pocus, say what?
I'm Saafir, the Saucee Nomad [x4]
I'm Saafir everyday all day always
Psssssh, nigga please while you countin sheep it's Z's
I be countin cheese curin that, wack rap disease
Me and Doctor Dot Blocker on the off switch leavin
your highbeams frost-bit, with overdose
Homo songs don't swing on the long, microphones
and if you're rich I'll send that doc-torrr to your mansion
while I'm, rock shit like avalanches
Makin your broad do dirty dances
You takin chances with them sleepin pills
Cause that's what got your conciousness
That's why I'm droppin this, don't sleep...
I'm Saafir, the Saucee Nomad [x5]
I'm Saafir, all day ery day, always
I'm Saafir, the Saucee Nomad
In here... (I'm Saafir) ...with the Porch Monkeys
(I'm Saafir) Bananas, Knuckles (I'm Saafir)
Bringin it to you (I'm Saafir)
One love to Mr. No No, for lettin me come on this track
and rip it for my poleops, that's it, hip-hop junkies and Porch Monkey