Pre-preg is a term for "pre-impregnated" composite fibers where a matrix material, such as epoxy, is already present. The fibers often take the form of a weave and the matrix is used to bond them together and to other components during manufacture. The matrix is only partially cured to allow easy handling; this is called B-Stage material and requires cold storage to prevent complete curing. B-Stage pre-preg is always stored in cooled areas since heat accelerates complete polymerization. Hence, composite structures built of pre-pregs will mostly require an oven or autoclave to cure.
There are several advantages and disadvantages of the B-Stage pre-preg process in comparison to the hot injection process. Pre-preg allows one to impregnate the fibers on a flat workable surface, or rather in an industrial process, and then later form the impregnated fibers to a shape which could prove to be problematic for the hot injection process. Pre-preg also allows one to impregnate a bulk amount of fiber and then store it in a cooled area for an extended period of time to cure later. Unfortunately the process can also be time consuming in comparison to the hot injection process and the added value for pre-preg preparation is at the stage of the material supplier.
Carbon-fiber–reinforced polymer, carbon-fiber–reinforced plastic or carbon-fiber–reinforced thermoplastic (CFRP, CRP, CFRTP or often simply carbon fiber, or even carbon), is an extremely strong and light fiber-reinforced plastic which contains carbon fibers. The spelling 'fibre' is common in British Commonwealth countries.
CFRPs can be expensive to produce but are commonly used wherever high strength-to-weight ratio and rigidity are required, such as aerospace, automotive and civil engineering, sports goods and an increasing number of other consumer and technical applications.
The binding polymer is often a thermoset resin such as epoxy, but other thermoset or thermoplastic polymers, such as polyester, vinyl ester or nylon, are sometimes used. The composite may contain other fibers, such as an aramid (e.g. Kevlar, Twaron), aluminium, ultra-high-molecular-weight polyethylene (UHMWPE) or glass fibers, as well as carbon fiber. The properties of the final CFRP product can also be affected by the type of additives introduced to the binding matrix (the resin). The most frequent additive is silica, but other additives such as rubber and carbon nanotubes can be used. The material is also referred to as graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common, as it clashes with glass-(fiber)-reinforced polymer). In product advertisements, it is sometimes referred to simply as graphite fiber for short.