Nernst equation
In electrochemistry, the Nernst equation is an equation that relates the reduction potential of a half-cell (or the total voltage, i.e. the electromotive force, of the full cell) at any point in time to the standard electrode potential, temperature, activity, and reaction quotient of the underlying reactions and species used. When the reaction quotient is equal to the equilibrium constant of the reaction for a given temperature, i.e. when the concentration of species are at their equilibrium values, the Nernst equation gives the equilibrium voltage of the half-cell (or the full cell), which is zero; at equilibrium, Q=K, ΔG=0, and therefore, E=0. It is named after the German physical chemist who first formulated it, Walther Nernst.
The Nernst equation gives a formula that relates the numerical values of the concentration gradient to the electric gradient that balances it. For example, if a concentration gradient is established by dissolving KCl in half of a divided vessel that is full of H2O, and then a membrane permeable to K+ ions is introduced between the two halves, then after a relaxation period, an equilibrium situation arises where the chemical concentration gradient, which at first causes ions to move from the region of high concentration to the region of low concentration, is exactly balanced by an electrical gradient that opposes the movement of charge.