LRRK2

Leucine-rich repeat kinase 2 (LRRK2), also known as dardarin (from the Basque word "dardara" which means trembling), is an enzyme that in humans is encoded by the PARK8 gene. LRRK2 is a member of the leucine-rich repeat kinase family. Variants of this gene are associated with an increased risk of Parkinson's disease and also Crohn's disease.

Function

The LRRK2 gene encodes a protein with an armadillo repeats (ARM) region, an ankyrin repeat (ANK) region, a leucine-rich repeat (LRR) domain, a kinase domain, a RAS domain, a GTPase domain, and a WD40 domain. The protein is present largely in the cytoplasm but also associates with the mitochondrial outer membrane.

LRRK2 interacts with the C-terminal R2 RING finger domain of parkin, and parkin interacted with the COR domain of LRRK2. Expression of mutant LRRK2 induced apoptotic cell death in neuroblastoma cells and in mouse cortical neurons.

Expression of LRRK2 mutants implicated in autosomal dominant Parkinson's disease causes shortening and simplification of the dendritic tree in vivo and in cultured neurons. This is mediated in part by alterations in macroautophagy, and can be prevented by protein kinase A regulation of the autophagy protein LC3. The G2019S and R1441C mutations elicit post-synaptic calcium imbalance, leading to excess mitochondrial clearance from dendrites by mitophagy. LRRK2 is also a substrate for chaperone-mediated autophagy.

Podcasts:

PLAYLIST TIME:

Latest News for: lrrk2

Edit

1ST Biotherapeutics Joins The Michael J. Fox Foundation’s LITE Program to Advance LRRK2-Based

The Eagle-Tribune 15 Apr 2025
Focus on the discovery of next-generation LRRK2 inhibitors to unlock novel biological mechanisms of action and advance new treatment options ... .
Edit

Arvinas Presents First-in-Human Data for Investigational Oral PROTAC ARV-102 Demonstrating Blood-Brain Barrier Penetration, and Central and Peripheral LRRK2 Degradation (Form 8-K) (Arvinas Inc)

Public Technologies 04 Apr 2025
- Data demonstrate that ARV-102 was well tolerated, orally bioavailable, and brain-penetrant; ARV-102 achieved central and peripheral LRRK2 reduction indicating substantial LRRK2 protein degradation in healthy volunteers -.
  • 1
×