Random matrix
In probability theory and mathematical physics, a random matrix (sometimes stochastic matrix) is a matrix-valued random variable—that is, a matrix some or all of whose elements are random variables. Many important properties of physical systems can be represented mathematically as matrix problems. For example, the thermal conductivity of a lattice can be computed from the dynamical matrix of the particle-particle interactions within the lattice.
Applications
Physics
In nuclear physics, random matrices were introduced by Eugene Wigner to model the spectra of heavy atoms. He postulated that the spacings between the lines in the spectrum of a heavy atom should resemble the spacings between the eigenvalues of a random matrix, and should depend only on the symmetry class of the underlying evolution. In solid-state physics, random matrices model the behaviour of large disordered Hamiltonians in the mean field approximation.
In quantum chaos, the Bohigas–Giannoni–Schmit (BGS) conjecture asserts that the spectral statistics of quantum systems whose classical counterparts exhibit chaotic behaviour are described by random matrix theory.