RNase MRP (also called RMRP) is an enzymatically active ribonucleoprotein with two distinct roles in eukaryotes. RNAse MRP stands for RNAse for mitochondrial RNA processing. In mitochondria it plays a direct role in the initiation of mitochondrial DNA replication. In the nucleus it is involved in precursor rRNA processing, where it cleaves the internal transcribed spacer 1 between 18S and 5.8S rRNAs. Despite distinct functions, RNase MRP has been shown to be evolutionarily related to RNase P. Like eukaryotic RNase P, RNase MRP is not catalytically active without associated protein subunits.
Mutations in the RNA component of RNase MRP cause cartilage-hair hypoplasia, a pleiotropic human disease. Responsible for this disease is a mutation in the RNase MRP RNA gene (RMRP), a non-coding RNA gene. RMRP was the first non-coding nuclear RNA gene found to cause disease.
Multidrug resistance-associated protein 1 is a protein that in humans is encoded by the ABCC1 gene.
The protein encoded by this gene is a member of the superfamily of ATP-binding cassette (ABC) transporters. ABC proteins transport various molecules across extra-and intra-cellular membranes. ABC genes are divided into seven distinct subfamilies (ABC1, MDR/TAP, MRP, ALD, OABP, GCN20, White). This full transporter is a member of the MRP subfamily which is involved in multi-drug resistance. This protein functions as a multispecific organic anion transporter, with oxidized glutathione, cysteinyl leukotrienes, and activated aflatoxin B1 as substrates. This protein also transports glucuronides and sulfate conjugates of steroid hormones and bile salts. Alternative splicing by exon deletion results in several splice variants but maintains the original open reading frame in all forms.
Click on genes, proteins and metabolites below to link to respective articles.
|{{{bSize}}}px|alt=Irinotecan Pathway edit]]
MRP2 may refer to:
CD9 antigen is a protein that in humans is encoded by the CD9 gene.
The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the tetraspanin family. Most of these members are cell-surface proteins that are characterized by the presence of four hydrophobic domains. The proteins mediate signal transduction events that play a role in the regulation of cell development, activation, growth and motility.
CD9 is a cell surface glycoprotein that is known to complex with integrins and other transmembrane 4 superfamily proteins. It is found on the surface of exosomes. It can modulate cell adhesion and migration and also trigger platelet activation and aggregation. In addition, the protein appears to promote muscle cell fusion and support myotube maintenance. This protein also seems to be a key part in the egg-sperm fusion during mammalian fertilization. While oocytes are ovulated, CD9-deficient oocytes are not properly fused with sperm upon fertilization. CD9 is located in the microvillar membrane of the oocytes and also appears to intervene in maintaining the normal shape of oocyte microvilli.