Angular momentum
In physics, angular momentum (less often moment of momentum or rotational momentum) is a physical quantity corresponding to the amount of rotational motion of an object, taking into account how fast a distribution of mass rotates about some axis. It is the rotational analog of linear momentum. For example, a conker twirling around on a short chord has a lower angular momentum compared to twirling a large heavy sledgehammer at high speed. For a conker of a given mass, increasing the length of chord and angular speed of twirling increases the angular momentum of the conker, and for a fixed angular speed and length, a heavier conker has a larger angular momentum than the lighter conker. In principle, the conker and sledgehammer could have the same angular momentum, despite the differences in their masses and sizes.
Symbolically, angular momentum it is denoted L, J, or S, each used in different contexts. The definition of angular momentum for a point particle is a pseudovector, L = r×p, the cross product of the particle's position vector r (relative to some origin) and its momentum vector p = mv. This definition can be applied to each point in continua like solids or fluids, or physical fields. Unlike momentum, angular momentum does depend on where the origin is chosen, since the particle's position is measured from it. The angular momentum of an object can also be connected to the angular velocity ω of the object (how fast it rotates about an axis) via the moment of inertia I (which depends on the shape and distribution of mass about the axis of rotation). However, while ω always points in the direction of the rotation axis, the angular momentum L may point in a different direction depending on how the mass is distributed.