Modulational instability
In the fields of nonlinear optics and fluid dynamics, modulational instability or sideband instability is a phenomenon whereby deviations from a periodic waveform are reinforced by nonlinearity, leading to the generation of spectral-sidebands and the eventual breakup of the waveform into a train of pulses.
The phenomenon was first discovered − and modelled − for periodic surface gravity waves (Stokes waves) on deep water by T. Brooke Benjamin and Jim E. Feir, in 1967. Therefore, it is also known as the Benjamin−Feir instability. It is a possible mechanism for the generation of rogue waves.
Initial instability and gain
Modulation instability only happens under certain circumstances. The most important condition is anomalous group velocity dispersion, whereby pulses with shorter wavelengths travel with higher group velocity than pulses with longer wavelength. (This condition assumes a focussing Kerr nonlinearity, whereby refractive index increases with optical intensity.) There is also a threshold power, below which no instability will be seen.