Mariveles Reef, known as Nanhai Jiao (Chinese: 南海礁) in China, Terumbu Mantanani in Malaysia, đá Kỳ Vân in Vietnam and Mariveles in the Philippines, is 59 km slightly east of north from Swallow Reef and 35nm southeast of Barque Canada Reef. It dries at high tide enclosing two large lagoons in a figure of eight formation with a sand cay between them. This small cay, 1.5–2 m high, and some isolated rocks are just visible at high water.
The Royal Malaysian Navy has maintained a naval station called "Mike Station" since 1986.
A reef is a bar of rock, sand, coral or similar material, lying beneath the surface of water. Reefs may be up to 261 feet (80 m) below the surface.
Many reefs result from abiotic processes—deposition of sand, wave erosion planing down rock outcrops, and other natural processes—but the best-known reefs are the coral reefs of tropical waters developed through biotic processes dominated by corals and calcareous algae. Artificial reefs such as shipwrecks are sometimes created to enhance physical complexity on generally featureless sand bottoms in order to attract a diverse assemblage of organisms, especially fish.
There is a variety of biotic reef types, including oyster reefs, but the most massive and widely distributed are tropical coral reefs. Although corals are major contributors to the framework and bulk material comprising a coral reef, the organisms most responsible for reef growth against the constant assault from ocean waves are calcareous algae, especially, although not entirely, species of coralline algae.
In geology, a vein is a distinct sheetlike body of crystallized minerals within a rock. Veins form when mineral constituents carried by an aqueous solution within the rock mass are deposited through precipitation. The hydraulic flow involved is usually due to hydrothermal circulation.
Veins are classically thought of as being the result of growth of crystals on the walls of planar fractures in rocks, with the crystal growth occurring normal to the walls of the cavity, and the crystal protruding into open space. This certainly is the method for the formation of some veins. However, it is rare in geology for significant open space to remain open in large volumes of rock, especially several kilometers below the surface. Thus, there are two main mechanisms considered likely for the formation of veins: open-space filling and crack-seal growth.
Open space filling is the hallmark of epithermal vein systems, such as a stockwork, in greisens or in certain skarn environments. For open space filling to take effect, the confining pressure is generally considered to be below 0.5 GPa, or less than 3-5 kilometers. Veins formed in this way may exhibit a colloform, agate-like habit, of sequential selvages of minerals which radiate out from nucleation points on the vein walls and appear to fill up the available open space. Often evidence of fluid boiling is present. Vugs, cavities and geodes are all examples of open-space filling phenomena in hydrothermal systems.
The reef knot, or square knot, is an ancient and simple binding knot used to secure a rope or line around an object. It is sometimes also referred to as a Hercules knot. The knot is formed by tying a left-handed overhand knot and then a right-handed overhand knot, or vice versa. A common mnemonic for this procedure is "right over left; left over right", which is often appended with the rhyming suffix "... makes a knot both tidy and tight". Two consecutive overhands of the same handedness will make a granny knot. The working ends of the reef knot must emerge both at the top or both at the bottom, otherwise a thief knot results.
Although the reef knot is often seen used for tying two ropes together, it is not recommended for this purpose because of the potential instability of the knot, and over-use has resulted in many deaths (see #Misuse as a bend).
The reef knot is at least between 4,000 and 9,000 years old. The name "reef knot" dates from at least 1794 and originates from its common use to reef sails, that is to tie part of the sail down to decrease its effective surface area in strong winds. To release the knot a sailor could collapse it with a pull of one hand; the sail's weight would make the collapsed knot come apart. It is specifically this behavior which makes the knot unsafe for connecting two ropes together.