.pdm is a file suffix that has the following designations:
PDM may stand for:
PDM-Concorde also PDM-Ultima was a Dutch professional cycling team from 1986 until the end of 1992. Gin-MG was co-sponsor in Spanish races and Cidona was co-sponsor in the 1991 Nissan Classic. The team was sponsored by Philips Dupont Magnetics, a joint venture between the electronics company, Philips, and the chemical company, DuPont. It rode cycles made for the Dutch bicycle company Concorde by Italian manufacturer Ciocc.
Roy Schuiten was team manager and Jan Gisbers directeur sportif in 1986. Gisbers took over as the team manager the following year and remained until 1992. He was joined by Piet van der Kruijs and Ferdi van den Haute.
The team was successful in classics and had a rider second overall in the Tour de France in 1987 with Pedro Delgado and 1988 with Steven Rooks. It also had third place with Erik Breukink in 1990. It won the Tour team classification in 1988 and 1989. PDM rider Gert-Jan Theunisse was second in the 1988 Tour de France, battling former PDM teammate Pedro Delgado, when he tested positive for testosterone and received a 10-minute penalty.
The Xeon /ˈziːɒn/ is a brand of x86 microprocessors designed and manufactured by Intel Corporation, targeted at the non-consumer workstation, server, and embedded system markets. Primary advantages of the Xeon CPUs, when compared to the majority of Intel's desktop-grade consumer CPUs, are their multi-socket capabilities, higher core counts, and support for ECC memory.
The Xeon brand has been maintained over several generations of x86 and x86-64 processors. Older models added the Xeon moniker to the end of the name of their corresponding desktop processor, but more recent models used the name Xeon on its own. The Xeon CPUs generally have more cache than their desktop counterparts in addition to multiprocessing capabilities.
The first Xeon-branded processor was the Pentium II Xeon (code-named "Drake"). It was released in 1998, replacing the Pentium Pro in Intel's server lineup. The Pentium II Xeon was a "Deschutes" Pentium II (and shared the same product code: 80523) with a full-speed 512 kB, 1 MB, or 2 MB L2 cache. The L2 cache was implemented with custom 512 kB SRAMs developed by Intel. The number of SRAMs depended on the amount of cache. A 512 kB configuration required one SRAM, a 1 MB configuration: two SRAMs, and a 2 MB configuration: four SRAMs on both sides of the PCB. Each SRAM was a 12.90 mm by 17.23 mm (222.21 mm²) die fabricated in a 0.35 µm four-layer metal CMOS process and packaged in a cavity-down wire-bonded land grid array (LGA). The additional cache required a larger module and thus the Pentium II Xeon used a larger slot, Slot 2. It was supported by the 440GX dual-processor workstation chipset and the 450NX quad- or octo-processor chipset.
Gulftown or Westmere-EP is the codename of an up to six-core hyperthreaded Intel processor able to run up to 12 threads in parallel. It is based on Westmere microarchitecture, the 32 nm shrink of Nehalem. Originally rumored to be called the Intel Core i9, it is sold as an Intel Core i7. The first release was the Core i7 980X in the first quarter of 2010, along with its server counterpart, the Xeon 3600 and the dual-socket Xeon 5600 (Westmere-EP) series using identical chips.
First figures indicate that at equivalent clock rates, depending on the software, it has up to 50% higher performance than the identically clocked quad-core Bloomfield Core i7-975. However, consumer software that utilizes six real cores is still quite rare as of 2011, and not every multithreaded program is able to take advantage of this many cores. Despite having 50% more transistors, the CPU strongly benefits from the 32-nm process, drawing the same or even less power (depending on the operating system) than its Bloomfield predecessors with merely four cores. The thermal design power (TDP) of all planned models is stated to be 130 watts.
Naturally occurring xenon (Xe) is made of eight stable isotopes and one very long-lived isotope. (124Xe, 126Xe, and 134Xe are predicted to undergo double beta decay, but this has never been observed in these isotopes, so they are considered to be stable.) Xenon has the second highest number of stable isotopes. Only tin, with 10 stable isotopes, has more. Beyond these stable forms, there are over 30 unstable isotopes and isomers that have been studied, the longest-lived of which is 136Xe, which undergoes double beta decay with a half-life of 2.165 ± 0.016(stat) ± 0.059(sys) ×1021 years with the next longest lived being 127Xe with a half-life of 36.345 days. Of known isomers, the longest-lived is 131mXe with a half-life of 11.934 days. 129Xe is produced by beta decay of 129I (half-life: 16 million years); 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, and therefore used as indicators of nuclear explosions.
The artificial isotope 135Xe is of considerable significance in the operation of nuclear fission reactors. 135Xe has a huge cross section for thermal neutrons, 2.65×106barns, so it acts as a neutron absorber or "poison" that can slow or stop the chain reaction after a period of operation. This was discovered in the earliest nuclear reactors built by the American Manhattan Project for plutonium production. Fortunately the designers had made provisions in the design to increase the reactor's reactivity (the number of neutrons per fission that go on to fission other atoms of nuclear fuel).