In the field of acoustics, a parametric array is a nonlinear transduction mechanism that generates narrow, nearly side lobe-free beams of low frequency sound, through the mixing and interaction of high frequency sound waves, effectively overcoming the diffraction limit (a kind of spatial 'uncertainty principle') associated with linear acoustics. The main side lobe-free beam of low frequency sound is created as a result of nonlinear mixing of two high frequency sound beams at their difference frequency. Parametric arrays can be formed in water, air, and earth materials/rock.
Priority for discovery and explanation of the parametric array owes to Peter J. Westervelt, winner of the Lord Rayleigh Medal (currently Professor Emeritus at Brown University), although important experimental work was contemporaneously underway in the former Soviet Union.
According to Muir [16, p. 554] and Albers [17], the concept for the parametric array occurred to Dr. Westervelt while he was stationed at the London, England, branch office of the Office of Naval Research in 1951.