Opsins are a group of light-sensitive proteins found in photoreceptor cells of the retina. Five classical groups of opsins are involved in vision, mediating the conversion of a photon of light into an electrochemical signal, the first step in the visual transduction cascade. Another opsin found in the mammalian retina, melanopsin, is involved in circadian rhythms and pupillary reflex but not in image-forming.
Opsins can be classified in any of several ways, including function (vision, phototaxis, photoperiodism, etc.), type of chromophore (retinal, flavine, bilin), molecular structure (tertiary, quaternary), signal output (phosphorylation, reduction, oxidation), etc.
There are two groups of protein termed opsins. type I opsins are employed by prokaryotes and - as the protein component of channelrhodopsins - by some algae, whereas animals use type II opsins. No opsins have been found outside these groups (for instance in plants, fungi, or placozoans).
At one time it was thought that type I and type II were related because of structural and functional similarities. With the advent of genetic sequencing it became apparent that sequence identity was no greater than could be accounted for by random chance. However, in recent years new methods have been developed specific to deep phylogeny. As a result, several studies have found evidence of a possible phylogenetic relationship. According to one hypothesis, both type-I and type-II opsins belong to the transporter-opsin-G protein-coupled receptor (TOG) superfamily, a proposed clade that includes G protein-coupled receptor (GPCR), Ion-translocating microbial rhodopsin (MR), and seven others.
Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene Opn4. In the mammalian retina, there are two additional opsins, both involved in the formation of visual images: rhodopsin and photopsin (types I, II, and III) in the rod and cone photoreceptor cells, respectively.
In humans, melanopsin is found in intrinsically photosensitive retinal ganglion cells (ipRGCs). It is also found in the iris of mice and primates. Melanopsin is also found in rats, amphioxus, and other chordates. ipRGCs are photoreceptor cells which are particularly sensitive to the absorption of short-wavelength (blue) visible light and communicate information directly to the area of the brain called the suprachiasmatic nucleus (SCN), also known as the central "body clock", in mammals. Melanopsin plays an important non-image-forming role in the setting of circadian rhythms as well as other functions. Mutations in the Opn4 gene can lead to clinical disorders, such as Seasonal Affective Disorder (SAD). According to one study, melanopsin has been found in eighteen sites in the human brain (outside of the retinohypothalamic tract), intracellularly, in a granular pattern, in the cerebral cortex, the cerebellar cortex and several phylogenetically old regions, primarily in neuronal soma, not in nuclei.
Through all the way that we've been through
And all the tears that we have spill
There's have left a feeling in me
Something that I couldn't throw away
I tried so hard to purge the demons from my soul
But they are still haunting me
And the pain keeps going on and on
Can't you see?
Now that's all over
All the way
My heart will be with you
Don't you feel?
Now that's all over
All the way
My heart will be with you
All the way
A path o hurting kept us apart
But there's something that we have
That still holds us one
A stronger chain, that keep our souls tied
Through the distance between us
No matter how we try to destroy our mistakes
It will survive on and on, on and on
Can't you see?
Now that's all over
All the way
My heart will be with you
Don't you feel?
Now that's all over
All the way
My heart will be with you
All the way
No one can fill the empty spaces, the void in our souls
Fill the place we can't control, with reason and
freewill
We can't deny the feelings, cause it will just bring
sadness