Pi bond

In chemistry, pi bonds (π bonds) are covalent chemical bonds where two lobes of one involved atomic orbital overlap two lobes of the other involved atomic orbital. Each of these atomic orbitals is zero at a shared nodal plane, passing through the two bonded nuclei. The same plane is also a nodal plane for the molecular orbital of the pi bond.

The Greek letter π in their name refers to p orbitals, since the orbital symmetry of the pi bond is the same as that of the p orbital when seen down the bond axis. P orbitals often engage in this sort of bonding. D orbitals also engage in pi bonding, and form part of the basis for metal-metal multiple bonding.

Pi bonds are usually weaker than sigma bonds; the C-C double bond has a bond energy less than twice the C-C single bond bond energy; which leads to the conclusion that the p orbital overlap to form molecular orbitals is a weaker bond than when s orbitals overlap to form molecular orbitals. From the perspective of quantum mechanics, this bond's weakness is explained by significantly less overlap between the component p-orbitals due to their parallel orientation. This is contrasted by sigma bonds which form bonding orbitals directly between the nuclei of the bonding atoms, resulting in greater overlap and a strong sigma bond.

Podcasts:

PLAYLIST TIME:

Latest News for: pi electron

Schoolboy memorizes record-breaking Pi digits: Here's what kids should know about this magical number

The Times of India 15 Mar 2025
Pi is employed by engineers and physicists in the design of roller coasters, satellites, and electronics.To this day, Pi is still one of the most significant and fascinating numbers in mathematics.
  • 1
×