Multiple frequency-shift keying
Multiple frequency-shift keying (MFSK) is a variation of frequency-shift keying (FSK) that uses more than two frequencies. MFSK is a form of M-ary orthogonal modulation, where each symbol consists of one element from an alphabet of orthogonal waveforms. M, the size of the alphabet, is usually a power of two so that each symbol represents log2M bits.
M is usually between 2 and 64
Error Correction is generally also used
MFSK Fundamentals
In a M-ary signaling system like MFSK, an "alphabet" of M tones is established and the transmitter selects one tone at a time from the alphabet for transmission. M is usually a power of 2, so each tone transmission from the alphabet represents log2 M data bits.
MFSK is classed as an M-ary orthogonal signaling scheme because each of the M tone detection filters at the receiver responds only to its tone and not at all to the others; this independence provides the orthogonality.
Like other M-ary orthogonal schemes, the required Eb/N0 ratio
for a given probability of error decreases as M increases without the need for multisymbol coherent detection. In fact, as M approaches infinity the required Eb/N0 ratio decreases asymptotically to the Shannon limit of -1.6 dB. However this decrease is slow with increasing M, and large values are impractical because of the exponential increase in required bandwidth. Typical values in practice range from 4 to 64, and MFSK is combined with another forward error correction scheme to provide additional (systematic) coding gain.