Phenol, also known as carbolic acid, is an aromatic organic compound with the molecular formula C6H5OH. It is a white crystalline solid that is volatile. The molecule consists of a phenyl group (−C6H5) bonded to a hydroxyl group (−OH). It is mildly acidic and requires careful handling due to its propensity to cause chemical burns.
Phenol was first extracted from coal tar, but today is produced on a large scale (about 7 billion kg/year) from petroleum. It is an important industrial commodity as a precursor to many materials and useful compounds. Its major uses involve its conversion to plastics or related materials. Phenol and its chemical derivatives are key for building polycarbonates, epoxies, Bakelite, nylon, detergents, herbicides such as phenoxy herbicides, and numerous pharmaceutical drugs.
Although similar to alcohols, phenols have unique distinguishing properties. Unlike alcohols, where the hydroxyl group is bound to a saturated carbon atom, phenols have the hydroxyl group attached to an unsaturated aromatic (alternating double and single bond) hydrocarbon ring such as benzene. Consequently, phenols have greater acidity than alcohols due to stabilization of the conjugate base through resonance in the aromatic ring.
The phenolic content in wine refers to the phenolic compounds—natural phenol and polyphenols—in wine, which include a large group of several hundred chemical compounds that affect the taste, color and mouthfeel of wine. These compounds include phenolic acids, stilbenoids, flavonols, dihydroflavonols, anthocyanins, flavanol monomers (catechins) and flavanol polymers (proanthocyanidins). This large group of natural phenols can be broadly separated into two categories, flavonoids and non-flavonoids. Flavonoids include the anthocyanins and tannins which contribute to the color and mouthfeel of the wine. The non-flavonoids include the stilbenoids such as resveratrol and phenolic acids such as benzoic, caffeic and cinnamic acids.
The natural phenols are not evenly distributed within the fruit. Phenolic acids are largely present in the pulp, anthocyanins and stilbenoids in the skin, and other phenols (catechins, proanthocyanidins and flavonols) in the skin and the seeds. During the growth cycle of the grapevine, sunlight will increase the concentration of phenolics in the grape berries, their development being an important component of canopy management. The proportion of the different phenols in any one wine will therefore vary according to the type of vinification. Red wine will be richer in phenols abundant in the skin and seeds, such as anthocyanin, proanthocyanidins and flavonols, whereas the phenols in white wine will essentially originate from the pulp, and these will be the phenolic acids together with lower amounts of catechins and stilbenes. Red wines will also have the phenols found in white wines.
Lights on the highway
Everyone's sleeping
The air is so cold
The sky has turned to black
I got your letter
Nothing's forever Something is over
I am sure you won't come back
It's a better thing for us
That's all that you said
Thanks for all that you gave me
Until this last day
I'm still calling and screaming
Your name with no sound
Maybe one day you'll hear me
But I'll spend tonight
Driving to nowhere
Driving to nowhere
Some say some good things
Break in a heartbeat
Same goes for us I
have to live with that
And I call myself blind
It's so late to realize
That I have wasted all this time
Running after you
Nothing hurts like the truth does
That's all I can say
Thanks for all that you gave me
Untill this last day
I'm still calling and screaming
Your name with no sound
Maybe one day you'll hear me
But I'll spend tonight
Driving to nowhere Driving to nowhere