Reflexive relation
In mathematics, a reflexive relation is a binary relation on a set for which every element is related to itself. In other words, a relation ~ on a set S is reflexive when x ~ x holds true for every x in S, formally: when ∀x∈S: x~x holds. An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity.
Related terms
A relation that is irreflexive, or anti-reflexive, is a binary relation on a set where no element is related to itself. An example is the "greater than" relation (x>y) on the real numbers. Note that not every relation which is not reflexive is irreflexive; it is possible to define relations where some elements are related to themselves but others are not (i.e., neither all nor none are). For example, the binary relation "the product of x and y is even" is reflexive on the set of even numbers, irreflexive on the set of odd numbers, and neither reflexive nor irreflexive on the set of natural numbers.