LPO may refer to:
In theoretical computer science, in particular in term rewriting, a path ordering is a well-founded strict total order (>) on the set of all terms such that
where (.>) is a user-given total precedence order on the set of all function symbols.
Intuitively, a term f(...) is bigger than any term g(...) built from terms si smaller than f(...) using a lower-precedence root symbol g. In particular, by structural induction, a term f(...) is bigger than any term containing only symbols smaller than f.
A path ordering is often used as reduction ordering in term rewriting, in particular in the Knuth–Bendix completion algorithm. As an example, a term rewriting system for "multiplying out" mathematical expressions could contain a rule x*(y+z) → (x*y) + (x*z). In order to prove termination, a reduction ordering (>) must be found with respect to which the term x*(y+z) is greater than the term (x*y)+(x*z). This is not trivial, since the former term contains both less function symbols and less variables than the latter. However, setting the precedence (*) .> (+), a path ordering can be used, since both x*(y+z) > x*y and x*(y+z) > x*z is easy to achieve.
Lactoperoxidase is a peroxidase enzyme secreted from mammary, salivary, and other mucosal glands that functions as a natural antibacterial agent. Lactoperoxidase is a member of the heme peroxidase family of enzymes. In humans, lactoperoxidase is encoded by the LPO gene.
Lactoperoxidase catalyzes the oxidation of a number of inorganic and organic substrates by hydrogen peroxide. These substrates include bromide and iodide and therefore lactoperoxidase can be categorised as a haloperoxidase. Another important substrate is thiocyanate. The oxidized products produced through the action of this enzyme have potent bactericidal activities. Lactoperoxidase together with its inorganic ion substrates, hydrogen peroxide, and oxidized products is known as the lactoperoxidase system.
The lactoperoxidase system plays an important role in the innate immune system by killing bacteria in milk and mucosal (linings of mostly endodermal origin, covered in epithelium, which are involved in absorption and secretion) secretions hence augmentation of the lactoperoxidase system may have therapeutic applications. Furthermore, addition or augmentation of the lactoperoxidase system has potential applications in controlling bacteria in food and consumer health care products. The lactoperoxidase system does not attack DNA and is not mutagenic. However, under certain conditions, the lactoperoxidase system may contribute to oxidative stress. Furthermore, lactoperoxidase may contribute to the initiation of breast cancer, through its ability to oxidize estrogenic hormones producing free radical intermediates.
I know she's gone again
I saw her walking up the track
God only knows when she will be back
The only thing I know as sure as
Morning starts the day
When she comes home again
This is what they'll all say.
Recycle Sally coming round again
Recycle Sally we all know where you've been
Recycle Sally why can't the fools see
Recycle Sally Recycle Sally Recycle Sally
That you recycle to me.
Now Sally ain't about to start to get settled down
She likes to circulate herself all around town
She might get abused and crushed all out of shape