A single-domain antibody (sdAb, called Nanobody by Ablynx, the developer[1]) is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, it is able to bind selectively to a specific antigen. With a molecular weight of only 12–15 kDa, single-domain antibodies are much smaller than common antibodies (150–160 kDa) which are composed of two heavy protein chains and two light chains, and even smaller than Fab fragments (~50 kDa, one light chain and half a heavy chain) and single-chain variable fragments (~25 kDa, two variable domains, one from a light and one from a heavy chain).[2]
The first single-domain antibodies were engineered from heavy-chain antibodies found in camelids; these are called VHH fragments. Cartilaginous fishes also have heavy-chain antibodies (IgNAR, 'immunoglobulin new antigen receptor'), from which single-domain antibodies called VNAR fragments can be obtained. An alternative approach is to split the dimeric variable domains from common immunoglobulin G (IgG) from humans or mice into monomers. Although most research into single-domain antibodies is currently based on heavy chain variable domains, nanobodies derived from light chains have also been shown to bind specifically to target epitopes.[3]
Single-domain antibodies are being researched for multiple pharmaceutical applications and have potential for use in the treatment of acute coronary syndrome, cancer and Alzheimer's disease.[4][5]
Contents |
A single-domain antibody is a peptide chain of about 110 amino acids long, comprising one variable domain (VH) of a heavy-chain antibody, or of a common IgG. These peptides have similar affinity to antigens as whole antibodies, but are more heat-resistant and stable towards detergents and high concentrations of urea. Those derived from camelid and fish antibodies are less lipophilic and better soluble in water, owing to their complementarity determining region 3 (CDR3), which forms an extended loop (coloured orange in the ribbon diagram above) covering the lipophilic site that normally binds to a light chain.[6][7] In contrast to common antibodies, two out of six single-domain antibodies survived a temperature of 90 °C (194 °F) without losing their ability to bind antigens in a 1999 study.[8] Stability towards gastric acid and proteases depends on the amino acid sequence. Some species have been shown to be active in the intestine after oral application,[9][10] but their low absorption from the gut impedes the development of systemically active single-domain antibodies.
The comparatively low molecular mass leads to a better permeability in tissues, and to a short plasma half-life since they are eliminated renally.[2] Unlike whole antibodies, they do not show complement system triggered cytotoxicity because they lack an Fc region. Camelid and fish derived sdAbs are able to bind to hidden antigens that are not accessible to whole antibodies, for example to the active sites of enzymes. This property has been shown to result from their extended CDR3 loop, which is able to penetrate such sites.[7][11]
A single-domain antibody can be obtained by immunization of dromedaries, camels, llamas, alpacas or sharks with the desired antigen and subsequent isolation of the mRNA coding for heavy-chain antibodies. By reverse transcription and polymerase chain reaction, a gene library of single-domain antibodies containing several million clones is produced. Screening techniques like phage display and ribosome display help to identify the clones binding the antigen.[12]
A different method uses gene libraries from animals that have not been immunized beforehand. Such naïve libraries usually contain only antibodies with low affinity to the desired antigen, making it necessary to apply affinity maturation by random mutagenesis as an additional step.[13]
When the most potent clones have been identified, their DNA sequence is optimized, for example to improve their stability towards enzymes. Another goal is humanization to prevent immunological reactions of the human organism against the antibody. Humanization is unproblematic because of the homology between camelid VHH and human VH fragments.[13] The final step is the translation of the optimised single-domain antibody in E. coli, Saccharomyces cerevisiae or other suitable organisms.
Alternatively, single-domain antibodies can be made from common murine or human IgG with four chains.[14] The process is similar, comprising gene libraries from immunized or naïve donors and display techniques for identification of the most specific antigens. A problem with this approach is that the binding region of common IgG consists of two domains (VH and VL), which tend to dimerize or aggregate because of their lipophilicity. Monomerization is usually accomplished by replacing lipophilic by hydrophilic amino acids, but often results in a loss of affinity to the antigen.[15] If affinity can be retained, the single-domain antibodies can likewise be produced in E. coli, S. cerevisiae or other organisms.
Orally available single-domain antibodies against E. coli-induced diarrhoea in piglets have been developed and successfully tested.[10] Other diseases of the gastrointestinal tract, such as inflammatory bowel disease and colon cancer, are also possible targets for orally available sdAbs.[16]
Detergent stable species targeting a surface protein of Malassezia furfur have been engineered for the use in anti-dandruff shampoos.[6]
ALX-0081, a single-domain antibody targeting von Willebrand factor is in clinical trials for the prevention of thrombosis in patients with acute coronary syndrome.[17] A Phase II study examining ALX-0081 in high risk percutaneous coronary intervention has started in September 2009.[18]
Ablynx expects that their Nanobodies might cross the blood–brain barrier and permeate into large solid tumours more easily than whole antibodies, which would allow for the development of drugs against brain cancers.[16]
|
Single domain can refer to:
Single domain, in magnetism, refers to the state of a ferromagnet in which the magnetization does not vary across the magnet. A magnetic particle that stays in a single domain state for all magnetic fields is called a single domain particle (but other definitions are possible; see below). Such particles are very small (generally below a micrometre in diameter). They are also very important in a lot of applications because they have a high coercivity. They are the main source of hardness in hard magnets, the carriers of magnetic storage in tape drives, and the best recorders of the ancient Earth's magnetic field (see paleomagnetism).
Early theories of magnetization in ferromagnets assumed that ferromagnets are divided into magnetic domains and that the magnetization changed by the movement of domain walls. However, as early as 1930, Frenkel and Dorfman predicted that sufficiently small particles could only hold one domain, although they greatly overestimated the upper size limit for such particles. The possibility of single domain particles received little attention until two developments in the late 1940s: (1) Improved calculations of the upper size limit by Kittel and Néel, and (2) a calculation of the magnetization curves for systems of single-domain particles by Stoner and Wohlfarth. The Stoner–Wohlfarth model has been enormously influential in subsequent work and is still frequently cited.