In physics, the Planck length, denoted ℓP, is a unit of length, equal to 6965161619900000000♠1.616199(97)×10−35 metres. It is a base unit in the system of Planck units, developed by physicist Max Planck. The Planck length can be defined from three fundamental physical constants: the speed of light in a vacuum, the Planck constant, and the gravitational constant.
The Planck length ℓP is defined as
where is the speed of light in a vacuum, G is the gravitational constant, and ħ is the reduced Planck constant. The two digits enclosed by parentheses are the estimated standard error associated with the reported numerical value.
The Planck length is about 10−20 times the diameter of a proton.
There is currently no proven physical significance of the Planck length; it is, however, a topic of theoretical research. Since the Planck length is so many orders of magnitude smaller than any current instrument could possibly measure, there is no way of examining it directly. According to the generalized uncertainty principle (a concept from speculative models of quantum gravity), the Planck length is, in principle, within a factor of 10, the shortest measurable length – and no theoretically known improvement in measurement instruments could change that.
In physics, Planck units are physical units of measurement defined exclusively in terms of five universal physical constants listed below, in such a manner that these five physical constants take on the numerical value of 1 when expressed in terms of these units. Planck units have profound significance for theoretical physics since they elegantly simplify several recurring algebraic expressions of physical law by nondimensionalization. They are particularly relevant in research on unified theories such as quantum gravity.
Originally proposed in 1899 by German physicist Max Planck, these units are also known as natural units because the origin of their definition comes only from properties of nature and not from any human construct. Planck units are only one system of several systems of natural units, but these units are not based on properties of any prototype object or particle (that would be arbitrarily chosen), but rather on only the properties of free space.
The universal constants that Planck units, by definition, normalize to 1 are: