The Artin reciprocity law, established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory.[1] The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.
Contents |
Artin's reciprocity law implies a description of the abelianization of the absolute Galois group of a global field K which is based on the local–global principle and the use of the Frobenius elements. Together with the Takagi existence theorem, it is used to describe the abelian extensions of K in terms of arithmetic of K and to understand the behavior of the nonarchimedean places in them. Therefore, the Artin reciprocity law can be interpreted as one of the main theorems of global class field theory. It can be used to prove that Artin L-functions are meromorphic and for the proof of the Chebotarev density theorem.[2]
The definition of the Artin map for a finite abelian extension L/K of global fields (such as a finite abelian extension of Q) has a concrete description in terms of prime ideals and Frobenius elements.
If Failed to parse (Missing texvc executable; please see math/README to configure.): \mathfrak{p}
is a prime of K then the decomposition groups of primes Failed to parse (Missing texvc executable; please see math/README to configure.): \mathfrak{P} above Failed to parse (Missing texvc executable; please see math/README to configure.): \mathfrak{p} are equal in Gal(L/K) since the latter group is abelian. If Failed to parse (Missing texvc executable; please see math/README to configure.): \mathfrak{p} is unramified in L, then the decomposition group Failed to parse (Missing texvc executable; please see math/README to configure.): D_\mathfrak{p} is canonically isomorphic to the Galois group of the extension of residue fields Failed to parse (Missing texvc executable; please see math/README to configure.): \mathcal{O}_{L,\mathfrak{P}}/\mathfrak{P} over Failed to parse (Missing texvc executable; please see math/README to configure.): \mathcal{O}_{K,\mathfrak{p}}/\mathfrak{p}
. There is therefore a canonically defined Frobenius element in Gal(L/K) denoted by Failed to parse (Missing texvc executable; please see math/README to configure.): \mathrm{Frob}_\mathfrak{p}
or Failed to parse (Missing texvc executable; please see math/README to configure.): \left(\frac{L/K}{\mathfrak{p}}\right)
. If Δ denotes the relative discriminant of L/K, the Artin symbol (or Artin map, or (global) reciprocity map) of L/K is defined on the group of prime-to-Δ fractional ideals, Failed to parse (Missing texvc executable; please see math/README to configure.): I_K^\Delta , by linearity:
The Artin reciprocity law (or global reciprocity law) states that there is a modulus c of K such that the Artin map induces an isomorphism
where Kc,1 is the ray modulo c, NmL/K is the norm map associated to L/K and Failed to parse (Missing texvc executable; please see math/README to configure.): I_L^\mathbf{c}
is the fractional ideals of L prime to c. Such a modulus c is called a defining modulus for L/K. The smallest defining modulus is called the conductor of L/K and typically denoted Failed to parse (Missing texvc executable; please see math/README to configure.): \scriptstyle\mathfrak{f}(L/K)
.
If d is a squarefree integer, K = Q, and Failed to parse (Missing texvc executable; please see math/README to configure.): \scriptstyle L=\mathbf{Q}(\sqrt{d}) , then the Galois group Gal(L/Q) can be identified with {±1}. The discriminant Δ of L over Q is d or 4d depending on whether d ≡ 1 (mod 4) or not. The Artin map is then defined on primes p that do not divide Δ by
where Failed to parse (Missing texvc executable; please see math/README to configure.): \left(\frac{\Delta}{p}\right)
is the Kronecker symbol.[3] More specifically, the conductor of L/Q is the principal ideal (Δ) or (Δ)∞ according to whether Δ is positive or negative,[4] and the Artin map on a prime-to-Δ ideal (n) is given by the Kronecker symbol Failed to parse (Missing texvc executable; please see math/README to configure.): \left(\frac{\Delta}{n}\right). This shows that a prime p is split or inert in L according to whether Failed to parse (Missing texvc executable; please see math/README to configure.): \left(\frac{\Delta}{p}\right) is 1 or −1.
Let m be either an odd integer or a multiple of 4, let ζm be a primitive mth root of unity, and let L = Q(ζm) be the mth cyclotomic field. The Galois group Gal(L/Q) can be identified with (Z/mZ)× by sending σ to aσ given by the rule
The conductor of L/Q is (m)∞,[5] and the Artin map on a prime-to-m ideal (n) is simply n (mod m) in (Z/mZ)×.[6]
Let p and ℓ be distinct odd primes. For convenience, let ℓ* = (−1)(ℓ−1)/2ℓ (which is always 1 (mod 4)). Then, quadratic reciprocity states that
The relation between the quadratic and Artin reciprocity laws is given by studying the quadratic field Failed to parse (Missing texvc executable; please see math/README to configure.): \scriptstyle F=\mathbf{Q}(\sqrt{\ell^\ast})
and the cyclotomic field Failed to parse (Missing texvc executable; please see math/README to configure.): \scriptstyle L=\mathbf{Q}(\zeta_\ell) as follows.[7] First, F is a subfield of L, so if H = Gal(L/F) and G = Gal(L/Q), then Gal(F/Q) = G/H. Since the latter has order 2, the subgroup H must be the group of squares in (Z/ℓZ)×. A basic property of the Artin symbol says that for every prime-to-ℓ ideal (n)
When n = p, this shows that Failed to parse (Missing texvc executable; please see math/README to configure.): \left(\frac{\ell^\ast}{p}\right)=1
if, and only if, p (mod ℓ) is in H, i.e. if, and only if, p is a square modulo ℓ.
Let Lv⁄Kv be a Galois extension of local fields with Galois group G. The local reciprocity law describes a canonical isomorphism
called the local Artin symbol.
Let L⁄K be a Galois extension of global fields and CL stand for the idèle class group of L. The maps θv for different places v of K can be assembled into a single global symbol map by multiplying the local components of an idèle class. One of the statements of the Artin reciprocity law is that this results in the canonical isomorphism[8]
A cohomological proof of the global reciprocity law can be achieved by first establishing that
constitutes a class formation in the sense of Artin and Tate. Then one proves that
where Failed to parse (Missing texvc executable; please see math/README to configure.): \hat{H}^{i}
denote the Tate cohomology groups. Working out the cohomology groups establishes that θ is an isomorphism.
An alternative version of the reciprocity law, leading to the Langlands program, connects Artin L-functions associated to abelian extensions of a number field with Hecke L-functions associated to characters of the idèle class group.[9]
A Hecke character (or Größencharakter) of a number field K is defined to be a quasicharacter of the idèle class group of K. Robert Langlands interpreted Hecke characters as automorphic forms on the reductive algebraic group GL(1) over the ring of adeles of K.[10]
Let E⁄K be an abelian Galois extension with Galois group G. Then for any character σ: G → C× (i.e. one-dimensional complex representation of the group G), there exists a Hecke character χ of K such that
where the left hand side is the Artin L-function associated to the extension with character σ and the right hand side is the Hecke L-function associated with χ, Section 7.D of.[10]
The formulation of the Artin reciprocity law as an equality of L-functions allows formulation of a generalisation to n-dimensional representations, though a direct correspondence is still lacking.