In mathematics, a sheaf is a tool for systematically tracking locally defined data attached to the open sets of a topological space. The data can be restricted to smaller open sets, and the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original one. For example, such data can consist of the rings of continuous or smooth real-valued functions defined on each open set. Sheaves are by design quite general and abstract objects, and their correct definition is rather technical. They exist in several varieties such as sheaves of sets or sheaves of rings, depending on the type of data assigned to open sets.
There are also maps (or morphisms) from one sheaf to another; sheaves (of a specific type, such as sheaves of abelian groups) with their morphisms on a fixed topological space form a category. On the other hand, to each continuous map there is associated both a direct image functor, taking sheaves and their morphisms on the domain to sheaves and morphisms on the codomain, and an inverse image functor operating in the opposite direction. These functors, and certain variants of them, are essential parts of sheaf theory.
In category theory, a branch of mathematics, a presheaf on a category is a functor
. If
is the poset of open sets in a topological space, interpreted as a category, then one recovers the usual notion of presheaf on a topological space.
A morphism of presheaves is defined to be a natural transformation of functors. This makes the collection of all presheaves into a category, and is an example of a functor category. It is often written as . A functor into
is sometimes called a profunctor.
A presheaf that is naturally isomorphic to the contravariant hom-functor Hom(–,A) for some object A of C is called a representable presheaf.
Some authors refer to a functor as a
-valued presheaf.