Polaron
The energy spectrum of an electron moving in a periodical potential of rigid crystal lattice consists of allowed and forbidden bands and is known as the Bloch spectrum. An electron with energy inside an allowed band moves as a free electron but has an effective mass that differs from the electron mass in vacuum. However, a crystal lattice is deformable and displacements of atoms (ions) from their equilibrium positions are described in terms of phonons. Electrons interact with these displacements, and this interaction is known as electron-phonon coupling. One of possible scenarios was proposed in the seminal 1933 paper by Lev Landau, which includes the production of a lattice defect such as an F-center and a trapping of the electron by this defect. A different scenario was proposed by Solomon Pekar that envisions dressing the electron with lattice deformation (a cloud of virtual phonons). Such an electron with the accompanying deformation moves freely across the crystal, but with increased effective mass. Pekar coined for this charge carrier the term polaron.