A top is a toy designed to be spun rapidly on the ground, the motion of which causes it to remain precisely balanced on its tip because of inertia. Such toys have existed since antiquity. Traditionally tops were constructed of wood, sometimes with an iron tip, and would be set in motion by aid of a string or rope coiled around its axis which, when pulled quickly, caused a rapid unwinding that would set the top in motion. Today they are often built of plastic, and modern materials and manufacturing processes allow tops to be constructed with such precise balance that they can be set in motion by a simple twist of the fingers and twirl of the wrist without need for string or rope.
The motion of a top is produced in the most simple forms by twirling the stem using the fingers. More sophisticated tops are spun by holding the axis firmly while pulling a string or twisting a stick or pushing an auger. In the kinds with an auger, an internal weight rotates, producing an overall circular motion. Some tops can be thrown, while firmly grasping a string that had been tightly wound around the stem, and the centrifugal force generated by the unwinding motion of the string will set them spinning upon touching ground.
A top is clothing that covers at least the chest, but which usually covers most of the upper human body between the neck and the waistline. The bottom of tops can be as short as mid-torso, or as long as mid-thigh. Men's tops are generally paired with pants, and women's with pants or skirts. Common types of tops are t-shirts, blouses and shirts.
The neckline is the highest line of the top, and may be as high as a head-covering hood, or as low as the waistline or bottom hem of the top. A top may be worn loose or tight around the bust or waist, and may have sleeves or shoulder straps, spaghetti straps (noodle straps), or may be strapless. The back may be covered or bare. Tops may have straps around the waist or neck, or over the shoulders.
In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps or some other variant; for example, objects are often assumed to be compactly generated. This is a category because the composition of two continuous maps is again continuous. The study of Top and of properties of topological spaces using the techniques of category theory is known as categorical topology.
N.B. Some authors use the name Top for the category with topological manifolds as objects and continuous maps as morphisms.
Like many categories, the category Top is a concrete category (also known as a construct), meaning its objects are sets with additional structure (i.e. topologies) and its morphisms are functions preserving this structure. There is a natural forgetful functor
to the category of sets which assigns to each topological space the underlying set and to each continuous map the underlying function.
This article is a collection of Numismatic and coin collecting terms with concise explanation for the beginner or professional.
Numismatics (ancient Greek: νομισματική) is the scientific study of money and its history in all its varied forms. While numismatists are often characterized as studying coins, the discipline also includes the study of banknotes, stock certificates, medals, medallions, and tokens (also referred to as Exonumia).
Sub-fields or related fields of numismatics are:
In mathematics, logic, and computer science, a type theory is any of a class of formal systems, some of which can serve as alternatives to set theory as a foundation for all mathematics. In type theory, every "term" has a "type" and operations are restricted to terms of a certain type.
Type theory is closely related to (and in some cases overlaps with) type systems, which are a programming language feature used to reduce bugs. The types of type theory were created to avoid paradoxes in a variety of formal logics and rewrite systems and sometimes "type theory" is used to refer to this broader application.
Two well-known type theories that can serve as mathematical foundations are Alonzo Church's typed λ-calculus and Per Martin-Löf's intuitionistic type theory.
The types of type theory were invented by Bertrand Russell in response to his discovery that Gottlob Frege's version of naive set theory was afflicted with Russell's paradox. This theory of types features prominently in Whitehead and Russell's Principia Mathematica. It avoids Russell's paradox by first creating a hierarchy of types, then assigning each mathematical (and possibly other) entity to a type. Objects of a given type are built exclusively from objects of preceding types (those lower in the hierarchy), thus preventing loops.
Type 34 may refer to: