The kilogram or kilogramme (SI unit symbol: kg), is the base unit of mass in the International System of Units (SI) (the Metric system) and is defined as being equal to the mass of the International Prototype of the Kilogram (IPK, also known as "La Grande K" or "Big K").
The gram, 1/1000th of a kilogram, was originally defined in 1795 as the mass of one cubic centimeter of water at the melting point of water. The original prototype kilogram, manufactured in 1799 and from which the IPK is derived, had a mass equal to the mass of 1.000028 dm3 of water at its maximum density at approximately 4 °C.
The kilogram is the only SI base unit with an SI prefix ("kilo", symbol "k") as part of its name. It is also the only SI unit that is still directly defined by an artifact rather than a fundamental physical property that can be reproduced in different laboratories. Three other base units (Cd, A, mol) and 17 derived units (N, Pa, J, W, C, V, F, Ω, S, Wb, T, H, kat, Gy, Sv, lm, lx) in the SI system are defined relative to the kilogram, so its stability is important. Only 8 other units do not require the kilogram in their definition: temperature (K, °C), time and frequency (s, Hz, Bq), length (m), and angle (rad, sr).
Teragram may refer to:
To help compare different orders of magnitude, the following lists describe various mass levels between 10−40 kg and 1053 kg.
The table below is based on the kilogram (kg), the base unit of mass in the International System of Units (SI). The kilogram is the only standard unit to include an SI prefix (kilo-) as part of its name. The gram (10−3 kg) is an SI derived unit of mass. However, the names of all SI mass units are based on gram, rather than on kilogram; thus 103 kg is a megagram (106 g), not a "kilokilogram".
The tonne (t) is a SI-compatible unit of mass equal to a megagram, or 103 kg. The unit is in common use for masses above about 103 kg and is often used with SI prefixes.
Other units of mass are also in use. Historical units include the stone, the pound, the carat, and the grain.
For subatomic particles, physicists use the mass equivalent to the energy represented by an electronvolt (eV). At the atomic level, chemists use the mass of one-twelfth of a carbon-12 atom (the dalton). Astronomers use the mass of the sun (M☉).
Got A Place We Can Go
Lights Are Low
Let Me Show You To My Darkroom
Came A Come Along With Me To My Darkroom
Come A Come Along With Me To My Darkroom
Come A Come Along With Me To My Darkroom
Come A Come Along With Me To My Darkroom
Come A Come A Come A Come A Come A
Come A Come A Come A Come A Come A
Got A Place We Can Go
Lighting Low
Let Me Show You To My Darkroom
Come A Come Along With Me To My Darkroom
Got A Place
Come A Come Along With Me To My Darkroom
We Can Go
Got A Place We Can Go
Lighting Low
Let Me Show You To My Darkroom
Come A Come Along With Me To My Darkroom